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On the self-propulsion of an N-sphere

micro-robot

V. A. Vladimirov†

Department of Mathematics, University of York, Heslington, York YO10 5DD, UK

(Received 5 June 2012; revised 2 September 2012; accepted 9 October 2012)

The aim of this paper is to describe the self-propulsion of a micro-robot (or micro-
swimmer) consisting of N spheres moving along a fixed line. The spheres are linked
to each other by arms with their lengths changing periodically. We use the asymptotic
procedure containing the two-timing method and a distinguished limit. We show that
self-propulsion velocity appears (in the main approximation) as a linear combination of
velocities of all possible triplets of spheres. Velocities and efficiencies of three-, four-
and five-sphere swimmers are calculated.

Key words: biological fluid dynamics, low-Reynolds-number flows, micro-/nano-fluid
dynamics, propulsion

1. Introduction

Studies of micro-robots represent a flourishing modern research topic that strives
to create a fundamental base for modern applications in medicine and technology,
see Purcell (1977), Becker, Koelher & Ryder (2003), Najafi & Golestanian (2004),
Dreyfus et al. (2005), Chang et al. (2007), Earl et al. (2007), Alouges, DeSimone &
Lefebvre (2008), Golestanian & Ajdari (2008, 2009), Leoni et al. (2009), Alexander,
Pooley & Yeomans (2009), Gilbert et al. (2010) and Lauga (2011). The simplicity
of the geometry represents the major advantage in studies of micro-robots (in
contrast with the extreme complexity of self-swimming micro-organisms, e.g. Pedley
& Kessler (1987), Vladimirov et al. (2004), Pedley (2009) and Polin et al. (2009));
it allows us to describe the motions of micro-robots in greater depth. In this paper,
we generalize the theory of the three-sphere micro-robot of Najafi & Golestanian
(2004) and Golestanian & Ajdari (2008) to an N-sphere micro-robot. We employ
the two-timing method and distinguished limit arguments, which lead to a simple
and rigorous analytical procedure. Our calculation of the self-propulsion velocity of
an N-sphere robot shows that it represents (in the main approximation) a linear
combination of velocities due to all possible triplets of spheres. The velocities and
Lighthill’s swimming efficiencies of three-, four- and five-sphere robots are calculated
as examples.

† Email address for correspondence: vv500@york.ac.uk
J. Fluid Mech. (2013), vol. 716, R1 c© Cambridge University Press 2013 716 R1-1
doi:10.1017/jfm.2012.501



V. A. Vladimirov

1 2

3

N

1

1

2 N – 1

2 3 N

FIGURE 1. N = 4 spheres, linked by arms of periodically changing lengths.

2. Formulation of the problem

We consider a micro-robot consisting of N rigid spheres of radii R∗
i , i = 1, 2, . . . ,N

with their centres at the points x∗
i (t

∗) of the x∗-axis (x∗
i+1 > x∗

i ), where t∗ is time, and
asterisks mark dimensional variables and parameters. The spheres are connected by
N − 1 arms/rods, such that the distances between the centres of neighbouring spheres
are l∗α = |x∗

α+1 − x∗
α|, α = 1, 2, . . . ,N − 1, see figure 1 (in this paper latin subscripts

take values 0 to N, while greek subscripts take values 0 to N − 1). We accept Stokes’s
approximation where the masses of spheres and arms are zero; the arms are so thin
(much thinner than any R∗

i ) that their interactions with a fluid are negligible. The
equations of motion can be written as

f ∗
i + F∗

i = 0, (2.1)

F∗
i = −κ∗

i

{
ẋ∗

i −
∑

k 6=i

3R∗
k ẋ∗

k/(2x∗
ik)

}
, x∗

ik ≡ |x∗
i − x∗

k |, (2.2)

x∗
α+1 − x∗

α = l∗α, (2.3)

