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Abstract

A global Volterra series is developed for an analytic system defined
on an analytic manifold M. Local bilinearizations are pieced togther
using the theory of fibre bundles, giving rise to 'twisted' bilinear

systems defined globally on M.
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1. Introduction

The application of Volterra series to the study of nonlinear systems
is now well known and has a long history; see, for example Volterra, 1958,
Brockett, 1976, Lesiak and Krener, 1978, Crouch, 1981, Banks, 1985.
The existence of bilinear representations of nonlinear systems has also been
extensively studied since the application of Carleman linearization to linear
analytic systems by Brockett, 1976. Generalizations of this idea have been
given by Krenmer, 1975 and Lo, 1975 where the global bilinearization of systems
of the form
x(t) = f(x(t)) + G(x(tlu(t)
is discussed.
In this paper we shall treat a general nonlinear system
X(+):U=D(M) (1.1)
where U is a control space and D(M) is the set of analytic vector fields on
an analytic manifold M. In the first part we shall assume U=@T, M=E€ and
that the system has the global representation
x = f(x,u) (1.2)
and obtain a bilinearization for this system.
In the second part of the paper, by replacing (l.1) by a system
Y(-) : T(UP»D(MxU) (1.3)
where T(U) is the tangent of U, we shall obtain a bilinearization for (1.1)
which uses the local theory developed for (1.2). This will involve the
introduction of a certain fible bundle and we shall associate a set of sections
of this fibre bundle with (1.3) and regard this set of sections as a bilinear
system. We can then associate an exponential mapping with this system which
has the appropriate invariance properties, allowing us to obtain a global

Volterra series for the system (1.2).



2. Notation and Terminology

In the case of differential equations defined on # we shall denote

a generic equation by

x = f(x,u)
where x€R and uaﬁ?. The function f will be assumed to be (globally) analytic

and we shall denote the homogeneous monomials in the Taylor expansion of f by

ll ln Jl Jm
X u u

xiuj=x
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where

. . . n g s . m
= (ippeeni)eNT 5 3= Gpaeeead deNT .

In particular, 1(k) will denote the multi-index in,%ﬁ(some 2) 1in which the kth
entry is 1 and the others are zero. Note, however, that we shall not explicitly

L. or ul(k) then the

indicate the dimension & of 1(k) so that if we write x
dimension of 1(k) will be assumed to be that which is appropriate, i.e. n or m,

respectively, in this case. I will denote the set of indices (i,j)Eﬂqnxﬂdn.

21 will denote the usual Banach space defined by

<o

{(ocj)oij<00 5 jzo [uj[ <w}.

For systems defined on an analytic manifold M we shall use D(M) to denote
the set of analytic vector field on M. T(M) will denote the tangent bundle
of M while the tangent space at a point peM is written TP(M). The main technical
device in studying the global bilinearization of a nonlinear analytic system
will be that of fibre bundle,. Hence, we shall briefly recall the definition
of a fibre bundle; its properties are given in detail by Kobayashi and Nomizu,
1963.

Let G be a topological group and X a topological space. X is called a

right G-space if there is a map from XxG+X, written (x,g)»xg, such that

x(gh) = (xg)h
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and xiC = x for all xeX,g,heX. A map f:%Y between G-spaces is called a
G-morphism if f(xg) = f(x)g for all xeX, geG.

Given a G space X, we can define an equivalence relation on X as follows.
Write X X, if there exists geG such that ¥, 87X, . This is an equivalence
relalion and we let xG={xg:geG} and X/G=X/v~ with the quotient topology.

Hence, if w:X¥+*X/G is the canonical projection, then (X,7,X/G) is a bundle.
Since f(xG)Sf(x)G for any G morphism f:X+Y, there is an induced map f%:X/G4Y/G
with fm(xG)=f(x)G. Then (f,f%) is a bundle morphism.

A bundle (X,p,B) is called a G-bundle if (1,f):(X,p,B)>(X,n,X/G) is a
bundle (So morphism, for some G-structure on X, where f:B+X/G is a homeomorphism.

