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Abstract

A rigorous asymptotic procedure with the Mach number as a small

parameter is used to derive the equations of mean flows which coexist

and are affected by the background acoustic waves in the limit of very

high Reynolds number.

PACS numbers: 43.25Nm
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I. INTRODUCTION

In this note we use a rigorous asymptotic procedure to derive new equations for mean

flows that coexist and are affected by a background acoustic field in the limit of very high

Reynolds numbers. We will refer to these equations as the acoustic drift equations because

they contain the drift velocity of fluid particles in the oscillatory acoustic field. Our theory

can be viewed as an extension of previous studies on acoustic streaming (see, e.g., Refs. 1–7)

to the case of high Reynolds numbers.

The basic parameters of the acoustic streaming flows are the Mach number ϵ and the

streaming Reynolds number Rs
5,6, defined by

ϵ =
V ∗

c∗0
, Rs =

V ∗2ρ∗0
ω∗η

,

where ω∗ is the frequency of the sound wave, V ∗ is the amplitude of the velocity oscillations,

η is the dynamic viscosity, ρ∗0 and c∗0 are the density and the velocity of sound in the

undisturbed fluid.

The two most popular examples of acoustic streaming are (i) steady flows produced by

intense ultrasound beams (‘quartz wind’) and (ii) steady flows driven by viscous boundary

layers near a rigid boundary. In the first example, it is essential that the sound waves are

attenuated due to viscous dissipation (or due to some other physical mechanism)1–3. The

resulting steady flow is described by the Stokes equations with an ’external body force’

term that appears because of the attenuated sound waves. The theory is restricted to

the case of small streaming Reynolds numbers (Rs ≪ 1). An interesting set of equations

governing unsteady (but slowly varying) mean flows is presented in Chapter 8 of the book

by Rudenko and Soluyan8. The equations are the incompressible Navier-Stokes equations

with an external body force that appears due to the presence of background sound waves.

These equations had been used to solve a number of concrete acoustic streaming problems

(see, e.g., Refs. 9, 10) and results seem to be in agreement with observations. However, if

a)konstantin.ilin@york.ac.uk
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viscous effects are small, this model reduces to the incompressible Euler equations with a

potential external force which can be included into the pressure term. As a result, the mean

flow is unaffected by the sound waves.

In the second example, there is no ’external body force’ and the flow is induced by

the boundary layer at a rigid boundary. Here there are theories which can treat acous-

tic streaming flows at moderate and even high streaming Reynolds numbers5,6. Acoustic

steaming driven by boundary layers will not be considered in the present note.

The aim of this note is to derive equations that govern the evolution of the mean flow

at high Reynolds numbers, Rs ≫ 1. To be more precise, we consider flows for which, in the

limit of small ϵ, Rs ∼ ϵ−λ with λ ≥ 1. This means that the viscosity does not affect both

the sound waves and the mean flow which are effectively inviscid. For compressible flows,

this limit had not been treated previously.

Our asymptotic procedure is based on the method of multiple scales11 (for an example of

using the method in acoustics see Ref. 12) and is similar to the approach employed in Refs.

13 and 14. The procedure leads to asymptotic equations describing the mean flow that is

quadratic in the amplitude of the background sound waves. These equations, which we call

the acoustic drift equations, have the form of the incompressible Euler equations with an

additional term in the momentum equation that contains the drift velocity of fluid particles.

They give a valid approximation for solutions of the governing equations everywhere away

from rigid walls. Interestingly, our asymptotic equations are similar to the equations that

had been derived by Craik and Leibovich for incompressible flows and used to explain the

Langmuir circulations in the ocean15.

