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ébstract

The optimal control of bilinear systems is considered and related to the
Lie algebra generated by the system matrices. Interesting results obtain

when this Lie algebra 1is nilpotent.
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1. Introduction

Bilinear systems have been studied widely amd have been shown to be an
important extension to linear systems (see, for example, Bruni, et al, 1984,
Mohler, 1973, Isidori, 1973, Brockett, 1976, Gutman, 1981), The optimal
control of bilinear systems has been considered by Tzafestas et al, 1984 and
by Banks and Yew, 1985 — in the latter case the linear—quadratic regulator
problem is extended to the bilinear—quadratic regulator problem. Optimal
controls obtained in this way tend to be complicated, however. In this paper
we shall study the simple problem

X = Ax + uBx

| =
min (s fF uzdt+x'(tf)Fx(tf).}
u t
8]

We shall show that if A and B commute, i.e. [A,B] = 0 then the optimal control
is constant. In the general case where EA,B] # 0 we shall show that, by
considering the Lie algebra W(A,B) generated by A and B, we can obtain a simple
method for determining the optimal control.

Examples will be given in both the finite—and infinite-dimensional cases and
it will be seen that an important special case arises when M(A,B) is a nilpotent
Lie algebra. For the elementary theory of Lie algebras, see Sagle and Walde,

1973.
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2. Optimal Control of Bilinear Systems

In this section we shall consider the bilinear system
x = Ax + uBx , x(t ) = x (z.1)
o} o
Il s PO ] .
where xef, and u 1s a scalar control, and seek to minimise the simple cost
functicn

£

gy = o® gt 4 ®(e )T x(t,) (2.2)

e s

Q

The Hamiltonian for the optimal control problem (2.2) subject to (2.1) is

H = u2 + A' (Ax+uBx)

and so we obtain the equations

°

AV = =(A'A + ul'B) 5 K(tf)=Fx(tf) (a)
¥ = Ax + uBx (b) (2.3}
and
20 - A'Bx = O (&)
Hence
Preposctic
53 [B?AJ then the optimal contrel u#*

is a constant.,

Proof From (2.3) (a) and (b) we have

d (A'Bx) = A'Bx + A'B%
dt
= =(ATA+uATB)Bx + ATB(Ax+uBx)
i
= X[B,4]x , (2.4)
and so
= 0

if [B,A] =0 .0

Proposition22  Under the assumptions of proposition 2.1, the (constant) optimal

control u* is the solution of the equation
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v ¥ Ll
(A"+uB")T e(A+uB)f v B (2.5)

17,8} 3

2utx’e
o

where T = bty and {F,B} = FB+BF is the auticommutator of F and B,

Proof Since u® is a constant we have

J(u*) = u*zT + x'(tf)Fx(tf)

However,
% = (A+u*B)x
%
and so %(T) = e(A+u B)TX ]
0
Hence
e 1] * T %
J(u®) =u=’c£T + x'e(A +u*B )TF e(A"”U’B)TX
.2, 0
and
x ¥ kp ¥ X
.é‘_]_(_l_l_..)z zu}'\‘T & XTE(A +u*B )T{F,B} B (A+\1 B)T - ,
du® o 5

since A and B commute . [1

The condition that @,AJ = 0 is clearly very strong and so it is
natural to seek similar conditions on the control to those above when
@,Aj4=0, Of course, we no longer expect u to be constant, In this
direction we note the following result, which generalises the equation

(2.4) in proposition 2.1.

Lemma 2 .3. For any (nxn) matrix X we have

d (a'¥x) = ' [X,A+uBJx (2.6)
Proof Frgg (2.3)(a),(b) we have
3K = ~(ATA+ud'B)Xx = —A" (A+uB)¥x
and
ARR o= AT X{(Ax+uBx) = A'X(A+uB)x.
Hence
) - 3 [ awBlx . O

Of course, if X=B then we obtain (2.4).

Consider now the Lie algebra M of all nxn matrices with the bracket
@,Pq = LM-ML, and let M(A,B) denote the Lie subalgebra generated by A and B,
Thus, M(A,B) consists of A and B and all possible brackets generated by A and

B and their linear combinations. Since M is a finite-dimensional Lie algebra
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; . 2 .. } ; ; ; .
(of dimension n”), M(A,B) must be finite-dimensional with dimension m<n .

