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Abstract

The Taylor polynomials are used to obtain an equivalent bilinear
system for a nonlinear analytic delay equation with control and the

optimal control of the resulting bilinear system is considered.
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1. Introduction

The theory and control of delay systems has been widely studied
(Hale, 1971, Curtain and Pritchard, 1978, Banks, 1983). In particular,
the semigroup approach of Delfour and Mitter (1972) has enabled the
linear control theory of delay equations to be subsumed under the general
Hilbert-statespace theory of linear systems. Nonlinear delay systems
are more difficult to deal with and in this paper we propose an
equivalent linearization technique for analytic systems. We shall see
that we can replace such a system by a sequence of nonautonomous linear
infinite-dimensional systems or by a similar sequence of bilinear systems
if the delay equation contains a control.

This technique has been used previously for ordinary differential
equations by Takata (1979), Banks and Ashtiani (1985) and for certain
infinite-dimensional nonlinear systems by Banks (1985). The reader
may also consult Hunt et al (1983) for a different method of equivalent
linearization using a differential geometric approach.

Tn section 2 we shall introduce some notation and terminology from
the theory of tensors on 22 and then in section 3 we shall consider a
general nonlinear analytic delay equation without control, obtaining an
equivalent system of linear equations. In section 4 a control input will
be added and we show how to obtain an infinite-dimensional bilinear system
for which we study the optimal control problem in section 5. A predator-

prey example is finally considered in section 6.



2., Notation and Terminology

In this paper we shall use the theory of tensors on the Hilbert
space 22 (see Greub, 1978 and Banks and Yew, 1985). In particularﬁgn(Rz)
will denote the tensor product of n copies of 22 and this is a Hilbert
space under the obvious norm. It therefore makes sense to consider the
space 25(@%22) of bounded operators on.@hﬁz. It will be convenient,
occasionally, to use the isomorphism ®2h9,2 :®n£2 ®n!2.2 and to consider
an element o of @21:122 as having n 'covariant' and n 'contravariant'

components., We then write (in the standard basis of @Enﬂz)

Jieesl
@, 5 . g o=t
Ljesedl 53qeeed P
1 n
If & = (4, : ) € aniz we then define the contraction of o
11l.I n
and ¢ by
Goeeed
E " 1 n
Jl’c--,_-]n lla--ln Jlbuq_]n
and we write this as C (o @ 9).
3. Delay Equations
Consider the delay equation
x(t) = £(x(t),x(t-8)) , x()eR’ (3.1)

with initial conditions

x(o) = x_ , x(8) =&(8) , ec[-§,0),

where X and EECE—G,Q] (say) are given, We shall assume that f is analytic

and if xr(xl,...,xn) we introduce the functions

i i
=g b n ; ;
¢i1...i (€) = x,7(t)eeux "(£) 5 1500051 >0 (3.2)
n
Then,
. n il iil in
¢i1...i (t) = Z i x (t)...xk (t)..,xn (t) fk(x(t),x(t—ﬁ))
n k=1
(We shall interpret the kth term as 0 if i, = 0).

k
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By Taylor's theorems, we can write

jl'..J ].. ]
£ (x(6),x(t=8)) = | I OF'S Lee )...x (t)x Lt=8)veex "(t=8)
11,...,1“ 1 n n
jl’.",jn
j I..j
for some tensor a(k) = (ail_“ k). Hence
1 1n
. n i i s i! i’
1
b = L LR (t)'°'x eagy 0ROk @) -
1 n k=1 i1seesi] 1""""n
1"')j1:1 j' =1

il
% (t—a)...xn“(t-s>

rEr j . Jl..._] (t-5)
k=]— ii’-.’i' k 11---1 ( )¢11+11c-.lk+lk lc--l +l'(t)¢ ]'--o-.]
n
Jpreesd
g !
= z Z k¢l 'fl o-ol -e.l +l (t) Z
- R | O | L 1 k ~1 n . 3
kel Al eyt ! !
Ly 5 e
(3.3)
ji...j'
Oti' l'(k)d} t 'I(t 6)
la-- a1 l-a-_]

Now consider the tensor valued function &(-) :ﬂ{-+69 (22) with components
n

il”’in in the natural basis (see section 2), Then we can write
j'ao-j‘
1
0. k i -
) 11"'1'( 3oy i...J'[t' 8z clat) @o(t-5))
. q s ju =
31"'°’Jn

where ® is the tensor product and C is the complete contraction operator.

Moreover for any temsor ¥ wifth components wi we define the tensor

q?(kl""’kn) , for any fixed index set (kl,...kn) , which has components



qri + k

1 1...1n+ kn.