If G also has a differentiable structure then a principal fibre bundle over a

manifold M with group G consists of a manifold P and an action of G on P such

that
(1) G acts freely on P.
(2) M=P/G and w:P+M is differentiable
(3) P is locally trivial; i.e. if xeM then there is a neighbourhood

U of x in M such that (ﬂ,¢):w_l(U)+UxG is a diffeomorphism,
for some G-morphism ¢.

If UG,U are open sets in M and ¢a’¢8 are associated with them as in (3)

B
; -1 =1 =
then if ueTm (UanUB) we have ¢B(ug)(¢u(ug)) & ¢B(u)(¢u(u)) ;
Hence we can define a mapping
g&B : UanUB+G
by gaB(w(u))=¢B(u)(¢a(u))_l. These are the transition functions of the bundle

and can be used to construct a bundle as shown in Kobayashi and Nomizu (1963).
This is the approach we shall use to construct a fibre bundle in section 4.

Now let P be a principal fibre bundle and F a manifold on which G acts on
the left; (g, )eGxF>greF. Then let G act on the right on PxF by ((u,z),g)e
(PxF)xG+(ug,g_lc)erF and define

E = PxF/G
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as a set. Define the projection ﬂE:E+M by ﬂE((u,g)G)=w(u) and call
ﬂ;l(x) the fibre over xeM. Since each point xeM has a neighbourhood U
such that n_l(U)EUXG, it follows that the action of G on the right of
ﬂ-l(U)xEﬁEUxGxF is given by (x,g,g)h=(x,gh,h_15), xeU, g,heG,EeF and so

ng (U) £ UxF. We can therefore make E into a differentiable manifold in

which ﬂ;l(u) is an open submanifold of E diffeomorphic with UxF under the

isomorphism above. (E,WE,M) is called the fibre bundle associated with

the principal fibre bundle P.

3. Tensor-valued Differential Equations

Consider the controlled differential equation
x = f(x,u) (3.1
where xem?, ueﬁ?. We shall use standard index notation here, so that
(i,3) = (il,...,in,jl,...,jm)
will denote an (n+m)—tuPle of integers and

11 1 _]1 3

n m
e e X u » U

1 n 1 """m
Moreover, 1(k) will denote the multi-index with a 1 in the kth place and
zero elsewhere. We shall not specify explicitly the dimension of the multi-
index 1(k), assuming simply that it has the appropriate dimension for the
context.

In many cases, when studying control problems related to the system (1),
it turns out that u is differentiable (although it does not follow, of course,

for switching controls). When u is differentiable we may write

X = f(x,u)
(3.2)
u=v
and regard v as the control. Now define the functions
.-
..y =X .
¢(1,J) "

and differentiate ¢(i 1) along the trajectories of (3.2). Then we have
b



; £ G1(K))
k

n 5 o m
= E 5 X(l_l(k))uJi + Z
= =7

b ooy o=

(where the first occué&nce of 1(k) has dimension n and the second dimension m).
We shall assume, in this section, that f is globally analytic so that

we may write

!

k i.]
= <
fk(x,u) (1,3)el a(i’j)x u s 1<k<n (3..3)
for some constants a%i 3 where I is the set of all multi-indices with
+
non-negative terms. Hence we have
. n . . s g
G, T L i x(THOT 1 (i jx ol
’ k=1 (i',J')EI 3
m R o
y ijlu(J 1(k)) v,
k=1
n .. -~ m P
. k | 1 g [ _l
= Lo .,)x1+l L) 343, 1 kalu(J (k))vk
(i',7")el k=1 »J k=1
n ‘v i m ;
o K " 3" . i CI~1LES)
= E 1,0 .y sn_s1yX U + X J,¥ u V. ’
(i",i™Mel k=1 k™ (iM=i#10k) 3" ") k=1 k k
where we set uk(i 13 = 0 for each k if (i,j)<(o,0). Hence
¥
. ilrjn i"j”
bos oy = a. . ¢ sosuy T z b, QS s sy V. ’
(11 (i",j")SI 1] (A" 3" 1", iMer ij,k (i sJ )k
where
illjl“ n . k illj” m . l"j'l'l
a.. = 2 1,0 ey sy g1 By = z JndE %
ij xe1p K @M-i+l(k),3"-3") ij,k kel k1 3-1(k)
Here, 67 is the tensor defined by

k&



Hence, defining the tensor operators A and Bu by
z kg

B0 T Gy Miten

kg

(BUQ)(i,j) ) (k?g)eI bij,u¢(k,2) , l<p<m .