Let X ...,Xm be a basis of M(A,B), and write

12°

u = 2u =)x"Bx
— 3t

u2 A Xlx
= i

u3 A sz

. (2.7)

L

um A Xm_lx

u =A"X x

m+1 m

Then,

4, = 2'[B,A] x

b8, = A"[x, A+uB]x

i, = A" [X,,A+uB]x

3

: | (2.8)
o= A'[X _;,A+uB] x

o = A'[xm,AmB]x

However, each term of the form [Xi ,AJ or in, B] belongs to M(A,B) and so

we may write

m m
[x. , ] = 1 o X, » [X,.B] = 1 8.X (2.9)
i 51 1373 S R o1 1373
for some constants aij’ Bij' Similarly,[ B, AJE M(A,B) and so
m
[B,A] = ¢ b.X, (2.10)
j=1 ] 1]

for some constant:bj. Substituting (2.9) and (2.10) into (2.8)
we have

m
u, = I b.,u.
i a1 j 3+l

(2.11)
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m u, m
u, = I R by B..u.+1 . 2<i<m+l
1 j=1 1] ] J=1 11 3]
The equations (2.11) may be writte#in the form

u = f(u) (2.12)

for some (nonlinear) function f of u = (u,, +o.., U ). We can solve

1 m+1l
(numerically) (2.12) for u in terms of to’tf and some initial wvalue u
and so we can write
u(t) = U(ts s tes uO) (2.13)
where
o

o, = (ul(to),....,um+1(t 1.

Substituting w(t) unte ("-1.17)1 L have

x(t) = Ax(t) + U(t;to,tf,uO)Bx(t) 1 X(to)=x0 (2,14)
and solving (2.14) (again, numerically) we have
x(t) = E(t5t_,t.,u ) (8.5
for some funection & . Finally, substituting (2.13), (2.15) into the cost
functional, we have
tf D)
= 5 ¥ s Ees )
J(uo) t! U (t,to,tf,uo)dt + £ (L,totfuo)F,(t,to,tfuo) (x16)
(6]
and we minimise J with respect to u_ to obtain the optimal control initial
value, uf(tg)/Z.
The above results can be simplified if M(A,B) is a nilpotent Lie algebra.
Recall that a Lie algebra L is nilpotent if the sequence
FLs Lj,[[L,L:[ ,I],[[EL,L],L], i], .... terminates i.e.
(adny® = o
for some kso. Here
[L.L ]={[ X,Y] & X,Yel }
and
(AdL) X = [L,X7] , XL

Proposition 2,4, If Xe (AAM(A,B))”B then d% (A"¥x) = )"¥x+u)'Zx, where




v,7 ¢ aamea,B)) & 2B,

Proof. This follows from lemma 2.3, since

It

d . g
o (AT Xx) » (%, A+uB] x

-A' (AdA) Xx —ud' (AdB)Xx . 0O

Corollaryd..5 If M(A,B) is nilpotent and (AdM(A,B))k = 0, then
M Xx = constant

for any Xe (Adl*i(f’x,E»))k—1 .0
Now recall that, for a nilpotent Lie algebra L, we have the descending

L2 (AdL)L 3 (AdL)2L2 ... 2 (adL)L = 0 (2.17)

disrs (AAITS T £ 40, ‘Noke that Cadr)P 4 Ea® eur muw welaawdil

Forjin the contrary case,
(Ad1)® = (adr)P*L = (aan)P*? = ... = (aany® = o

and so we may replace k by p. Hence applying (2.17) to L = M(A,B) we can

choose the basis Xl’ isEy Xm as follows:

Partition =, = {Xl, cens Xm} into k subsets
D17 X e xgi
Ezz .{X£1+1, ey e +522}
ot {Xal+22+...+£k_1+1, x£1+22+___+Q1;§

~ + "
where El +22 P Rk = m and g is a basis of

[(AdM(A,B))i_lM(A,B)]\ [(AdeA,B))iM(A,B)] ,
(which, as stated above,is nonempty).

Using this basis of M(A,B) it is easy to see that (2.11) takes the form

v =Mu +§1 M (2.18)
rl

where [ and A are nilpotent matrices, and b = (bl,..., bm).
We have therefore proved

Theorem 2.6 For the system (2.1), if M(A,B) is nilpotent Lie algebra, then

the control is given as a linear feedback of a bilinear system (equation (2.18))

with nilpotent defining matrices. OO
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Two special cases of theorem 2.6 are important.

Corollary 2.7. If M(A,B) is nilpotent with (Ad M(A,B))2 = 0, then the

optimal control of the problem (2.1), (2.2) is of the form

u® = ¢ +c,t
1 2

for some constants CI’CZ'

Proof. This follows from (2.18) but can be seen directly as follows:

26 = A'[B,A] x , by (2.4)

Il

and so

2t = 2'[[B,A] ,A+uB]x
by lemma 2.3. Hence i = 0 if (AdM(A,B))2 = 0,0

Similarly we have

Corollary 2,8, Lf (AdM(A,B))3 = 0, then the optimal control is given by

el = .t
% = +
u cle 37+ c2e 3 ca 5

for some constants Cl’CZ’CB’Ca'
Proof, Again we can see directly that

2.1.1 = ?\'[]:B,Al,A]x + uA'[[B,A],B]x,

while

%E{A'U: B,A] ,f_:_] x} = A'[[[B,A] ,AJ ,A]x+u)\' [‘[[B,AJ ,p;] ,B]X

—g-t- {?\'[[B,pﬂ ,B] x} A'[k[[ B, Al ,B-_] ,A]x +u;\'[[[‘B,A] ,B] ,B]x_

The right hand sides of both of the above expressions are zero, by assumption’

and

and so

:1=O!-u+8,
for some constants &,B. The result now follows . [J
Remark 2.9. The above results require only that M(A,B) is a finite
dimensional Lie algebra and so will apply even to infinite dimensional systems
for which M(A,B) is finite dimensional. (However equation (2.8) may have to

be interpreted in a 'mild' sense.)