Our asymptotic procedure can be used to compute as many successive approximations

to the solution as necessary. It produces not only the equations of the mean flow but also

the successive approximations for the mean pressure which is needed to find the radiation

force exerted on a rigid particle by the sound waves. Also, an example considered in Section

IV shows that the asymptotic equations derived in the paper can indeed describe non-trivial

mean flows which appear due to the presence of sound waves.
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II. FORMULATION OF THE PROBLEM

Let x∗ = (x∗, y∗, z∗) be Cartesian coordinates in space. We assume heat conduction

can be ignored and consider three-dimensional viscous compressible isentropic flows. The

Navier-Stokes equations for isentropic flows can be written as17

v∗

t∗ + (v∗ · ∇∗)v∗ = −∇∗h∗ + (η/ρ) K̂v∗,

ρ∗t∗ +∇∗ · (ρ∗v∗) = 0, K̂v∗ ≡ ∇∗2v + b∇∗(∇∗ · v∗).

Here v∗ is the velocity of the fluid, t∗ is time, ρ∗ is the density and h∗(ρ∗) is the enthalpy

per unit mass of the fluid, b = (ζ/η) + (1/3), η and ζ are the shear and bulk viscosities of

the fluid. Note that the velocity of sound c∗ can be written as

c∗2(ρ∗) = dp∗/dρ∗ = ρ∗ dh∗/dρ∗.

Let ρ∗0 be the undisturbed density, ω∗ the angular frequency of a sound wave, L∗ the wave-

length divided by 2π and V ∗ the amplitude of the velocity oscillations in the wave. We

employ these to define the non-dimensional quantities ρ, h, v, x and τ :

ϵρ =
ρ∗ − ρ∗0
ρ∗0

, ϵh(1 + ϵρ) =
h∗(ρ∗)− h∗(ρ∗0)

c∗20
,

v∗ = V ∗v, x∗ = L∗x, ω∗t∗ = τ.

With these variables, the Navier-Stokes equations become

vτ + ϵ(v · ∇)v = −∇h+ ϵ2R−1
s (1 + ϵρ)−1 K̂v,

ρτ +∇ · v + ϵ∇ · (ρv) = 0. (1)

where Rs in the streaming Reynolds number defined in Section 1. For small ϵ, function

h(1 + ϵρ) can be written as

h = A1 ρ+
ϵ2

2
A2 ρ

2 +
ϵ3

6
A3 ρ

3 + . . . (2)

where An (n = 0, 1, . . . ) are constants given by

A1 = 1, An =
ρ∗n0
c20

dnh∗(ρ∗0)

dρ∗n0
(n ≥ 2).
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We are looking for an asymptotic expansion of solutions of Eqs. (1) for small ϵ and large

streaming Reynolds numbers such that R−1
s = O(ϵλ) with λ ≥ 1. In this limit, the viscosity

does not appear in the first three terms of the expansion and flows described by those terms

are effectively inviscid. Therefore, from now on we will completely ignore viscous terms.

III. ASYMPTOTIC EXPANSION

If we insert (2) into (1) and then put ϵ = 0, we obtain the standard equations that

describe the linear sound waves in an inviscid compressible fluid. Here we are interested in

slow mean motions which coexist with and are affected by the sound waves. Therefore, we

assume that the mean flow develops on the slow time scale t = ϵ2τ and that v and ρ are

functions of both τ and t. This choice of the ‘slow time’ is based upon the following two

requirements. First, since our aim is to construct an asymptotic expansion which is valid at

least on a time interval of order unity in slow time, it is natural to maximize this interval by

choosing slow time as ‘slow’ as possible, i.e. we maximize α in t = ϵατ . Second, the evolution

of the mean flow with slow time must be completely determined by asymptotic equations

and it can be shown that if we choose α > 2, this would lead to asymptotic equations which

do not determine this evolution. So, the only choice satisfying the above requirements is

t = ϵ2τ . In Ref. 13 and 16, this choice of slow time is referred to as a distinguished limit. It

should be emphasized here that the introduction of the slow time is needed only if we want

to describe the unsteady evolution of the mean flow. If the slow time was not introduced we

would obtain the steady version of the same averaged equations (Eqs. (35) below). So, the

introduction of the slow time serves two purposes: (i) to describe the unsteady evolution of

the mean flow and (ii) to determine the natural time scale of this evolution.

