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Abstract

The stabilizability of bilinear finite- and infinite-dimensional
systems is studied together with the stabilizability of a class of non-
linear finite~dimensional systems. A variable-structure approach is
considered which does not require the linear part of the system to be

dissipative.
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1. Introduction

The theory of bilinear systems has proved, in the last decase, to be an
important generalization of the familiar linear systems theory with important
contributions from many authors. For example, in the area of feedback and
optimal contrel see Longchamp (1980), Gutman (1981), Tzafestas et al (1984),
Banks and Yew (1985a,b). In particular Gutman (1981) has developed a class
of stabilizing controls for bilinear systems. Results on the stabilizability
of bilinear distributed parameter systems have been obtained by Slemrod (1978),
Ball and Slemrod (1979) and Ball et al (1982), and Ryan and Buckingham (1983)
have strengthened the results of Slemrod (1978) in the finite dimensional case.

In this paper we shall consider the stabilizability of the bilinear system.

X = Ax + uBx (1.1)
where X belongs to R" or a Hilbert space and A and B are appropriately defined
operators. In Ball and Slemrod (1979), it is assumed that A satisfies

<Ax,x> < 0 ¥ xed(a) ,
and then, formally, we may differentiate Vg“ xffz along the trajextories of
(1.1) to obtain

% = 2<x,Bx>u + 2<Ax,x>

'i~2<x,Bx>2
if we choose the control
u = =<3 Bxs,

In this paper we shall use the control

u = -2 <%, Ax>=-1 Clu2)
2<x,Bx>
to obtain
V= -1

apart from when <x,Bx>= 0 , We shall then show that the set of points

<x,Bx> = 0 , with appropriate assumptions on A, is a sliding mode for the system.
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We shall alsc consider nonlinear systems of the form
=g (%) + ug (%) +....+ u'g (x)
g, 8. cees &
and obtain a stabilizing feedback controller, generalizing the bilinear case.
This will be related to the sets of points (which are assumed to be submanifolds
of WP) which satisfy one or more of the equations
<x,gi(x)> =0, i=l,...,m,
In the case of distributed parameter systems, because of the difficulty
of (1.2) being defined only when xed)(A), we shall use the spectral theorem to
write A+A* in the form of an unbounded stable operator and an bounded unstable

operator and then define the control

u = -=<x,P(A+A%)x>-1 (1.:3)
2<x%,Bx>
where P is the projection on the unstable subspace. Since P(A+A%*) is bounded
(1.3) is defined for all xeH apart from when <x,Bx> = 0. We shall then use

straightforward existence theory together with the Lyapunov function H x“2
to show that (1.3) is a stabilizing control for (1.1) on H.

Finally we shall present a number of simple examples to illustrate the
theory. In particular we shall consider a bilinear hyperbolic system with a

compact (integral) perturbation.



P Notation and Terminology

In this paper we shall use standard terminology for finite and infinite
dimensional vector spaces. In particular, to be consistent with the
infinite~dimensional case, we shall denote the inner product of two vectors
x,yeﬁ? by <x,y> rather than xTy. However, for the transpose of a matrix A
we shall use the usual notation AT, while the dual operator of a densely
defined operator A on a Hilbert space will be denoted by A%,

If M is a differentiable manifold, then ®M will denote the boundary of M.
Moreover, we shall use the well-known result that if fﬂﬁtﬂkis a differentiable
map such that grad £ # 0O at.each point of fnl(O), then f—l(O) is an n-1
dimensional submanifold of R™.

For a matrix A which is simmetric we shall use the fact that A can be
diagonalized by an orthogonal matric P of eigencectors of A so that

P A
where /\ contains the eigenvalues of A along the diagonal. If A is any matrix,
Ker A will denote the kernel of A, i,e. the set of vectors x such that Ax = O.
If p(x)=amxm+...+a0x0 is a polynomial we shall use the discriminant of p ,

defined as the determinant

X(p) = am am_l v o a0 [
e
a " a
m o
- a
Ewﬁ o
mam(mr-l)am_1 5 - 8, al

Myt B By

mam(m—i)am“l <o e e 8y
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and the discriminant variety of the points yeR' such that ié(p) =0
in the case when the coefficients ai depend on y.
Finally, in the case of distributed systems, we shall denote the
Hilbert space of square integrable functions on [b,l] by Lz(o,l) and the
corresponding Soboler spaces by Hi(o,i), Hi(o,l).