3., Examples
(3.1) Consider the system

x = Ax + uBx

where A=/0 1
-1 0

Then,
[B,A] =70

1

[[B,A],A] = f-2

0

= -a

[[B,A],B]

J(u) = 5 uzdt+x'x

Now, A,B,[?,A]and [[ﬁ,A],éJ are linearly independent, so

dim (M(A,B)) =
Hence if we write

X, =B, X

1 2 -
and
= ='
u1 u =) Xlx
T
u2 A sz
- 1
u3 X X3x
= 37
u4 A Xéx
we have
‘I - 1 —
ul A XBX u3

4, = A'D%,A&ubjx

u, = K'EXS,A+UB]X

g.
]

it [}{4 ,A+uB]x

il

= EB,Q, X, =[[B,A},A‘3

v = oL
u)\'[Xz,B:[x— T Uy
u
Y T 7Y
-4u3

since [[tB A‘] ,4),4] = = 4[8,4] ana [[[B a],a).8) = 0

(Note the difference between (2.8) and (3.1); we are now including B explicitly

in the basis of M(A,B).)

implies

It is an elementary exercise to show that (3.2)

(3.1)

(3.2)
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u G
N 2 1 2 2
a, = iJ-TE— g e ; (l6ul 8ulc4+c4 )y + c3} (3.3)

for some constants CyrCasCyu We can solve (3.3) numerically, but as an

example suppose we apply Euler's method of integration on the interval tb,f]

with only one step, for simplicity. Then, if ul(o) = cy, e have

. ,
u, = c , tE[p, /)
1 1 . 4 . 7 Z
) A 2 1 2 2 T
U =% *3 J{ € 5t g (16ey -8cicte, )+C3}’t€(t/2’Tﬂ
= ci say
Then
1
%) = e(A+C1 B)T/2 e(A+C1B)T/2 x
and
T 2 ,
J(u) = f u"dt + x(T)x(T)
(8]
T T T 1%
¥ 1 Pyt 1 1yt TRy -
=l ey +x JA By (AR BLG  Ahee Bly  bhregBly x_

Optimizing J with respect to Cis Cys Cgs Oy will then give the optimal control.
(3:2) Consider the system
. Z3

¢ =Ap +uBo , J(u) = [u” + ¢"(T) &(T)
2

where ¢ ¢4 (the space of (infinite) square summable sequences), A is the left

shift operator, and B = I, then

0]

in the usual basis. Now EB,A] = 0, so the optimal control is constant, say

u = C, Hence

(A+cB)9

1]

b
and

e(A+cB)T¢

¢(T) (0).

However, [ﬁ,@ = 0 , so by the Campbell-Hausdorff formula, (which is

clearly valid here), we have
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(A+cB)T _ AT cBT
e = e e

and
AT 3 cBT cT
e = 1 T TA?%E ) y B = e 0
1 T Thl . oCT
3
1 T Tal « . oCT
1 T e e e
0 % % ¥ 0 *
\ .
Hence,
(A+cB)T cT AT
e = e e
Thus,
J(w) = c2T + eZCTl!/(T)
where

o ) : 2
¥ F T
IP(T) - i=1 j=0( ¢j+i(0) j: )

The optimal control is therefore the solution of the equation
2eT + 27e2°T L y(1) = 0

(3,3) As a final example we consider briefly the system

¢ = A + uB9,
where
A= 0 1 B=/ 0 o0 .. 0
0 ’ *
0o 2 1 0
0 3 1 0 i
0 0 4 1 0 )

: At :
A is unbounded but we may evaluate e as before, In this case

B,A] =-1

and so M(A,B) is nilpotent with (Ad M(A,B))2 = 0. Hence the optimal control
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is u=c +ec,t
for some constants C12Cye By the Campbell-Hausdorff formula,
: u 3
JAt uBt éiAt + Bt + [A,B'_] t}
u
-+ — —
- (eAt uBt) o~ 32 £

Swce, [},B] commutes with A and B. Hence

At + uBt /ot At uBt
e e e e
and we can proceed as in the above examples.

4, Conclusions

In this paper we have considered the 'minimum fuel' problem
for a bilinear system and have shown how to obtain the optimal control by
considering the Lie algebra generated by the system matrices. It should be
noted that we have obtained an open—loop control depending on the initial
value of the state X However, using the principle of receding horizon
control (Shaw, 1979, Banks, 1983) we can apply the control as if we were
always starting an optimising interval of T seconds. We then just replace
X by x(t) and allow T to depend on the state to obtain a nonlinear feedback
control. The details are the same as with linear systems.
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