With this assumption, Eqs. (1) (without the viscous term) become

vτ + ϵ2vt + ϵ(v · ∇)v = −∇h, (3)

ρτ + ϵ2ρt +∇ · v + ϵ∇ · (ρv) = 0. (4)
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We seek a solution of these equations in the form of the asymptotic series

v = v0 + ϵv1 + ϵ2v2 + . . . , ρ = ρ0 + ϵρ1 + ϵ2ρ2 + . . . (5)

Note that the dimensionless velocity and density, v and ρ, are defined so as to represent an

O(ϵ) perturbation of the undisturbed fluid, and therefore, vk and ρk in Eq. (5) represent

quantities of order (k + 1) in ϵ for k = 0, 1, 2, . . .

Substitution of the second equation (5) into (2) yields

h = ρ0 + ϵ (ρ1 +H1) + ϵ2 (ρ2 +H2) + . . . (6)

where

H1 = A2
ρ20
2
, H2 = A2 ρ0ρ1 + A3

ρ30
6
, etc. (7)

Now we substitute (5) and (6) into Eqs. (3) and (4) and collect the terms of the same power

in ϵ. This results in the following sequence of equations:

∂τv0 +∇ρ0 = 0, ∂τρ0 +∇ · v0 = 0 (8)

and

∂τvk +∇ρk = Fk, ∂τρk +∇ · vk = Gk (9)

for k = 1, 2, . . . , where

F1 = −∇H1 − (v0 · ∇)v0, G1 = −∇ · (ρ0v0) ,

and where

Fk = −∂tvk−2 −∇Hk −

k−1∑

l=0

(vl · ∇)vk−l−1,

Gk = −∂tρk−2 −∇ ·

(
k−1∑

l=0

ρlvk−l−1

)

for k = 2, 3, . . . Throughout the paper, all functions of τ are assumed to be 2π-periodic in

τ . Therefore, any function f(τ) can be written as

f(τ) = f + f̃(τ), f =
1

2π

2π∫

0

f(τ)dτ,
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where f is the mean value of f(τ) and f̃(τ) = f(τ)− f is the oscillatory part of f .

In what follows, we will be looking for 2π-periodic solutions of equations having the form

(cf. Eqs. (8), (9))

ψτ (t, τ) = q(ψ(t, τ), t, τ).

Integrating this from 0 to 2π in τ yields the following solvability condition (the necessary

condition for existence of a 2π-periodic solution):

q(ψ(t, τ), t, τ) = 0.

This solvability condition eliminates secular terms in the asymptotic expansion (i.e. terms

which grow linearly with τ) and results in averaged equations.

Our aim is to derive equations which govern slow evolution of v1. Since ∂tv1 appears

only in Eq. (9) for k = 3 (through F3), we need to consider step-by-step Eq. (8) and Eq.

(9) for k = 1, 2, 3.

A. The leading order equations

Applying averaging to Eqs. (8), we find that

∇ρ0 = 0, ∇ · v0 = 0. (10)

The first of these means that at leading order the averaged density can only depend on the

slow time, ρ0 = ρ0(t). The second equation says that the leading order mean flow must be

incompressible. In what follows we choose

ρ0 = 0 (11)

as the only solution that is physically meaningful. (There is no need in allowing ρ0 to be

a nonzero constant, because then ρ0 can be included into the constant undisturbed density

ρ∗0.)

For oscillatory parts of v0 and ρ0, we have

∂τ ṽ0 +∇ρ̃0 = 0, ∂τ ρ̃0 +∇ · ṽ0 = 0. (12)

8



Then the first equation (12) imply that

ṽ0 = ∇ϕ0, (13)

while the second equation (12) leads to the standard wave equation for ϕ0:

∂2τϕ0 −∇2ϕ0 = 0. (14)

Thus, the oscillatory part of the leading-order flow is irrotational and represents the usual

sound waves.