3. Stabilizability of Bilinear Systems

In this section we shall consider the bilinear system
X = Ax + uBx (3..1)

n .
where xelR and u is a scalar control. (A and B are, of course, nxn (constant)

matrices). Let V be the usual scalar function
V= <xxe = |[x][?
and differentiate V along the trajectories of (3.1). Then

V = <k,x> + <x,%>
= <AX + uBx,x> + <x,Ax + uBx>

<(A + AT)x,x> + u <(B+BT)x,x>.

Now let u be the control defined by

L
ww "o Imag o] (3.2)
<(B+B7)x,x%x>
provided
A T

Q(x) = <(B+B7) x,x> # 0. (3.3)
and

u =0, (3.4)

if Q(x)=0. Then we have

V==-11if Q(x) # O ' (3.5)
Hence, if the quadratic form Q(x) is strictly positive (or strictly negative)
definite, then the bilinear system (3.1) is globablly stabilizable with the
control given by (3.2). In fact, since V = -1 the origin is attained in
finite time, depending, of course, on the initial condition.

In the case when Q(x) is not definite it is convenient to diagonalize

Q(x) by introducing the transformation

y = Px

where P is an orthogonal matrix of eigenvectors of B+BT. Then we have



Ay + ugy (3.6)

e
]

where

N =1

A=prapt | B =pppt

Let

A = diag {Al,...,An}

. . ; ¥ .
be the diagonal matrix of eigenvalues of B+B (which are, of course, real).
Assume these eigenvalues are ordered so that

Aseesh >0,

. ey A< 0, A cea,d =0,

Ak+l’ " e

Then, in y~space, the bilinear form Q is given by

Qy) =< (B + ﬁT)y,y o+
= < et 4+ )BTy, v >
=< p@Rly, v >
= < ﬁy, y >
since P is an orthogonal matrix. Hence,
Q(y) = Alyi +...+Aky§ - Ak+ly§+1 —...—Alyﬁ (3.7)

Consider first the case when n>k=£>1, so that

2

Qlrd = Agyy # eeth Y (3.8)
Then we define the control u by
u = —<(A+AD)y, y>-1 (3.9)
% 2
Z Aoy
i=1 * 1

if (yl,--.,y ) # (0,...,0) and

k
u=0

I
~
]
-
o
—r

1E (7 pmensd) =
Now write y = (yp ya) where

¥y = (yls---,yk) » ¥, = (yk+1,---,yn)
then

RN PR PN
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and using the control (3.7) we have

V@) = Lysy> =1, (pseeeay) # (05nn,0)

It follows that !|ypl]+ 0 in finite time and so we have

Lemma 3,1 If we partition A corresponding to the partition (yp,ya) of v,
i.e.
A=A A
~PP ~pa
ap " aa

then the bilinear system
y = Ay + uBy
(and hence the system (3.1))is stabilizable if the system

z=A z (3.10)
aa

is asymptotically stable. O

Next consider the case where

2 2 2 2
Q(y) = Y Feeo T Vg "oV (3.115

with 2>k>o. (We have assumed, without loss of generality, that

Ai = ...=R£=1.) Since
L - - i
ay 2(ypoeee sV Y qoeer7Y))
we have 3Q = 0 only when vy = 0 and so
Byl

MaQ O\, xR (0,2(0,...,0)eRY)

. - g . . ‘ »
is a submanifold of ﬁl of dimension n-1 with two connected components given by

2 2.4

.2 2
M, : yl-i(yk+l Foeatyy T Y, e yk) ) yl#O (3.12)
for yﬁ+l +...+yi> y§+....+yi . Each connected part of M has the 'degenerate'
boundary
oM = 0 xR

Lemma 3.2 If each of the two systems

. o -1
z = A+2. g ZE[F\n
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is asymptotically stable, where A+ is the projection of the vector field
y+;y along the submanifold ﬁ; = M,V 9M given by (3.12), then the bilinear system
).r=£;;y+uéy
is stabilizable.