where (CI>)(i = ¢(i 5y we have

»3)

B = Ad + VB 3.4
. ’vu U® o + vBd ( )

F=]

=A¢)+

N~—g

u
m
where vBA X v.B, .
=, i1
i=1
Now let Ql denote the standard Banach space of absolutely summable sequences

and let Ri denote the Banach space of sequences (ao,al,...) such that the

sequence (ao,al/l!,a2/21,...) belongs to 21. Define a norm on Ri by

8

o)l (@er]

o AL
#i!

[all, =

Il 0~

s 1. ;
It 1s clear that Re 1s , in fact, a Banach space and the map

1
E 21 L
e
defined by
¥ T 1
E{a) = (e /nl) , o= (a )el
n n =
is an isometric isomorphism. We can extend this definition to the space of

infinite dimensional tensors of rank n in the following way. Let



denote the algebraic temsor product of n copies of Ei and let H -H be
any cross norm on f% (cf.Takesaki, 1979); i.e. for any tensor ¢€Ih of the

form (called simple tensors)

® = (4. g } o= (uli Uys wenl .n) = af@..ﬁban 5

where o = (o

k ko’ Mk1° %2 "

lell = 1 flall
¢ = Illa
k=1 * €
il i
Lemma 3.1 For any n-vector x = (xl,...,xn) the tensor (Xl ...XE) belongs
to @ 2t and we have
n e
il in n
Gy x D= exp(]) k=1|xk|)

i i n i

1 k
Proof ||(x1 ...xnn)|]= kzllKXk )||e

Returning to the system (3.4) we have

Theorem 3.2 On the space;zz+m of temsors of the form ®=(xlu3) we have

n
lasl < 3 Ig Gowl [le | 3.5)



and
m
[ Bell &) [l B2l <nll | (3.6

Proof

To prove (3.5) note that

n . .
(A(I))(i,j) _Z- ik(l_l(k))ujfk(x,u)

k=1

Consider the term
i.-1 i i ]
. 2 n -1
(Al®)(i,j)é-llxl Xy eeex U

We have
il—l n in m jk
R I T NS TN
Dife i e fxl+ ] lu Dl
= i fx | 1 exp ( x ’+ u ()£ (x,u)[
=l k=2 © k=1 &1
S
1
n

n

m
exp ( |x |+ )£, (x,u) |
Ek=l "k E=1|uk 4

Lol Ie, ],

by lemma 5.1. The result (3.5) now follows. Since

v oL i GRim)
(B@)(i’j) = kzl jpxu

the result (3.6) follows similarly. @

Note that A can be extended to the space of simple tensors by defining

n
I P TP S , £ (x,u)
ki - »
kel k lll 1 1 (n+m)1(n+m) k
where ¢ = (o,. ...0 . ) = o .. .8 , and similarly for B,
111 (n+m)1(n+m) 1 n+m
The same inequalities (3.5)#3.6), then hold for A and B in the larger space.

Hence we can define Ak@ , Bk® inductively on this space.
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In particular, B is hounded on I§+m by m. (Where we define the norm

of B on Z:E+m by sup T HB¢||/||¢|§. 0f course, 2:§+m is no% a linear

d#Foe
n+m

subspace of an+m.)

n
Corollary 3.3 HA2®|| <O Ifk(X,U)|)R||¢II B
k=1

and we have

Corollary 3.4 eAt¢ exists for all t and for all @ei;+m Y

At ke
e ell < expl  [£, W Ded] o]l 0
k=1
In other words the system
3 = A0 (3.7)