B. The first-order equations

On averaging Eqs. (9) for k = 1, we find that

∇ρ1 = −(v0 · ∇)v0 −∇H1,

∇ · v1 = −∇ · (ρ0v0). (15)

Using (13), the first equation (15) can be written as

(v0 · ∇)v0 = −∇Π0, Π0 = ρ1 + |∇ϕ0|2/2 +H1. (16)

The first equation (16) together with the second equation (10) represent the stationary

Euler equations for an inviscid incompressible fluid, with function Π0 playing the role of the

pressure. Thus, in general, the leading order averaged flow is described by the stationary

incompressible Euler equations and may coexist with the background sound waves. However,

in spite of the presence of the term |∇ϕ0|2/2 in the expression for Π0, the averaged flow is

not affected by the sound waves. This is because in incompressible flows the pressure, Π0,

is determined by solving the Euler equations with appropriate boundary conditions. When

functions v0(x) and Π0(x) are known (after solving the Euler equations), the second equation

(16) (and this is its only role) gives us a formula for ρ1. Here we are interested in flows which

are affected by the sound waves. Therefore, we restrict our attention to the case where the

leading-order mean flow is absent, i.e.

v0 = 0, Π0 = 0. (17)

9



Note that the second equation (17) implies that

ρ1 = −|∇ϕ0|2/2−H1 + C1(t) (18)

where C1(t) is an arbitrary function which, for each particular problem, can be chosen using

boundary conditions.

It follows from the second equation (10) and from Eqs. (12) that

∇ · v1 = ρ̃0 ∂τ ρ̃0 + ṽ0 · ∂τ ṽ0 = 0. (19)

Here the last equality follows from the fact that f ′(τ)f(τ) = 0 for any 2π-periodic function

f(τ). Thus, the first-order averaged flow is also incompressible.

Separating the oscillatory part in Eqs. (9) for k = 1 and using (17), we obtain

∂τ ṽ1 +∇ρ̃1 = − ˜(ṽ0 · ∇)ṽ0 −∇H̃1,

∂τ ρ̃1 +∇ · ṽ1 = −∇ · (̃ρ̃0ṽ0). (20)

With the help of (12) and (13), these can be written as

∂τ ṽ1 +∇ρ̃1 = −∇Φ1, ∂τ ρ̃1 +∇ · ṽ1 = ∂τΨ1 (21)

where

Φ1 = |̃∇ϕ0|2/2 + H̃1, Ψ1 = |̃∇ϕ0|2/2 + ˜(∂τϕ0)2/2.

Taking curl of the first equation (21), we find that ∂τ (∇× ṽ1) = 0, which, in turn, implies

that ∇× ṽ1 = 0. We conclude that ṽ1 is irrotational, so that

ṽ1 = ∇ϕ1. (22)

C. The second-order equations

Averaging the first equation (9) for k = 2 and some further manipulations yield

ρ2 = −∇ϕ0 · ∇ϕ1 −H2 + C2(t) (23)
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where C2(t) is an arbitrary function which, for each particular problem, can be chosen with

the help of boundary conditions.

The oscillatory part of the first equation (9) for k = 2 can be written as

∂τ ṽ2 +∇ρ̃2 = −(ṽ0 · ∇)v1 − (v1 · ∇)ṽ0

−∇
(
∂tϕ0 +∇ϕ0 · ∇ϕ1 + H̃2

)
. (24)

Further manipulations yield

∂τ ṽ2 +∇ρ̃2 = ṽ0 × ω1 −∇Φ2 (25)

where ω1 = ∇ × v1 is the vorticity of the velocity field v1 and Φ2 = ∂tϕ0 + ∇ϕ0 · ∇ϕ1 +

H̃2 + v1 · ṽ0. Taking the curl of (25) results in the following equation for ω̃2 = ∇× ṽ2:

∂τ ω̃2 = ∇× (ṽ0 × ω1) . (26)

D. The third-order equations

On averaging the first equation (9) for k = 3 and using Eq. (17), we get

∂tv1 + (v1 · ∇)v1 = −∇
(
ρ3 +H3

)
− (ṽ0 · ∇)ṽ2

−(ṽ1 · ∇)ṽ1 − (ṽ2 · ∇)ṽ0. (27)