Proof As in lemma 3.1, we can choose a control to drive the system to the

submanifold M, in finite time. Once on M+ we switch the control off and

follow the projected dynamics along ﬂ;, which is assumed to be a stable submanifold

for the flow. M

i

In order to evaluate the projection A,z for the vector field Ay along
the submanifold FL, in terms of the coordinates Yoseees¥ note that the normal
vector to the level surfaces Q(y) = c of Q is given by grad Q(y) evaluated on

the level surface. Now Q(y) is given by (3.11) and
grad Q(y) = 20y s ee s Yy sY,) (3.14)
so that the normal vector to M, is given by (3.14) with v replaced by the

right hand side of (3.12). In terms of ﬁ we have

grad Q(y) = 2(B+BL)y

and the submanifold &M is just Ker(B+BT). Hence the projection of Ay along

FL is given by

Aiz =(I&y - <£Ly,(l§+lgT)y> (I?S+]§T)y (3.16)
(B+8T) ]| 2
*

if y%Ker(B+BT) and

_ - T
Aiz = Aaay i veKer (B+B™) (3.17)

where Aaa is the submatrix of Aaa corresponding to the partition (yp,ya) of v
where yp=(yl,...,y£) 5 ya=(y2+1,...,yk) as in lemma 3.1. In (3.16) and (3.17)
z = (yz,...,yn) and ¥y is given by (3.12).
We can of course, return to x-coordinates and then it follows that we have
Theorem 3.3 Consider the bilinear system
% = Ax+uBx (3.18)

and let



B =B+BL, A = A+AT
s S

Let M be the union of the submanifoldsM_+ ,» oM defined by

<BSX,X> =0 4

as above. Then if Aaz (zeM) is the vector field given by
Az = Az - <Az,B z> B =z " z#KerB z
a s s s
I Bzl ®
S
and
A z=P Az 4 zeKerB z
a am s

where Pam is the projection on 3M , then the system (3.18) is stabilizable.

A stabilizing controller is given by

u =,{j(<ASx,x>+l)/<Bsx,X> 5 x4§
0 , ¥eM . 0O

Example 3.4 A simple example will illustrate the importance of the stability

of the projected 'Ax dynamics' on the <Bsx,x> = 0 manifold. In fact, consider

the system
. k n-k
X]_ - A1X1+U.X1 ] X].EP\ 3 XzER
Ty =g,
which is already in the 'cononical form' specified above, with
A= <‘A1 0 B = ( I 0
0 4, W0 0

In this case
Q(x)A <(B+31)x, x> =2|]xl||2

and M is the submanifold defined by x., = 0. The control

L
2
u = *(<Alsx1,xl> + <A28x2,x2>+1)/][x1|| . xl# 0 (3.19)
(with Ais = Ai + Af » 1=1,2) will drive the system to M ip finite time. However,

u can never affect %, and so the stability of A2 is necessary in order that the

system be stabilizable. (0f course, in (3.19) the term <A28x2,x2> is irrelevant

and can be omitted.)
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This example shows that there is at least one class of systems for
which the above conditions for stabilizability are also necessary. Namely,
those for which [},E] = 0 (i.e. A and B commute) and A,B diagonalizable with
the eigenvalues of B+BT equal in sign (i.e. all 2 0 or all £0). For then
A and B are simultaneously diagonalizable and we can then reduce the system
to one of the form considered in example 3.4.

The above results can even be generalized to so-called linear-analytic
systems of the form

X = A(x) + uB(x) (3.20)
where A(x) and B(x) are (nonlinear) analytic vector fields on R,
In this case we must consider the set of points defined by
f(x)A <B(x),x> =0
1

The set f_l(O) is a submanifold if grad f(x) has rank 1 at each point of £ (0).

