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Abstract

theory of tensor operators is used to obtain criteria for the
e nce a ~ nonexistence of limit cycles in nonlinear systems.
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1. Introduction

The theory of limit cycle behaviour in nonlinear systems has, of course, a
long history and is difficult because it is essentially a global phenomenon.
Many results from the qualitative theory of differential equations exist
(see, for example, Lefschetz, 1977, Hirsch and Smale, 1971) and the describing
function method is well-known in control theory (Gelb and Vender VelggigMees
and Bergen, 1975). 1In this paper we consider the problem by replaciné the
original nonlinear system by a linear infinite—dimensional tensor - valued
differential equation and derive a condition on the spectrum of the tensor
operator for the existence of a limit cycle. This condition turns out to be
the intuitively appealing result that the spectrum should intersect the
imaginary axis. Using a generalisation of the Gersgorin circle theorem for
tensors, we shall obtain a sufficient condition for the non-existence of a

limit cycle in polynomial systems. This will also provide an upper bound on

the frequency of oscillations in systems which do have limit cycles.,

The linearisation technique used here has been applied for the study of the
control of nonlinear systems as in Takata, 1979, Banks, 1985a, Banks and
Ashtiani, 1985, and is a promising technique for the simplification of non-

linear systems in general.

We shall begin by introducing elementary tensor theory and then provide a
criterion for the existence of limit cycles in analytic nonlinear systems.
We shall then consider the spectrum of a tensor operator and generalise
Gersgorin's theorem which leads to a sufficient condition for the non-
existence of limit cycles. Finally we shall show how to apply this to a

~ general polynomial system.



2. Tensors and Tensor Operators

We shall use the standard theory of tensors in the finite and infinite-
; 5 . k k k 2 2

dimensional Hilbert tensor product spaces R AR @ ...®R and 2°® ... @¢

(n factors in each case, for some n). This theory can be found in Greub

(1978) or Takesaki (1979), for exmaple. Tensors will be used exclusively in

component form in the standard bases of the above spaces. Hence we shall

write, for <I>€Rk®...®Rk or @Eli@..@ﬁz,

.. ®...0e,
I i

; . k 2
where {ei} 1s the standard basis of R or 2  and the sum ranges from 1 to k
or 1 to «, respectively. In future we shall omit reference to the basis

elements e, @...@ei and simply write @i i for the tensor ¢, the standard

1 n 1° n
basis being assumed.
k k ) q,
We shall also need tensor operators on the spaces R® ...®@R and 2°@... &4
: . 2
Thus, if AE:X,(]Rk!g..@IRk) or Ae,f(!lzéb.. .@27) (where f(H) denotes the space of

bounded linear operators on H) then A operates as follows:

(A@) . . = Z R Z A.l .n ®‘ 2
1. eass 1 = 0 T wleak ] s 0]
1 n J ] n 1 n
. . 1 n
Igvda . g i ; +Eh ,
where A, is the (j. «+. § 1. ... 1) "component' of A . This merely
11-.. ]_’ - Thiy ]_’ 5 T

generalises matrix operations of the form ¥ = A®, where

_ i
Ty = Z Aiclaj
j

and, for convenience, we have written the usual matrix coefficient Aij as AJi.
Note finally that, as a linear operator, we can define the spectrum of

k k 2 2. . . x
AR ®...0R) (or 2(2°® ... ®10°) in the usual way . Thus, A is an eigen-

value of A, with eigenvector ¢ if

Ad = )9

which holds if

Joees] N N
LAt e o=t s e ;
g, Pa P Jimda 1 n Jivtn
The 'diagonal' elements of A are the elements A.ll'”%n
1 wawl ¥