Then we can write (3.3) in the form

. s}
‘i’j_l...init) % E i clo

Now define the function AQ(-):\?\—HC(@HQ?), for any tensor—valued function

ey R ®2% by

(gg

) (ty0) -V il
g ool £,

and then (3.4) can be written

$(s=~8)

8(t) = A (£)®(t)

)
") [cCa@®e(t-6))]}  (3.4)

Gpser oty Lo i) Lo ao@ i) ).

(3.6)

(3.5)

Returning to the original equation (3.1) we suppose that sufficient conditions

for the existence of a unique solution are placed on f.

a unique solution with initial conditions

i1 i
@@, ., = xb..x"
1 n
where B, = (Xol, ",Xon) and
i1 in
OO 5 T 5 OO

§:<53(e>)il.__in

b}

We can then solve (3.6) inductively in the following way:

Set
PP G
o 0(t:) = A (t)@o(t)

and

2

88[}6,0).

88[}6,0)

te[b,&)

Then (3.6) has



(3.7)
e ¢m-1(.—5)
3 (£) = A (e () , w1, te[ms,@H)s)
with initial conditions
@0(0) = $(0)
(3.8)

@m(mé) = @m_l(mS)

We shall now assume that the system (3.1) has bounded global solutions and

that if || x0|| <e, ||E|[ <¢ for some e<l, then l‘x(t)l|<1, for all t>o.

Clepl™
Then we introduce the space
2
[® 9],
which is the closed linear span of the set PT of all elements ¢ in G%(RZ)
: :
of the form ¢ = (xll...xnn) , with || x|| <e.

Definition 3.1 If E:S5-*X is a function.defined on a subset S (not generally

a linear manifold) of a Banach space X, then we say that E is bounded on § if

[l Ex] <Ml

for all xeS and some constant'ﬂ. We then write

||E|| = s5Up Ex

gl Bl
Remark 3.2 Note that if E is 'linear' in the sense that
E(ox+By) = oE(x)+BE(y)
whenever ox+By, x,yeS, and if E also denotes the extension of E to the linear
manifold 2(S) generated by S, then E is not necessarily bounded on 2(8).
Lemma 3,3  The operator B:PT +Q%£2 defined by
_ il-l iz :'Ln i in
fB@)i = (1lx1 Ky eweX ) 4, @ = (xl oo Xy )

Pty

igs bounded on PT.



il i
Proof If ¢ = (xl . n)s PT , then
&9 © o 2i.=2 21 21
2 2
lsell“ = ¢ ) Yoee. ) ifx L o 2...x D )
P . - 171 2 n
i.=1 1i,.=0 i =0
1 n
< 5 2. 2 il
= I 3 e 1 Lo (D) xD)
: 1 1
1—x2 1—x2 l_xz i.=o
2 3 n
1/3 1/11

Now, (j+1) +1 as j=* and so 4M such that (il+1) f'2{1+e)<8<1) for

ilzjﬂ. Then,

2/i i b 2i
Whtem? 1o f2_,\'-m 1
il=o 1+e "1 _

L (G
i. =0

1

Hence, if
2
n = max L ‘lX1|
x lze T2 T\2
1- | T+¢ Xl)

then

| Bell? < 1 e on o1 o=mEa Jlel? .1
8l
2

Since the equation (3.1) has a unique solution it follows that the system
(3.7) has a unique solution if
< <
lelice, Nell g1 <
L (5)

Moreover, each operator A & (t) generates an evolution operator on
Enﬁ,(m+1)5) which we denote by Uﬁ(t,s) . Using lemma 3,3 it follows that
the operator Bm given by

2 (- =96) * (m-1)8)

po=@a™ (0 -a"" ) @,

is bounded on PT and so Um(t,s) is given by the solution of the equation

+ Here we regard Qm_l((m—1)5) as the constant function with value'5m_l((mrl)$

on [mﬁ,(m+1)6)
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b . ((m-1)8) £
Um(t,s) = exp {[A m-1 ] (t=s) }+S exp{{A
s

& ((w-1)8
wel i(EJﬂBmUm(t,s)ds

¢m_l((m"1)5)
where exp {[A ()} 1is the semigroup (which clearly exists)

8 _1((@=1)98)

defined by A on the closed linear span of PT. Writing
¢ ((m-1)9)
T (t) = exp {[A" L 1))
we have
t
Um(t,s) = Tm(t—s) + i Tm(t—T) BmUm(T,s)ds.

Since Bm is bounded on PT and the solutions of (3.7) are all in PT for
the assumed initial conditions we can obtain Um(t,s) inductively, in the
usual way, as follows:
Put
Umo(t,s) = Tm(t—s)

E

Tm(t-s) + i Tm(t—TDBmUmk_l(T,s) ds

U (t,8)
and then
oo
g = § U, s
m e mk

4, Nonlinear Delay Equations with Control

In this section we shall show that the nonlinear delay system
2(t) = E(x(t),x(t=8), u(t)) , x()e R, u(t) e R (4.1)

is reducible to an infinite dimensional bilinear system on 12. (We
have chosen a scalar control merely for ease of exposition. The general
case where u(t)e[k? follows in much the same way.) We shall restrict
attention to differentiable controls u(t) and consider the 'augmented'
system.