Now

grad f(x) = B(x) + (3B(x) )Tx.
X

Suppose that £ is the union of a finite number of submanifolds of dimension
<n. Write M for this union as above. 0f course, if grad f(x) # O for
X€f~1(0) , then f_l(O) is a submanifold of dimension n-1. We are therefore

assuming that the points x satisfying

grad f(x) = B(x) + ( 9B (x) X =0
X
form a submanifold of dimension <n. As before, let Aa(z) (zeM) denote the

projection of the vector field A(x) along M. Then, if the system
zZ = Aa(z) 5 zeM
is asymptotically stable then the linear-analytic system (3.20) is stabilizable

using the control

-2<A(x) ,x>-1 , xéﬁ
2<B(x) ,x>

i

u

u=20 . xeM
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4. Stabilizability of Nonlinear Systems

We shall now extend the theory of section 3 to general nonlinear systems

of the form

x = f(x,u). (4.1)
Theorem 3.3 can be generalized in the following way:
Lemma 4.1 Suppose that we '‘can solve the equation

<x,f(x,u)> = -1
for u, for all x aﬁart from on a union M of submanifolds of RF‘, each of
dimension < n-1. If the system (4.1) projected onto M is stable, then the
system (4.1) is stabizable. (The projection of f on M is the component of f
in the tangent bundle of M, which can be obtained from f by subtracting from f
its projection along the normal bundle of M.)
Proof As in section 3 of the proof follows from the relation

6 = <x,f(x,u)> = -1
where V = <x,x> which shows that we must hit the manifold M in finite time. [
The structure of M in lemma 4.1 is difficult to obtain in the general situation

however, and so we shall now restrict attention to the case where f is a

polynomial function in u, Then we can write

il

f(x,u) f(x,0) + f'(X,O)u+...+fm(x,0)um/ml

for some m>0 , or

£G,0) =g (1) + g (Wu +...t g (DU
for some functions 8: > 0<i<m,
Defining, as before, V = <x,x> , we have
:6 = 2 <x,g0(x)> +u<x,gl(x)>+.._+ um<x,gm(x)i] (4.2)
If each giecm(mF) , then % is a polynomial in u with coefficients in Cm(RFJR),

3 o . . . 3 . .
1.e. VeC (W?)Dﬂ. We can define the discriminant set of the polynomial V + 1

in the usual way, i.e. as the determinant
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JDU(V+1) = a oAy A, - a3
“n S=1 « 2y
a s
m
a am_1 coee e Ay (4.3)
mam(m—l)a {0ty a;
ma i a, a,
mam(m~l)am_1 s & -3

where there are m-1 rows containing (ao,al,...,am) and m rows containing

(al,2a2,...,(m—l)am_l,mam) , and

a, = 2<x,gi(x)> s >0, a_ = 2<x,g0(x)>+l (4.4)

It is well-known that V = -1 has less than m solutions if and only if QL(V+1) = 0
0f course,;au(v +1) is an element of Cm(RF;BJ and so we may consider the set
of points xeR such that
D (v+1) = 0. (4.5)
u
Call this set Mﬁ. Also let Rm denote the set of points xePp such that V+1 has
no real toots. ( If m is odd then Rm = ¢.) We shall assume that P%FRm is the

union of a collection of submanifolds (containing the origin) of R™ each of

dimension <n-1. Then we have
Theorem 4.2 Suppose that the projection of the system %=go(x) on each of

the manifolds in MﬁURm is stable. Then (4.1) is stabilizable and off MmURm

we can choose a control which is a real solution of V+1=0 where V is defined by (4.2)
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Proof The proof is the same as that for lemma 4.1. o

Corollary 4.3 If m is odd and the projection of kzgo(x) along the discriminant
variety is stable, then the system itself is stabilizable. O
Of course, we may not have to require stability of the projected dynamics

along the whole discriminant variety. For, note thatithe set

Zm = {xeﬁ? Pa = <x,gm(x)>= 0}
is clearly contained in Mm' It is then clearly sufficient for the projected
dynamics along ZﬁJRm to be stable. Now, on Zm we have

& = 2[?x,g0(x)>+u<x,g1(x)>+...+umfl<x,gm_1(x)>]. (4.6)
Define zm—l and Rm—l for this polynomial in u of order m-1, and we did for
Zm,R.m with respect to the polynomial in (4.2). Then it is sufficient for
stabilizability that the projected dynamics along ng(zmp(zm*ijm_l)) are stable,
Continuing the argument in this way we have
Theorem 4.3 Consider the nonlinear system

% = go(x)+ugl(x)+...+gmgmcx) , (4.7)
_1,...,21 are unions of submanifolds of R™ each

containing the origin, and that the same is true of the sets

and assume that the sets Zm,Zm

R w/a] Rz(m—zl’”" %)