1 n



3. A Limit Cycle Criterion

Consider the nonlinear system

x = f(x) (3.1)

n . : ; ;
where xelR and f is (real) analytic. Define the functions

_ ik n
$; i T % o
1 n
Then,
n i i -1 i
vty k=1 nok
n i i i o0
= Z 1kx11 ces xkk ce x © Z B oo xii
k=1 no ; 17
Jl, . ,Jn
where
o i,
o k 1 n
fkbﬂ)"g i =0 qu"‘j Xy ...xn
1’-. “4a n
is the Taylor expansion of fk for some constants a% . » Hence,
s
2 s i T i+ -1 i +]
. k +
¢i 3 ® ) ) i, . xil 3. xkk k ...xnn o
3% ¢ o k=1 j ... 3 =o Jl-..Jn
1, 3 I
g Joeeed i
= Z A.l A 1... X n’ (3.2)
5 <o 11...1 1 n
Jl’...’Jn .
where
o n k
N I (3.3)
1 n k=1 31—11’.. ,Jk—lk+1,...,3 “i
and a? 5 is defined to be zero if any subscript j£<o. Now introduce the
17" n
tensor ® with components ¢i 5 and the tensor operator A defined by
pEeets
o Fon 4]
wey, ;= I Ai1 Soe (3.4)
1" ""n i .« ] =0 1°ta J177ta

Then the system (3.2) may be written as a tensorial differential equation

é = AD, (3.5)
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Suppose now that we restrict the initial values xo0 of (3.1) to be contained
in some bounded set R = {xo:]|x0||<r0} and let T>o be some given time. We
shall assume that the solutions of (3.1) exist for time T for initial
conditions in R ~and belong to a bounded set R = {x:]|x||<r} where 3T . (If
(3.1) has finite escape time t then we must have t>T.) By changing coordinates
to y=x/r we can assume that the system (3.1) has the set {x:||x||<1} as the
'region of interest' (i.e. the set containing any limit cycles, equilibria
etc.) Since []x|{<1 we have §612®..J32?; i.e. the state space of (3.5) can
be taken to be the tensor product of n copies of ﬁz. Let N denote the nonlinear
St:lbset OJ? 5128)... @22 consisting of aﬁ tensors of the form of Cbi O
xil... x:n. Then it is shown in Banks, 1985b, that A is a bounded iperaﬁor

5 A At . .
on Nfand we can define e t. Moreover, e = extends to a semigroup on the linear

space spanned by N.

We come now to a simple characterisation of limit cycles for the system (3.1)

in terms of the linear infinite-dimensional system (3.5).

Theorem 3.1 The system (3.1) has a limit cycle if, and only if the corresponding
tensor operator A in (3.5) has an imaginary eivenvalue (#0) with an eigenvector

in the space N.

Proof Suppose first that (3.1) has a limit cycle and let x0 be any point on

the limit cycle. Form the tensor ¢° with components

Let T be the period of the limit cycle. Then

. . ; AT . . 0
This means that 1 is an eigenvalue of e = with the eigenvector ¢ eN. By the

; . AT
spectral mapping theorem (Yosida, 1974 or Banks, 1983) the spectrum of e

equals the exponential of the spectral values of A. Hence

T e,

A = Su lh l Oug, '
AN stN \”:‘: . Nete bhat A may not be houwnded onthe

X0

LwKQAr Spdcr gPa“ﬂta %j N,



eAT = i

where Aesp(A), and so A is imaginary.

The converse is simply a reversal of this argument. [J]

Remarks

(a) If the conditions of the lemma hold, the period T of the oscillation
is given by
T = inf {|x| : ) = ipesp (A),p0}
where spN(A) is the set of eigenvalues of A with eigenvectors in N.
(b) The eigenvector ¢° must belong to N. If we have eAT®=® for some ¢¢

2 2

2@ . 82 ,then a limit cycle does not necessarily exist, since & may not
i i

be of the form xll...xnn for some x. The fact that @OEN reflects the

nonlinearity of the original problem.

The main problem with this approach, of course, is the computation of

the spectrum of a tensor operator which is unlikely to be any easier than
any existing method. It will be seen, however, that we can use the ideas
in a negative way; that is to show non-existence of limit cycles. Thus
we have

Corollary 3.2. If the spectrum of A does not intersect the imaginary axis,

then the system (3.1) cannot have a limit cycle.{I

We shall now truncate the system operator A so that each index is restricted

to the range O to k. Thus we write Ak for the tenmsor operator with components
Jkisd
1 -

A1 in where Osilv“jzsk. Using the results of Banks 1985b it is easy to
1°"""n
show that

14 l] > 11|

as kwe ., Tt follows that if the spectra of Uk of the operators Ak are all

SHEFFIELD UNJV.
PLIED SCIENC
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bounded away from the imaginary axis, then so is the spectrum of A. To
obtain a non-existence criterion from corollary 3.2 we shall prove a general-

isation of Gersgorin's circle theorem for tensor operators in the next section.