®(£)=£ (x(£) ,x(t=8) ,u(t))

u(t)=v(t)
making u effectively a state. Then gengralising (3.2) we define

1 1
1 1

Lery. ... RO ¥lees

o, . () = X

11..-.1n+1



Then,
. n. il ik;l in in
b . () = kéikxl () oo, (£).eox "(D)u

ll. o Ll.n_‘_1

+1

Again, by Taylor's theorem, we can write

Pieend
£, (e(t) ,x(e=8),u()) = ] R ¢ 5F Ley...

fseeeni 17l

jl,...,jn
i j i i
n 1 g n+l
X (£)x; (E=8) «oeX (t=6)u (t).

Jl...jn
for some temsor a(k) = (o ; : (k)). Hence,
1... n+1
n i i i 40 and’
$. .. () =] y ki) x e v M T W
1001 3 .7 k1 n o : g
1 Tn4l k=1 11"'°’1n+1 . 11...1n+1
. .
Jl’."’Jn
il i' j! jl v
'R - 0w t— Lk g
%, {t) X (t) %) (t-8) X (£=8) ()
1 i in«i—l_l
A 1h+1x§ﬂgn..xg%ﬁ)u (£)v(t)
n y TP,
; 1 n
= ): . E ' i d (k) ¢. it 3! % Sy s -
I S k LS L A MRl i T LR Puk W FE, ¢
T
Jl" "j_:_l

(E) =

; i e gy Lo~ 1 I
£, (x(£) ,x(£=8),u(E)) #i %) " ()-we X, ) u (t)vlt)

. (k).

vit!




(t).

i
o~
™M
'_l

1 ¢. . . 0 . LI - .'
ki +it.. .1 +1]! "'ln+1n1h+1+1n+1

k=1 ii,...,i;+1 171"k k-1
j'oo-j'
Toa b W@, (70
i “f B Y

170 a4l

iJpweendl

i b, " _e)v(E)
n+l 11...1n1n+1 1

With a similar notation to that in section 3, we now have

. . n R WL BT S | +1) 5
b L. = yi c{s ! k TR () [ela ()@ (£-6))] }
1 n k
k=1
i s _(B)vird
n+1 lpeeei i 1
0 i i o
where ¢ 1is the tensor with components X, ...Xnn 4, Hence the equation takes
the form
. 00 (e-8)
o(t) = A (£)a(t) + v(t)Ba(t) (4.2)
where
2 2, . .
B :®n(2 )-)@n(!@ ) is defined by
(Ba). . = 3 B i &
ll...ln+1 H+l llnn-1n1n+1 1.
when (). , = 4. . . o G i ;
11.e.1n+1 11"'1n+l' Using the same initial conditions as in

section 3, we therefore obtain from (4.2) the following system of equations:

w0,
b () = 4= O (e (0) + v(o)Be (1) , tefo,8)
o o] o
(4.3)
(o]

e (=8

I
B>

& (t) (£)e_(£) + v(£)Bo () , m31, te[ms,(m+1)s)
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It has therefore been shown that a general delay equation with control
of the form (4.1), which has an analytic right hand side, can be 'reduced'
to a set of nonautonomous bilinear systems,

5. Optimal Control

The (sub) optimal control of infinite dimensional bilinear systems has
recently been considered by Banks and Yew (1985) on the filtered tensor product
space ;§159i (22). This method can be applied to the equations (4.3) to
obtain a suboptimal control for equation (4.1).

To illustrate a slightly different approach we recall the following
result of Tzafestas et al (1984):

Theorem 5,1 Consider the bilinear system
x(t) = A(t)x(t) + v(t)Bx(t)

and a cost function of the form

B

} 1.7
J(t) = [ L(x, ,0)dt + 5 x A

t
(o]

£%¢

where

L, 4, ) -—-% (K (x, % + ROEOT xg = x(t,)

and R(t) is a positive scalar function, K(x,t) is a symmetric semipositive
definite matrix function for te[to,tf] and Af is a given symmetric positive
definite matrix, if A(t) satisfies