-2

where Zi’Ri are as defined above. (Since Ri=¢ if i is odd we need consider
only the sets Ri for i even). Then the system (4.7) is stabilizable if the
system defined by the projection of the vector field X*go(x) along the submanifolds
in
Rﬁy(znp(...(Rd)(Zdnz3ﬂ(R2U(ZznZl))))...)) , m even
Zmn(...(RaU(ZAWZ3n(R2u(ZzﬂZl))))...) , m odd

Moreover, we may choose a sequence of controls as follows:
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if Xoé Rmuzm let u(t) be a real solution of V = -1, until
x(t)eR&JZm for t=t1, say
. U = -
if x(tl)éRm_1 Zm—l let u(t) be a real solution of V 1, where
; : ) . g _ .
V is given by (4.6) until x(t)eRm_l Zm_1 for t t,, say

if X(tm_l)ézm choose u(t) = —2<x,go(x)>_1 -
2<X,g1(x)>
Corollary 4.4 If each R, is empty (so that each polynomial in u of order

1 to m has a real root) then for stabilizability of (4.7) it is sufficient
that f\?=1 Z, is a union of submanifolds (each containing zero) and that along
each of these submanifolds, the projection of the vector field +go(x) defines
a stable system. ¢
We can consider the quadratic case in detail. Hence suppose that x

satisfies the equation

k=g (0 +ug (0 +u’g, () . (4.8)
Then if V = <x,x> we have

% = 2{<go(x),x> + u<g1(x),x> + u2<g2(x),x>}
The discriminant of the polynomial a2u2+alu+aO is just the familiar form
—az(ai-éaoaz) and so §+1 has less than two roots if and only if

<gz(x),x> =0 or <gi(x),x>2 = 4(<go(x),x>+%)<g2(x),x>
Suppose that when <g2(x,x)> # 0 we have

<gl(X),X>2i 4(<g (%) ,x>+3) <g, (x) ,x>
(0f counse, the number 1 in %+l is arbitrary and can be replaced by any £>0).

Then, off the set <g2(x),x>= O,we can choose either of the controls

u = -<g) (6,0)>4/5g, (1), 20" =4 (<g_(x),x>4}) <g, (x) x>

2<g2(x),x>
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On the set (<g2(x),x> = O)n(gl(x),x>'# 0) we can choose the control

u = ~2<gl(x,x)> =« 3

2<g1(X),x>

Finally if the set M = (<g2(x),x> = O)ﬂ(<gl(x),x> = Q) is a union of submani-
folds, each containing the origin and the projection of the system % = go(x)
along M is stable, then the system (4.8) is stabilizable.

5. Infinite Dimensional Systems

In this section we would like to extend lemma 3.1 obtained above to
certain classes of distributed parameter systems. Since we have defined
a discontinuous feedback control which produces a sliding mode in the finite
dimensional case, we come to a basic problem in the infinite dimensional case -
that is, the existence of solutions of systems with discontinuous right hand
sides. Before discussing this problem we shall consider first an extension
of the spectral results of section 3,
Let

X = Ax + uBx (5.1)

be a system defined on a Hilbert space and assume that A is an (unbounded)
self-adjoint operator from £(A) into H and BeR(1). Proceeding formally,

as above, we would like to define a Lyapunov function

7
V= |lx]] (5.2)
and differentiate V along the trajectories of (5.1). Then
V = <x,%x> + <X,%>

= <xX,Ax + uBx> + <Ax + uBx,x>

1]

<A + A%)x,x>+ u<B + B¥)x,x>
and then we define

u= =<(A + A¥)x,x> -1

<(B + B¥®)x,x >
as before. The first point to notice is that we must have xef)(A) for (5.3)