N∑

i=1

f ∗
i = 0, (2.4)

where κ∗
i ≡ 6πηR∗

i , η is viscosity, dots above functions stand for d/dt∗, and the
summation convention over repeating subscripts is not in use. The forces f ∗

i are exerted
by the arms on the ith sphere, while F∗

i represent viscous friction. In order to derive
(2.2) we use a classical expression for Stokes’s friction force as well as an explicit
expression for fluid velocity for a sphere moving along the x∗-axis. The x∗-component
u∗ of this velocity at distance r∗ along the x∗-axis is

u∗ ≃ 3R∗U∗/(2r∗), (2.5)

where R∗ and U∗ are the radius and velocity of a sphere, see Lamb (1932), Landau
& Lifshitz (1959) and Moffatt (1996). Equality (2.4) follows from the fact that the
external forces exerted on each arm are negligible. The geometrical configuration of a
micro-robot is determined by given functions

l∗α = L∗
α + l̃∗α(τ ), (2.6)
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where L∗
α are mean values and l̃∗α(τ ) are oscillations, which represent 2π-periodic

functions of a dimensionless variable τ ≡ ω∗t∗; ω∗ is a constant. Since all l∗α are
given, then conditions (2.3) can be considered as geometrical constraints. Equalities
(2.1)–(2.6) represent a system of 2N equations for 2N unknown functions:

x∗(t∗)≡ (x∗
1(t

∗), x∗
2(t

∗), . . . , x∗
N(t

∗)), f ∗(t∗)≡ (f ∗
1 (t

∗), f ∗
2 (t

∗), . . . , f ∗
N(t

∗)). (2.7)

These equations contain three characteristic lengths: distance L∗ between neighbouring
spheres, radius R∗ of spheres, and amplitude λ∗ of arm oscillations; the characteristic
time scale is T∗:

R∗ ≡

N∑

i=1

R∗
i /N, L∗ ≡

N∑

α=1

L∗
α/N, λ∗ ≡

N∑

α=1

max l̃∗α/N, T∗ ≡ 1/ω∗. (2.8)

The dimension of κ∗ can be eliminated from the equations by division of (2.1) by
κ∗, hence it does not play any role in scaling. We choose dimensionless variables and
small parameters as

x∗ = L∗x, R∗
i = R∗Ri, l̃∗α = λ∗̃lα, t∗ = T∗t, f ∗

i = 6πηR∗L∗fi/T
∗; (2.9)

ε ≡ λ∗/L∗ ≪ 1, δ ≡ 3R∗/(2L∗)≪ 1. (2.10)

Then the dimensionless form of (2.1)–(2.6) is

Rixit − δ
∑

k 6=i

Rikxkt/lik = fi, lik = Lik + ε̃lik, (2.11)

xα+1 − xα = lα, (2.12)∑

i

fi = f · I = 0, I ≡ (1, 1, . . . , 1), (2.13)

where Rik ≡ RiRk, subscript t stands for d/dt,

lik ≡

k−1∑

n=i

ln for k > i + 1 with lki = lik otherwise, (2.14)

and definitions for Lik and l̃ik similar to (2.14) (for example, L13 = L31 = L1 + L2 etc.).
Equation (2.11) can be rewritten in (N × N)-matrix form:

Axt = f or

N∑

k=1

Aikxkt = fi, (2.15)

A = Aik =

{
Ri for i = k,

−δRik/lik for i 6= k.
(2.16)

3. Two-time method and asymptotic procedure

3.1. Functions and notation

The following dimensionless notation and definitions are in use.

(i) s and τ denote slow time and fast time; subscripts s and τ stand for related partial
derivatives.

(ii) A dimensionless function, say G = G(s, τ ), belongs to class I if G = O(1) and
all partial s- and τ -derivatives of G (required for our consideration) are also O(1).
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In this paper all functions belong to class I , while all small parameters appear as
explicit multipliers.

(iii) We consider only functions that are periodic in τ {G ∈ P : G(s, τ )= G(s, τ+2π)},
where s-dependence is not specified. Hence, all functions considered below belong
to P

⋂
I .

(iv) For arbitrary G ∈ P the averaging operation is

〈G 〉 ≡
1

2π

∫ τ0+2π

τ0

G(s, τ ) dτ ≡ G(s), ∀τ0. (3.1)

(v) The tilde-functions (or purely oscillating functions) represent a special case of

P-functions with zero average 〈G̃ 〉 = 0. The bar-functions (or mean-functions)

G = G(s) do not depend on τ . A unique decomposition G = G + G̃ is valid.