-Ae) = a(e) + AN + MDA, A = A (5.1)
with

0<G<M(t)<H<=  for all t ,
and K(x,t) is chosen to satisfy

KGx,t) = Q(e) + A(D)Bx(DR (£)x (0)B"ACE)

where Q(t) is chosen to satisfy



w PP s

-Q(t) <=F<o  (F<w)
then

v(t) = K (0% (£)BIACE)x(E)
is the optimal control for the above problem. 0
Remark 5.2 This theorem was proved by Tzafestas et al (1984) in the finite
dimensional case, but it is clearly stil} true for bounded operators on an
infinite dimensional space or even for an unbounded operator A(t) which
generates an evolution operator, provided (5.1) is interpreted in the weak
sense (see Curtain and Pritchard, 1978, Banks, 1983). We shall apply this
result to the system (4.3); since the operators Aéme-é)(t) are bounded on PT
IWe may regard (5.1) as being true in the strong sense since the control depends
only on states ¢ in PT. We then have
Theorem 5.3  Consider the sequence of bilinear systems (4.3),which are

equivalent on PT to the delay equation (4.1), and associate the sequence of

cost functionals

(m+1) 8§ 1 £
I = ;6 Lm(®m,v,t)dt i3 Eém((mﬂ‘l)ﬁ) /\m@m((mﬂ)ﬁ)

where

1. T 2
Lm(@m,v,t) = §{®me(¢m,t)®m + Rm(t)v }
with I\i a given symmetric positive definite (infinite) Eenser. 1E Am(t) satisfies

20 (+=5) 8°__(+=6) t
@) e sA ma™ o), (5.2)

A () = (6) + (4

with A ((@+1)8) = Ai and

w, Y
0<Gmi!\m(t)§_Hm< s £

Dual temsors are defined wibe pe_s‘mc,k, b dhe usual wiver Pmol\.\cu{‘.
on ®“Q"'L ; See Banks and Yew 1995,
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and Km satisfies

K (6 ,6) = Q (£) +A_(£)Be (DR (6)8 ()B'A_(t)

where —Qm(t)fme<o "

then

wlt) = —R;ll(t)fbi(t)BTﬁm(t)@m(t) (5.3)

is the optimal control for equation (4.3) subject to the functionals Jm. 0

6. Example

In order to illustrate the above theory we shall consider the predator-Frej

equations of Wangersky and Cunningham (1957)

x(t) = ax(t)[m—x(t):l —bx(t)y(t)
m
(6.1)

y(£) = =By(t) + cx(t-1)y(t-1)
(cf, Hale, 1971, p2). Define

0;5(8) = x" ()Y (£).
Then

b5 = i L)y (1) + ity O

= (iu-j8)¢ij(t)ii%¢i+lj(t)-ib¢ij+l(t)+jC¢ij_1(t)¢11(t*1)

It is convenient here to define a different operator A™ than that given by

(3.5). Put

o20¢t) = (0 0 0) ) = (() LT (cwﬁl(t-l) -8 o)
000 0 -y 0 0 0 0

and

ij _ _ i 3 v
o “(t) = cj¢1l(t §) i0—]B ib

0 —10L/m 0
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41, C=1)
Then we define A by
¢17(-1) i3 i
(A (D0, = ] (@ Txe™d) (6.2)
where
iy _
o= 05 %55 %ija ,
% pi9] P Haigad
* h i ". L . 0 B . . . #
denotes Schur produc of matrices (i.e (le)(ylj) (xljylj)) .
and
2 3
E (x) = I Z X
i=1  j=1 M
when X = X1 ¥10 %3\ .
x X b3

We therefore obtain formally a system of the type (3.7) where

= (6-1) = 9,1(6-1) = x(6-L)y(6-1) , 0z8<l,

Suppose now that e (the rate of prey population increase) is a control.

Then we have the equations

%(t) = u(t)x(t)[jm"x(t)] ~bx(t)y(t)
m
§(e) = -By(t) + ex(t-1)y(e-1)
u(t) = v(t)
Defining
0,5 (0 = x @y @
we have
;53 (0) =iﬁTlajﬁcwuku>{uunxu>(mﬂdtv-rmxﬂyu>}
m

fer ey Loy u ) (=By () Fex(e-1) y (=10)

+



= Fh, =

st 0y (0 ) @)

and it is clear that we obtain a system of the form (4.2), namely,

¢11(-"1)

é(r) = A (£)e(t) + v(t)Ba(t)

where B is defined in the obvious way and

¢11(.—1) i i
- ljk* ijk
(A ODVE A
. ijk
with o equal to the tensor
A=l i j+1
L[ ejép, (e-1) =JB -1§
k ) - -
ule = 1+1 0 "‘ 0 0
i 0 i 0
k+1
i+l 0 -i/m 0
ijk
and @ equal to the subtensor (¢ ) of o,

dmn” 1<2<i+l, j=1<m<j+1,k<n<k+1

Splitting the equation into a system of the form (4.3) and then solving (5.2)
enables us to obtain the optimal coatrol
t m+1

u(t) = J'O v(t)dt = - f m R;l(t)cp;‘;(t)BTl\m(t)cpm(t)dt.

7. Conclusions
In this paper we have considered the equivalent linearization of nonlinear
analytic delay systems, obtaining a sequence of bilinear systems which are

equivalent to the original equation. This enables us to use one of the