With the help of (13) and (22) this can be simplified to

∂tv1 + (v1 · ∇)v1 = ṽ0 × ω̃2 −∇Π
∗

1 (28)

where

Π
∗

1 = ρ3 + ṽ2 · ṽ0 + |∇ϕ1|2/2 +H3. (29)

Let ξ be the field of displacements of fluid particles in the oscillatory velocity field ṽ0 defined

by

∂τξ = ṽ0, ξ = 0. (30)
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Then it can be shown that

ṽ0 × ω̃2 = −
1

2

(
ξ × (∇× (∂τξ × ω1))

+ ∂τξ × (∇× (ω1 × ξ))
)
. (31)

This can be further simplified with the help of the identity

a× (∇× (b× c)) + b× (∇× (c× a)) + c× (∇× (a× b)) = ∇ (a · (b× c)) + (∇ · a)(b× c)

+(∇ · b)(c× a) + (∇ · c)(a× b), (32)

which is valid for arbitrary vector fields a(x), b(x) and c(x). Applying this identity to Eq.

(31), we obtain

ṽ0 × ω̃2 = V × ω1 −
1

2
∇
(
ω1 · (ξ × ∂τξ)

)
(33)

where

V =
1

2
[∂τξ, ξ] (34)

and, where [a,b] = (b · ∇)a − (a · ∇)b is the commutator of a(x) and b(x). Note that

since, by its definition, ξ represents an O(ϵ) quantity, V is quadratic in ϵ. It can be shown

that V is the Stokes drift velocity of fluid particles (sometimes also called the Lagrangian

drift velocity) induced by the leading order oscillatory flow (see, e.g., Eq. (12) in Ref. 2

or Eq. (21) in Ref. 18). The Stokes drift velocity is obtained by averaging the velocity of

each fluid particle rather than averaging the Eulerian velocity at a fixed point in space. The

most important feature of the Stokes drift velocity is that it may be nonzero in a purely

oscillatory flow where the mean Eulerian velocity is zero (for more details see Ref. 18).

Finally, we substitute (33) into (28) and obtain the closed system of equations for v1:

∂tv1 + (v1 · ∇)v1 = V × ω1 −∇Π1, ∇ · v1 = 0 (35)

where

Π1 = Π
∗

1 +
1

2
∇
(
ω1 · (ξ × ∂τξ)

)
. (36)
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For a given acoustic field, the Stokes drift velocity can be computed using Eq. (34). Then

Eqs. (35) can be solved under appropriate initial and boundary conditions resulting in

a mean velocity field v1 and a function Π1. We should emphasize here that we do not

need to know what quantities are contained in Π1, because Eqs. (35) (supplemented with

appropriate initial and boundary conditions) lead to a function Π1 which is unique up to

addition of an arbitrary function of t. Once we know Π1, we can find an expression for ρ3

which is similar to Eqs. (18) and (23).

The effect of the background sound waves on the mean motion is described by the first

term on the right side of the first equation (35) that contains the Stokes drift velocity V.

Therefore, we refer to Eqs. (35) as the acoustic drift equations, and these represent the main

result of the paper.

The term V × ω1 that describes the effect of the sound waves on the mean flow may

look strange at first sight as it is of fourth order in the amplitude of the sound waves (both

V and ω1 are the second-order quantities) but appears in the equation that is quadratic in

the amplitude. All possible quadratic interactions had been described more than 50 years

ago by Chu and Kovásznay20. In the absence of dissipation, the only quadratic interaction is

between two sound modes. However, in agreement with the analysis of Chu and Kovásznay

(see the discussion of sound-sound interactions on pp. 510–511 in Ref. 20), it results in

a potential force in the averaged equations and does not lead to generation of vorticity.

Therefore one needs to go further and take account of cubic and quartic interactions. The

present paper shows that the cubic terms do not affect the averaged flow and that the only

term that gives a non-trivial contribution is of fourth order in the amplitude of the sound

waves. The fact that it arises in the averaged equations for the (quadratic in the amplitude)

mean flow is natural because although the Stokes-drift velocity is small (quadratic in the

amplitude), its effect over a long time interval (of order ϵ−2) is not small (of order unity),

and this is why it appears in Eqs. (35).