4. Gersgorin's Theorem for Tensors.

First recall that A is an eigenvalue of the tensor operator A, with eigen-

vector , if

k 1. # 55 Is 3 ]
R =28,%6.% L8 e .
_ 1" te A1ty 1 T n J19y
jpre-si=o

where the tensors are assumed to be a rank n and dimension k+l. We shall

consider the rank-2 case before discussing the general situation. Given a
14

rank 2 tensor Ai e of dimension k+l, we can organise it into a matrix as
172
follows
[~ o0 10 20 k0 &1 11 21 k1l Ok kk ~
%00 %00 “00°A00 %00 400 400* * Aoo **+ Aoo v Agg
00 10 20 kO 01 T4 21 kl Ok kk
AlO AiO AOO"'Alo AOO AOO Alo... AIO G AlO 853 AlO
00 10 kO 0t k1l Ok kk

Ako AkO AT AkO AkO R b W Ako... AkO TR AkO

R R R I I R S B I L N I I R I A N I R A I T

00 10 k0 01 kl ok kk
ids X e § R @ s e A s wpe B
e P V1 B A Aok Ok Ok
00 10 kO 01 kl Ok kk
Akk Akk T Akk Akk P — - Akk — Akk ‘s Akk J
This corresponds to the ordering of @j [ in the rank 1 array
TRERE

® )

fEr ®k10mo""" |3/

0000 %10..07"" %o0..0 %1..0 %110..0

Let A denote the matrix associated with the tensor A as above. Then the

eigenvalues of A are clearly the same as the eigenvaluesof A. Hence, by

the standard (matrix) Gersgorin theorem we have



Theorem 4.1 Let Ailiz be a rank-2 tensor of dimension (k+1). Define the
numbers ﬁpq by te
Pq
io = IZ( la ol = 4%, osp, qsk
Pq Pq Pq

m,n=o
Then the eigen values of A are contained in the union of the interias of the

circles with centres qu and radii#%pq .
Pq Pq

Remark. A similar result hold for 'columms'.

The general result now follows easily:

Jyeesd
Corollary 4.2. If A.l in is a rank-n tensor of dimension (k+1) and we
llsnon
define
P....p k 111 R | B e oD
1 - > gl B -‘Al "L 0%, £k,
Pp---P m ...m=0l PprePy Pp-+-Py
3 3

then the eigenvalues of A are contained in the union of the interiors of the
DD P, essp
% and radii 3°(,P1 Qg

(k+1)n circles with centres A .
1" Py

Pyes=by
From the representation (3.2), (3.3) of the nonlinear system (3.1) we

therefore obtain the following sufficient condition for the nonexistence

of a limit cycle:

Corollary 4.3. The system (3.1) will have no limit cycles if

2|

I~

3 - )
o o (4.1)
Py 0,...,1,...,O|:> Z | z pR ml—pl,...,mg—p£+1,...,mn-pi

2=1 m,...,m =0 g=l

for all p1 ves P e{0,1,2,}, provided the sum on the right exists.
3

Remark. The sum on the right of (4.1) is finite if f is a polynomial function,

since only a finite number of the Taylor polynomials have non-zero coefficients.

In the next section we shall present some examples to illustrate the application
of corollary 4.3. TFor the method to be useful we must be able to compute

the sum in (4.1) effectively. We shall show that this is possible in many

cases.