. . T . i] s n
£o = ¢

is soluble in an+m and 1 by (xouo) for some fixed xosm. 5

uoeﬁP , then the solution ¢(t) satisfies

n

| e(e) || < exp{(] ) |fk(xo’uo)|)t}“ ¢o”
k=1

Remark 3.5 (a) It should be noted that corollary 5.4 only holds on the

non linear subspace Z§+m of tensors of the form ®=(x1uj) and it does not

follow that

n
| efell < expl(] |£, (x,u)|)e}] o]
k=1 &

for ¢ in the closed linear span of tensors of this form. Hence, although A

: , At ; ;
is a linear tensor operator, e cannot be extended to a linear semigroup

At

on such a linear subspace of Z%+m. e is a nonlinear semigroup, however,

since strong continuity at t=o follows from corollary 3.4.

(b) It also follows from corollary 3.4 that eAt may be obtained

o0
from the usual series Z (At)k/k! . The (i,j)th component of eAt® s

k=0
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where ®=(x2ug) is then just the (i,j)th power of the Taylor series of
the solution (x(t),u(t)) of equation (3.7) with initial condition (xD,uO).
We are now in a position to define the Volterra series solution for

equation (3.4) in the usual way (Brockett (1976), Banks (1985):

.,Gv)v(ol)ﬁ..®v(ov)d01...dou (3.8)

- .t v
o(t) = w_(t) + Z o oeedd g w (8,0,

v=1
where

G ) = eA(t_gl)Beﬂfgi‘O‘ﬁ')B“"BQAO-;:@D fﬂr‘ {730'1%33"--20’),

wn(t,cl,... - o

and B, = O otherwise.
Here, we define
Alt=0)g Ala0,)y Be"0_(¥(0,) ... ¥(0,)

as

A(t=0_) Ao, =g Ady
e 1 v(ol)Be 1 2 V(UZ)B...V(Gv)Be ¢D
Then we have

Theorem 3.6 The Volterra series in (3.8) converges (in.zh+m) and is the
unique solution of equation (3.4), provided v(t)sLm(o,w).
Proof The only nontrivial part is to prove convergence of the Volterra
series. Let

| v || = max  ess sup ivi(s)f.'

i=l,.,m se[o,®)

Then,
H @(t)” < H W (t)H + z H V||“ ft fcv_zfgv—lﬂ w (t,o a )H do do
o 1 O-.-O (9] n ,l".',\) 1'--

V=

However, by corollary 3.4 and(3.6]we have

=}

I wv(t,cl,...,cv)H f_mv exp{() |fk(x0,uo)|)t}H ¢O|| ,
k=1
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where & = (xluJ) . Hence,
o 0o

o g. n
lell < Tyl + I Alvll o” sgeeos” lexp{czkzllfkcxo,%)l)t}

I ¢O||dgl...dcv

I

@ n
I wo(t)H + vZf[v Iu)mv exp{(zk=l lfk(xo’uo)|)t}” ¢0H £ /0!

| A

n
exp{(zkzl Ifk(xo,uo)l)t + vl mt}”‘bol! .0

4, Equations Defined on Manifolds

Now we shall consider the generalization of the above results to the
case of a system defined by a set of vector fields on a (real) analytic
manifold M. Hence let M and U be real analytic manifolds of dimensions n
and m, respectively, and let

X(+) : U»D(M) (4.1)
be an analytic map from U to the set D(M) of analytic vector fields on M.
Thus, for each u in the control space U we are assigning a vector field X(u)
on M. Locally we may express the vector field in the form of a differential
equation

x = f (x,u
5 )

where peM and x is a local coordinate system near p.
As in the previous section we shall reformulate the problem in the
following way. Let MU denote the product manifold MxU which has the tangent

bundle T(MxU), where we have the vector space isomorphism,T(p u)(MXU) EﬁyeTuU
) E
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for each (p,u)eMxU. If D(MxU) denotes the set of ahajttc vecter fields
on MxU, then we consider, instead of (4.1), an analytic map

Y(+) : T(U)-»D(MxU)