It is interesting to note that equations similar to (35) had been derived earlier by Craik

and Leibovich to describe the Langmuir circulations in the ocean15. In the case of steady
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two-dimensional flows, Eqs. (35) reduce to the inviscid version of the equations derived by

Riley (see Eq. (30) in Ref. 6) in the context of the steady streaming in an incompressible

fluid.

We note also that the Stokes drift velocityV, given by (34), is incompressible: ∇·V = 0.

This is a consequence of the fact that ṽ0 and ρ̃0 represent acoustic waves and satisfy Eqs.

(12) and (14).

The above asymptotic expansion allows us to compute successive approximations to

the radiation force exerted on a rigid body in an acoustic field in a lossless medium. An

interesting feature of our model is that both the first-order (quadratic in the sound wave

amplitude) and the second-order (cubic) radiation force are not affected by the mean flow

despite the fact that the mean velocity is the first-order quantity. To show this, we consider

a fixed rigid body in a lossless medium. The radiation force is the integral of the averaged

excess pressure P
∗

−P ∗

0 over the body surface. Our procedure yields the following expansion

for P
∗

− P ∗

0 :

P
∗

− P ∗

0

ρ∗0c
∗2
0

= ϵ2
(
ρ1 +

B2

2
ρ̃20

)

+ϵ3
(
ρ2 + B2 ρ̃0ρ̃1 +

B3

6
ρ̃30

)

+ϵ4
(
ρ3 + . . .

)
+ . . . (37)

Here Bk are constants that can be expressed in terms of Ak defined in Section 2. Note that

ρ1 and ρ2 are given by (18) and (23), and ρ3 can be found from Eq. (36) after solving Eq.

(35) with appropriate initial and boundary conditions. It is evident from (18) and (23) that

neither ρ1 nor ρ2 depend on the mean velocity v1, so the first two terms on the right side of

(37) are not affected by the mean flow. Note also that the first term can be reduced to the

standard formula of Ref. 19.

IV. EXAMPLE

To show that sound waves can have a significant effect on slow motions described by

Eqs. (35), we consider an example which is similar in spirit to Craik’s theory of Langmuir

14



circulations21. Namely, we will show that a weak steady flow may become unstable if a

simple acoustic field is present.

We assume that the acoustic wave field produces the Stokes drift velocity of the form

V = Φ(x, y)ez for some function Φ and consider flows that are independent of z, i.e.

v1 = (u(x, y), v(x, y), w(x, y)) and Π1 = Π1(x, y).

In this case, Eqs. (35) can be written as

∂tv
⊥ + (v⊥ · ∇⊥)v⊥ = −∇⊥Π∗ − w∇⊥Φ,

∂tw + (v⊥ · ∇⊥)w = 0,

∇⊥ · v⊥ = 0, (38)

where Π∗ = Π1 − wΦ, v⊥ = (u, v, 0) and ∇⊥ = (∂x, ∂y, 0). Formally, Eqs. (38) coincide

with the equations governing two-dimensional motion of a stratified fluid in the Boussinesq

approximation, with w playing the role of the fluid density and (−Φ) being the potential of

the external body force.

Equations (38) have steady solutions of the form

v⊥ = 0, w = W (x, y), Π∗ = P (x, y) (39)

where W (x, y) and P (x, y) must satisfies

W∇⊥Φ = ∇⊥P. (40)

This implies that

∂xW ∂yΦ− ∂yW ∂xΦ = 0.