to be defined.
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To be more specific let us first recall the spectral theorem for an
(unbounded) self-adjoint operator (see, for example, Helmberg, Yosida, 1974,
or Dunford and Schwartz, 1963).
Theorem 5.1 (The Spectral Theorem). Let C be a Selfadjoint operator
on a Hilbert space H. Then there exists a family of projections {P(X):reRl,
such that
(1} PB@) 2 P(3') , Tor A<A!
(1ii) (s)lim)\_}_00 P(A) =0, (s)limA_H_00 P(A) =1
(iii) P(A+0) = P(1r) , for all e R
(iv) hedXC) if and only if /% A%d|| POR[ 2 <o,
and then
Ch = /°_ AdP(M)h for all hed(C). O
Since A is self-adjoint we can find such a family of projections for
A which we denote by PA(h), Ae(-»,) and we can also find a family of projections
PB(A) for the 'symmetrized' form B+B* of B. We shall assume that B+B%* is a
positive operator, so that the (real) spectrum of B+B* is an interval
[d,BlE[R, O<a<B<o Now suppose that the spectrum of A is separated so that
o(8)e (=, =) u [v,6]
where e>0, o<y<g<w . Then we can write
il 5
Ah =/ MR, QOB+ [0 AdRODR,  hed(4)
Note that PA(A) is constant on [—g,y) ( with a jump at vy). Let Pi denote

this constant projection. Similarly we write

(B +B9h =5 Jdp_ (Oh , hed
=0 B

and we let P2= PB(u). Assume that
I -7 zp°, (5.4)
g o=
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Now, in (5.3) the denominator is given by

<(B + B¥)x,x > = IS_O Ad(PB(A)x,x‘>

> (Pi X,X > § (5-5)

and so we consider the following orthogonal splitting of the state:

where

oy A
X, = PA x A_(I-PA)X , X, =P x,
£ = & 2 £

1
Since the integrals in

Bk o= JEap 0% + /0 adp )%, xeBEA)
- A ¥Y=0 A

are given by Riemann—StielQes sums, as simple limit argument, together

with property (i) in theorem (5.1) shows that

PI;'AX = f° AdP, (A)x . xed(A)
and so
— A §
P Ax = [ AdP. (MDx xeD(A)
€ Y=o A

Thus, from (5.1)

% ?A Ax+u §A Bx

4 e ; (5.6)
X, = P" Ax+u P Bx '
2 £ &

Now choose the control u to be given by (5.3) on &j?ﬁ) and to be zero on
RKP?), Informally, as in section 3, we see that x approaches the subspace
<(B + B®)x,x> =0 (5.7)
in finite time. By (5.5),
<(B + +)x,x> 3}]P§x||2
s %,
by (5.4). Hence on the subspace (5.7) we have X, = 0, and so on this subspace

(with zero control), (5.6) implies that
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X, =0

el
|

= PAAX = APAX = Ax
£ £ 2

The latter equation can be written

. —E
Xy = S AR, (Dx, . (5.8)

If we now assume that A gnerates a semigroup which satisfies the spectrum

determined growth assumption (see, Banks, 1983, Curtain and Pritchard, 1978)

i.e. the semigroup T(t) generated by A is stable if and only if the spectrum
of A is in the left half plane, then the system (5.1), under the above
assumptions, is stabilizable,

We must now justify this result by showing that the system

%

= Ax-—{ 2%, x>+1 } Bx for <(B+B*)x,x> #0
<(B+B*)x,x>
X = Ax for <(B+B*)x,x> =0
has a solution, with x(t)el(A) for all t. However, to prove that this

system has a solution is not particularly asy because of the term <Ax,x>
in the control and so we shall define the control to be given by, instead of

(5.3), the following:

u= - 2<§ﬁAx,x> + 1 ., for <(B4+B*)x,x> # 0

<(B+B*)x,x>

and u = o otherwise. Here,
Pax = /0 ade, (M)x xeD(A)
E ,_Y_o A 3 ?

and the right hand side defines a bounded operator and so is, in fact, valid

for all xeH. Using this control we obtain
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V = <x,%> 2</ AP, (%, x> -1

Mt

and the subspace <(B+B*)x,x> 1is stillattracting in finite time

Definition A function xeC([p,til;H) is a weak solution of the equation

X = Ax + f(x,t)
on [o,%J if £(x(.),.) sLl(o,tl;H) and if for all hel)(A*) the function
<x(t),h> is absolutely continuous on [o,tlj and satisfies
(d/dt)<x(t),h> = <x(t),A%h> + <f(x(t),x),h>,
for almost all ts[b,ti],
Theorem 5.2 If B is a bounded operator and A satisfies the above assumptions

and, moreover, generates a semigroup T(t) on H, then the system

% = Ax -{ 2P0, x| ;} Bx , <(B+B%)x,x> # O (5.9)

<(B+B*) %, x>
X = Ax y  <(BHB¥)x,x> = 0
has a unique weak solution which converges to 0 as t-=,
Proof For xoé;(o)sfﬁ , where M ={er:<(B+B*)x,x>=0hthe result 1§ clear,
by using (5.8).