3.2. Asymptotic procedure

The ε-dependence of lik (2.11) leads to the decomposition of matrix A (2.16) as a
series in ε

A = B0 + εδÃ′
0 + · · · , B0 ≡ A0 + δA1, (3.2)

A0 ≡ diag{R1,R2, . . . ,RN}, Ã
′
0 ≡

{
0 for i = k,

Rik̃lik/L
2
ik for i 6= k,

(3.3)

where we do not present the expression for A1 since it does not affect the final answer.

In double series (with small parameters ε and δ) matrices A0, A1 and Ã
′
0 appear in the

terms of orders ε0δ0, ε0δ1, and ε1δ1. The introduction of fast time variable τ and slow
time variable s represents a crucial step in our asymptotic procedure. We choose

τ = t, s = ε2t. (3.4)

This choice can be justified by the same distinguished limit arguments as in
Vladimirov (2012a). Here we present this choice without proof; however the most
important part of this proof (that this choice leads to a valid asymptotic procedure) is
given and used below. After the use of the chain rule

d/dt = ∂/∂τ + ε2∂/∂s (3.5)

we accept (temporarily) that τ and s represent two independent variables. The
substitution of (3.5) and (3.2) into (2.15) gives its two-time form:

(B0 + εδÃ′
0 + · · · )(xτ + ε2xs)= f . (3.6)

Unknown functions are taken as regular series:

x(τ, s)= x0(s)+ εx1(τ, s)+ · · · , f (τ, s)= f0(τ, s)+ εf1(τ, s)+ · · · , (3.7)

where x̃0 ≡ 0, which means that long distances of self-swimming are caused by small
oscillations: |x0| ≫ |εx̃1(τ, s)|.

3.3. Successive approximations

The successive approximations of (3.6), (3.7) yield
terms of order ε0 = 1 : f0 ≡ 0;
terms of order ε1 : B0x0τ = f1; its average gives f 1 ≡ 0 and the oscillating part is

B0x̃1τ = f̃1; (3.8)
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terms of order ε2 : B0x̃2τ + δÃ′
0x̃1τ + B0x0s = f2; its averaged part is

B0x0s + δ〈Ã′
0x̃1τ 〉 = f 2. (3.9)

Force f 2 can be excluded from (3.9), (2.13):

I · B0x0s + δI · 〈Ã′
0x̃1τ 〉 = 0. (3.10)

The averaged self-propulsion motion means that the rate of change is x0is = X0s with
the same function X0(s) for all spheres; therefore we write x0s = X0sI . Hence, (3.10)
gives

X0s = −δ
I ·

〈
Ã

′
0x̃1τ

〉

I · A0I
(3.11)

where in the denominator matrix B0 is replaced with A0, since we consider only the
main (linear in δ) term in (3.11). Expression (3.11) still contains unknown functions
x̃1τ which can be determined from (3.8) with the use of constraints (2.12), (2.13).
Indeed, (3.8) (with the terms required for linear-in-δ precision in (3.11)) gives

x̃1τ = (A0)
−1

f̃1 ≡ g̃, g̃ = (g̃1, g̃2, . . . , g̃N), (3.12)

g̃i ≡ f̃1i/Ri, (A0)
−1

= diag{1/R1, 1/R2, . . . , 1/RN}. (3.13)

One can see that (3.12), (2.12) yield x̃α+1,τ − x̃α,τ = g̃α+1 − g̃α = l̃ατ , while (2.13) leads
to
∑

iRig̃i = 0. Both restrictions can be written with the use of N × N constraint matrix
C:

Cg̃ = l̃τ , C ≡




−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · −1 1

R1 R2 R3 · · · RN−1 RN



, l̃ ≡




l̃1

l̃2

· · ·

l̃N−1

0



. (3.14)