The last equality is satisfied if

Φ = F (W ) (41)

for some function F .
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Let v̂⊥(x, y, t), ŵ(x, y, t), p̂(x, y, t) represent a perturbation of steady state (39). Assum-

ing that the perturbation is small, we linearize Eqs. (38):

∂tv̂
⊥ = −∇⊥P̂ − ŵ∇⊥Φ,

∂tŵ + (v̂⊥ · ∇⊥)W = 0,

∇⊥ · v̂⊥ = 0. (42)

The linearized equations conserve the perturbation energy given by

E =
1

2

∫

D

(∣∣v̂⊥
∣∣2 − dΦ

dW
ŵ2

)
dxdy = const. (43)

It is assumed that that the perturbation either sufficiently rapidly decays as
√
x2 + y2 → ∞

or periodic in x and y. The domain of integration D is the entire xy plane in the first

case and the rectangle of periods in the second case. If dΦ/dW ≤ 0 everywhere in the flow

domain, then E is a non-negative quantity and can be used as a measure of the amplitude of

the perturbation, and the conservation of E implies that the perturbation cannot grow with

time, so that steady state (39) is stable to small perturbations. The stability corresponds

to a ‘stably stratified equilibrium’ in our analogy with the Boussinesq fluid. If, however,

dΦ/dW > 0 in some part of the flow domain, then it can be shown using the technique of

Ref. 22 that perturbations for which E is negative grow with time t exponentially. In this

case, basic state (39) is unstable, and this instability may lead to nontrivial mean flows that

coexist with the background acoustic field.

To give an explicit example of this instability, we suppose that initially there is a weak

steady shear flow

W = γy ez.

for some γ > 0. (Although this velocity profile is unbounded, it is a good approximation to

any shear flow provided the perturbation is localized in the y direction.) Then we ‘switch

on’ an acoustic field in the form of two plane waves propagating at the angles ±α to the z

axis:

ϕ0 = ℜ
(
ei(k·x−τ) + iei(q·x−τ)

)
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where k = (0, sinα, cosα) and q = (0,− sinα, cosα). Formula (34) results in the following

expression for the Stokes drift velocity:

V = Φ(y) ez = cosα [1 + cos 2α sin(2y sinα)] ez.

Hence,

dΦ

dW
=

Φ′(y)

W ′(y)
=

sin 4α

2γ
cos(2y sinα).

Evidently, dΦ/dW > 0 for 0 < α < π/4 and all y such that |y| < π/(4 sinα). So, if we choose

the initial perturbation such that u(x, y, 0) = 0, v(x, y, 0) = 0 and w(x, y, 0) is nonzero only

in the interval |y| < π/(4 sinα), then the perturbation energy, given by (43) will be negative,

and the perturbation will grow exponentially. The nonlinear development of this instability

will, in turn, lead to nontrivial slow motions coexisting with the fast acoustic field.

V. DISCUSSION

By employing the regular asymptotic procedure we have obtained the equations govern-

ing the evolution of slow mean flows that coexist with and are affected by the background

sound waves. It is evident from Eqs. (35) that if the mean velocity is zero initially, at t = 0,

it will remain zero for all t > 0. Therefore, Eqs. (35) do not lead to any acoustic streaming

if there is no initial perturbation. However, if an initial perturbation is present, its evolution

will be described by Eqs. (35) and, therefore, will be affected by the sound waves via the

drift velocity that appears in (35). The example considered in Section IV shows that if

initially there is a weak steady shear flow, then a simple acoustic field in the form of two

plane sound waves may result in instability leading to a non-trivial unsteady mean flow. In

contrast with the classical theory of acoustic streaming at low streaming Reynolds numbers,

there is no need for attenuation of the sound waves in our theory.

The asymptotic expansion described in the paper is valid if the streaming Reynolds

number Rs is high. To be precise, our theory works if R−1
s = O(ϵλ) as ϵ → 0 with λ ≥ 1.

However, it is not difficult to see that if Rs = µ−1 for some µ = O(1), then the effects of

viscosity can be incorporated in our procedure, and the only modification of the averaged
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equations (35) will be the presence of the viscous term µ∇2v1 on the right side of the first

equation (35).

The acoustic drift equations (35) are valid only in the regions of the flow domain that

are sufficiently far away from rigid boundaries. If we want to include a rigid boundary, then

we have to take into account viscous boundary layers which are essential irrespective of how

large the Reynolds number is. For Rs . 1, this can be done following the approach of Ref.

14.
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