5. Examples.
1. Consider the two dimensional system with polynomial right hand side:
2y mi o
kl = ) Y a, % x)
i=o j=o 141 2
31
: f2 W i j
X, = z z Bl X, %
i=0 j=zo *J
Then if = xl XP' we have
A1 720
. A-1 . u A U=1
= 2
¢AU Xl XlXZ g le 9 X,
21 I]li i+}\ =1 » £2 mqy
=} Z 2\ g Xl + i z Z B. ) i'l-l 21.[""_] 1
i=0 j=0 J 1=0 j=0 *J
5, M Ly my
= A o . o¢. . + 3 .
121 jzl 1] ¢1+A-l’ J*u 1z0 JEO 8 1+A’ uty-1
£y m L2
P q P q
= A3 fu NS S T E B ENY e b
i=0 =0 1] 1+A-1 j+p i=0 j=0 1+A wki-1" "pg
Pq
= z A 4)
P,49=0 B 2e
where
pq %1 El p q %2 P 4
AU: = % i §F +q Z Bis Simaluaion”
Al i=d 40 i 1+A-1 j+u fsg g a2 W
Now we have
pq g1 P q L P g
A = Q.. 6. E &,
= |pa,o + a8y »
and
e T P P re 23
| A77] = |p YR v tq ﬁ l
A,u=0 P4 A,u=0  i=0 j=o 1 1*P7L J¥q izo j=o “*? 1*1‘*



o

|

q B

= L ey o e
N0 | AL+lumg A-p,u=q+l
where we take ak2=0 or BkR =0 if k and 2 are outside the respective ranges
0 to £1, 0 to ml or 0 to 22, 0 to m, . If we put

2 = max {21 22 }, m = max {ml m2}

3 3

then we have

o XH. ptl q+m
A =
A E=Of pql Azp—luzq—llpuk“P+1s H-q v qgl-p, u-q+1|
2
£ m
) Az—l uz—l LR UYL

Hence, by (4.1), the System (5.1) will have no limit cycles if

£ m

2
Po0 * oy >A=Zl u§_1 Ipak+1,u ' qBA,u+l|

(5.2)

for all p,q30. In particular, if %0 and 601 have the same sign it is

sufficient that

Ly m
21&10' >K=§1 UEOIQA+1’U{

I (5.3)
2|8y 12 AZO u§a1l5“5“+1 |

sgn alO = sgn 801
Hence, any 'diagonally dominant' system, where the polynomials satisfy (5.3)

has no limit cycles.

2. For example, the system

b e 5
it ]
£~ W
b ™
+ +
] "

W NN

+
b
= |
"
N



does not oscillate, since the idiagonal' coefficients are 3 and 4 and the

corresponding 'off-diagonal' sums are 2 and 3 respectively.

3. Even if the Gersgorin circles do intersect the imaginary axis then we
can still obtain some information about on limit cycles which may exist.
For example, suppose that we denote by L the intersection of the imaginary
axis and the union of the Gergorin circles of the system, and assume that
L is bounded, say Rmax = sup{[zi;zELimhen, since the criterion for the

existence of a limit cycle of period T is

we must have
AT = 2n7i

and so the minimum period is

Hence, such a system cannot have an oscillation of frequency >2max

Thus, for example, the system

[ 2
= =+
X]. Xl X, + X2

K = W ¥ B

2 2 + X, X

12

MW =

cannot oscillate at a frequency greater than V5 rad/sec.

4. Note finally the generalisation of (5.3) to the n-dimensional system

1k Kok i :
s k 1 n
X, = I o wow z @ i ¥y el E]
i_=0 1 =0 1 n
1 n
is the condition
1 . k
k n k

for 1 s k £ n.
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b. Conclusions

In this paper we have given a simple sufficient condition for the non-
existence of limit cycles in polynomial systems. By associating an
infinite-dimensional tensor-valued system with the original nonlinear
system and generalising the Gersgorin circle theorem to tensors, we have
been able to apply linear spectral theory to show that the system will
oscillate if and only if the spectrum of the associated tensor operator

intersects the imaginary axis.

The use of the method to predict the existence of limit cycles is much
more difficult, of course. This would involve finding the spectrum of a
tensor operator and showing the existence of an eigenvector of a specific
form. Further research into this problem is necessary and we shall examine

it in more detail in a future paper.
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