Consider the case when X(O)é M. If x(t)&fﬂfor ts[o,r],

then we may write (5.9) in the 'mild form':

x(t) = T()x - f;: T(t—s){2<—P_i‘Ax(s),x(s)>+1 } Bx(s)ds. (5.10)
<(B+B*)x(s) ,x(s)>

An elementary limit argument shows that (Ball, 1978)

2 2
=7 < = Il = -t (5.1
and so x+*M in finite time provided the solution exists. Since ?éA_is a

. 2 . ]
bounded operator, and since [|X(t)|| is decreasing,
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£(x(.)) = éﬁﬁAx,x>+1 (5.12)

<(B4+B¥*)x,x>

is in Li[o,{] and so a function x(.) is a weak solution of (5.9) on [o,t]
if and only if it is a mild solution of (5,10) (see Ball, 1978, Balakrishan,
1976).

Now it is easy to check that, for xirﬂ, the map f in (5.12) is locally
Lipschitz and so by a standatd result the system (5.10) has a unique solution
on any interval [O,T] such that x# M . Moreover, xeC([b,T];H). From (5.11)
it follows that there must be some minimal time T’ say, such that xeM when
t=Tm and XEC([b,T];H) for any t<Tm. Let tl’tz"" be any sequence such that
ti+Tm. Then, by (5.11), X(ti) converges weakly to X If we define
x(Tm)=xm then the result follows. O
Remark (a) If the operator A splits in the form

_ 0 $
Ax = J_AdP, (1) + ,ry_o

2P, (A)
i.e. with e=o then we would have to use a variant of the invariance principal
in the proof of theorem 5.2, as in Ball 1978, Ball and Slemrod (1979).

(b) Theorem 5.2 is also valid if A is not necessarily self-adjoint -
we then simply use the spectral respresentation of A+A* as in the finite
dimensional case.

6. Examples

In this section we shall present some simple examples to illustrate

the above theory.

Example 6.1  Consider the system

5 i (\0 2 )x+ u ( 3 5 X = Ax+uBx (6.1)
2 0 5 3

Then A and B commute and are diagonalizable and hence can be diagonalized

simultaneously. Thus, a simple change of coordinates produces the system
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v = 1 0O\ y+ u ( 4 0 \ y=A'y+uB'y, v = Px, some P, (6.2)
0 -1 .0 -1
Define the control by
u= =2<A'y,y> ~-1
2<B'y,y>
= i B s
2 2
2(4y1-v,)
; 7 2
if 4y1 v, # 0, and
U =0 (6.4)

if 2 = ty_,
i Y1 Yy Then set
2
. = 4
consists of the two submanifolds with 2y1=y2, 2y2=~y2 and it is easy to check

that the projection of the vector field y>*A'y on each of these submanifolds

is stable. Each of the submanifolds is a sliding mode for the system defined
by (6.2), (6.3) and (6.4). Translating back to x— coordinates gives the control
=1,
u = =2<PAP "x,x> -1
2<PAP-1X,X>

if <PAP lx,x> # 0 and

u=20
otherwise.
Remark We can obviate the difficulty of the unbounded control (i.e. u+® as
x approaches the switching manifolds) by replacing the two switching manifolds
2y1=iy2 by the four manifolds

{(yl,yz)ezﬁf P 2y =t(lte)y,}

for small ¢. In the four regions where
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2y1(1+€)_1< Y, < 2yl(l—e:)_1 s y1>o,y2>o
2y, (1m0 <y, <2y, Ae)TH gy 0.y,
-2y1(l+€)ml< Vg <-2y1(l-s)f1 s ¥1905¥,70

-1 =1
=2y,(1-e) = <y, <=2y, (1+e) s ¥1705¥,<0

we turn off the control and follow the linear trajectories (which are decaying

in these regions).