(T(U) is the tangent bumdle of U) such that, for each ZeT(U),

Y(Z)(p,u)= (X(u)p s V)

where veTuU. Hence in a neighbourhood of (p,u) we can write Y in the form

x = f (x,u (4.2)
b )
t=v
The control space is now the tangent bundle of U rather than U. Using the

theory of section (3), we can replace the local system (4.2) by the tensor

valued system

 =A® +vB o (4.3)
P PP PP

where vB = X viB. ; Similar equations hold at each point peM, and
i=1 - P
to relate the systems arising from two intersecting coordinate neighbourhoods
we must consider the effect of a coordinate transformation on the tensor
i: . .
space & . Thus, let (y,v) = g(x,u) be a coordinate transformation from

(x,u)-coordinates to (y,v)- coordinates, where g is analytic with analytic

inverse. Then we can write

feel

glx,u) = )

i=o j

gljxluj

Il ~18

and we have

=0 j=o
o © . . - .
- 1] 1.1
_Z 'E B,g X U (4.4)
. a=g =
for some numbers g 1 Let G be the tensor operator with the representation

oB”
(Ega)-

Then we have
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where

=
]
~
g
el
<
os
~—
-
(=l
|
—~
"
for
—
~

and

=1 . ’ ’ : ; ;
where G is the inverse tensor operator, which is defined in the same

way from g_l as G is from g.

If
(v,v) = g(x,u) , (z,w) = h(y,v) ,
then
(m,w) = hog (x,u)
and
= = HGO ,
where
0= (zuwB) , @ = (xiuj)
and H, G are defined as above. Hence the set of tensor operators of the

type defined by (4.4) is a group and operates as a transformation group on

‘ti+m' Thus, if we assign a space of tensors i§+m . of type (xluJ) at each
2
. . . i?
point p of M (with local coordinates (x,u)) then we can make U%EM .

with projection

T
T: DXL »~ M
peM n+m,p

into a fibre bundle over M. We shall denote the bundle Y X I by[ﬂn+m.
peM ~ n+m,p

b

Definition. Let X(-) : U +D(M) be a system as defined above. We shall

say that m+l sections 30(1, B .,\Bm of the fibre bundle an form a bilinear

1’

system on M if the local representation of X(.) given by

x = f (x,u
p( )

a=v

at p 1s related to the bilinear system

= n b ®
& Ap i b Vlﬁlp p+ ee. + vampép (4.5)
] \81

as above, where JB(F= A

P oo p- BiPCDP



Note that the action of the group of transformations of type (4.4)

imply that local representations of the form (4.5) are related by

+ ... +v GB G_IW
m mp

° = _l _l
b =6 MGy, +vCB ce q

q PP q
where Wq = G@p and G is a transformation of type (4.4) between the

coordinates (y,v) at q and (x,u) at p where

y(q) = x(p) = 0, v(q) = u(p) = 0.
For a given section ﬁ;of_r;+m , which belongs to a bilinear system,
we can define an exponential map for this 'tensor field' by defining

locally,

This is well defined since AP is just a linear tensor operator and so

ALt

e P~ can be defined by the usual series locally and we have, under a

change of coordinates G,
=1
G(eAPt) G 1 _ eG ApG 't )

Then we have

Theorem 4.1. Given a nonlinear system X(-) : U-=D(M) on an analytic manifold

M, we can associate with this system a Volterra series
t t

o (t) = wo(t) + )JZ=1 J'O fo Wn(t’(jl?"'igv)v(gl)@ e B
v (Uy) dgl"'dgv)

where the kernels are given locally by

. _ Ap(t-0.) Ap(o -0.) AT,
W(t, O, ooy Ty p) =g P 1Bpe 1 2BP ...BFeP ®
where B = B, , ... , B ). Moreover the kernels transform according
P 1p mp
to
A (t-0.) A (o, =0,) A o
O, ,u..,0. ¢ = v
wn(t, 1’ iy d q) eq 1 qu q- 1 2 Bq qu q @Oq
- - o A(@.-0,)  poe
o pelrieTy) GlGBpG lg B L & Egh™
=Gwn(t, Ops sovs Oy p)

where G is a matrix representation of the coordinate transformation from

p toq.

We can therefore compute the Volterra series locally just as in section 3

as if it were globally defined. When %(t) is "mear the bstndary' of a given