Example 6.2 Suppose that in the system

% = (;4_ 0 ) x + u ( 0 = Ax + uB(x) (6.5)
0 1 XZ_g(Xl)

the graph of g(xz) in the (XI’XZ) plane lies in the cone

{(xl,xz) : (Xl’x2) = 0 or o<x2<x1(1—e) or x1(1—5)<x2<0}

Then we can define the control

2. 2
u = —2(—x1+x2) -1 (6.6)

2(x,~g(x))x,
if (xl--g(_xz))x2 # 0 and
u=20
1f X, = 0 or X, = g(xl). Again the projection of x*Ax on the submanifolds
M={Ge xR ¢ ox, = 0}, M={Gxsx)eR” : x, = g(x))]
is stable and so the system (6.5) is stabilizable with the control (6.6).
As in the above remark, by perturbing M1 and M, we can use bounded controls.

2

Example 6.3 Consider the system
% = 1 0\x +u ( A BT e o+ ow / 0 0)x
g =1 L0 =l . 0 1
This is similar to the system (6.0) with an extra term in u3. In this

case we can define the control to be any real solution of
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2 2 2 2 32
2(xl XZ) + 2u(4xl - XZ) + 2u X, = 1

if %, # 0. This will produce a sliding mode on the x. axis, along which

1

we can define the control

(as in (6.3) with X, = 0).
Examﬁle 6.4 An example for the distributed parameter case can be given for

the following hyperbolic equation:

Bzgéx,t) = 82¢(x,t) - o . 3¢(x,t) + fi k(x,y)o(y,t)dy + up(x,t)
2
ot ox ot

$(o) = ¢(1) =0

Then if ¢ = (¢,9¢/3t) , we can write this equation in the form

_dg=(o I \¢ + u O 0)9 (6.8)
dt AR -a I 0

where

®)G) = o kGxy) by, t)dy

Equation (6.8) is defined on the Hilbert space H=Hi(0,l)®L2(O,l) with the
inner product
1 1
- Y AN 2
<(¢l’wl)’(¢2)w2)>ﬁ <( A) q)l)( A—) ¢2>L2 +<w1$q‘)2>L2 L
If

ol

then D) = (Hi((},l) A H2(O,l)) o H;(O,l) . Also
- afl vl ? (6.9)

<<1>sﬁ>
10 H

2
- ol v

<<I>,,ﬂ*¢>>H

(6.7)
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where & = (¢,9)ed@). As is well-known (Banks, 1983) it follows that

generates a stable semigroup. Moreover the operator J%+— (0 O) is a
K 0

bounded perturbation of f*and so it too generates a (not necessarily) stable
semigroup. The dual of (g 8)

trivially in this case since Pi = (0 I)T (with o = 1). Hence by theorem

s Lg* 8) and so condition (5.4) holds
5.2 and (6.9) the system (6.7) is stabilizable.
7. Conclusions
In this paper we have considered the stabilizability of a general
bilinear system
X = Ax + uBx
in finite and infinite-—dimensional spaces. The stabilizing feedback controller
has been defined in such a way that the resulting system is of the variable-
structure type with a stable sliding mode on the subspace of the state space
defined by
<(B+B*)x,x> = 0.
It has been seen that this leads to unbounded controls in the neighbourhood
of this set, but in many cases a simple perturbation of the switching manifolds
leads to a bounded controller.
In the finite-dimensional case we have also discussed the nonlinear
control system of the form
k=g (x) + ug, (x) +...+umgm(x) (7.1)
and have shown the existence of a number of switching manifolds defined by

the solutions of polynomial equations in u. These polynomials are defined by

2<gi(x),x>u1 = (7.2)

o~ &

where k=m,m-1,...,1. In the submanifolds where no real solutions of these
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polynomials exist, we must have the projection of the unforced system
k=go(x) along the tangent spaces of these submanifolds being stable.

In the distributed-parameter case we have used the spectral theorem for
self-adjoint operators to reduce A+A* to a part which is asymptotically stable
and a bounded, not necessarily stable, part whose total spectral subspace is
contained in the minimum spectral subspace of B+B*. The control term uB can
then be used to 'cancel out' the unstable part of A.

Finally a number of simple examples is given to illustrate the theory.
The advantage of this approach is that the feedback control can be written
down directly in terms of A and B, apart from systems of the form (7.1), where

numerical evaluation of the roots of equations (7.2) must be applied if k>4.
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