The substitution of its inverse form

x̃1τ = C
−1̃lτ (3.15)

into (3.11) yields

X0s = −
δ

ρ
I ·

〈
Ã

′
0C

−1̃lτ

〉
(3.16)

where

(−1)N+1 ρC
−1 ≡




ρ1 − ρ ρ2 − ρ ρ3 − ρ · · · ρN−1 − ρ 1

ρ1 ρ2 − ρ ρ3 − ρ · · · ρN−1 − ρ 1

ρ1 ρ2 ρ3 − ρ · · · ρN−1 − ρ 1

· · · · · · · · · · · · · · · · · ·

ρ1 ρ2 ρ3 · · · ρN−1 − ρ 1

ρ1 ρ2 ρ3 · · · ρN−1 1




, (3.17)

ρk ≡

k∑

i=1

Ri, k > 1; ρ ≡ ρN, I · A0I = ρ. (3.18)
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The expression for inverse matrix (3.17) can be checked by direct calculations of
product C

−1
C; these calculations become particularly simple if the matrix on the

right-hand side of (3.17) is decomposed into two matrices: one containing all the ρ,
and another with identical rows (ρ1, ρ2, ρ3, . . . , ρN−1, 1). It is worth emphasizing that
the analytic procedure used is especially simple, since in order to calculate self-
propulsion velocity (3.11) we only need to know the main approximation x̃1 for
mutual oscillations of spheres; this approximation is completely described by simple
equations (3.12), (3.15).

4. Self-propulsion velocity

One can see from (3.16) that X0s = I · xs/N = O(δ). Hence, the order of magnitude
of the dimensionless physical velocity is

V0 ≡ I · xt/N = ε2X0s = O(ε2δ). (4.1)

The substitution of Ã
′
0 (3.2) and C

−1 (3.17) into (3.16) and subsequent algebraic
transformations lead to

V0 =
ε2δ

ρ2

∑

i<k<l

Gikl, (4.2)

Gikl ≡ 2RiRkRl

(
1

L2
ik

+
1

L2
kl

−
1

L2
il

)
〈̃lik̃lklτ 〉, (4.3)

where the sum (4.2) is taken over all possible triplets (i, k, l) : 1 6 i < k < l 6 N.

In (4.3) one can also take 2〈̃lik̃lklτ 〉 = 〈̃lik̃lklτ − l̃ikτ l̃kl〉, which could be proved using
integration by parts. The formulae (4.2), (4.3) have been obtained for N = 3, 4, 5
by explicit analytical calculations, and for any N by the method of mathematical
induction. These calculations are straightforward but rather too cumbersome to be
presented here. However, as soon as (4.2) and (4.3) are known, they can be verified
by separate calculations of all terms proportional to 1/L2

ik for each particular pair

i, k. For example, for i = 1, k = 2 the relevant part of matrix Ã
′
0 ≡ Ã′

ik (3.2) contains

only Ã′
12 = Ã′

21 = R12̃l1/L
2
12, while all other components are zero. The related part of

(3.16) can be easily calculated; it leads to the same expression as the corresponding
extraction from (4.2), (4.3), which in this case contains only (N − 2) terms with
l = 3, 4, . . . ,N.

The number of terms/triplets in (4.2) rapidly increases with N: for a three-
sphere swimmer the sum (4.2) contains the only triplet, for a four-sphere swimmer
there are four triplets, for a five-sphere swimmer 10 triplets, while for a ten-
sphere swimmer the number of triplets grows to 120. In general (4.2) contains
N!/[(N − 3)!3!] triplets. It is important to emphasize that (4.2) contains all triplets
in a micro-robot, not only triplets of the neighbouring spheres. If one takes into
account only the triplets of the neighbouring spheres (say, (1, 2, 3) and (2, 3, 4)
out of (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4) for N = 4), then they give only the rough

estimation of V0, which can be misleading, since different correlations 〈̃lα̃lβτ 〉 can have
different values (see below).

Function G123 (4.3) was introduced by Golestanian & Ajdari (2008) and studied
by Alouges et al. (2008), Alexander et al. (2009) and Golestanian & Ajdari (2009)
in the context of a three-sphere micro-robot. We call Gikl a Golestanian function.
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Formulae (3.16), (4.2), (4.3) give the main result of this paper: the self-swimming
velocity of an N-sphere micro-robot represents a linear combination of Golestanian
functions for all available triplets.

5. Examples

The explicit formulae (4.2), (4.3) can be used to obtain physically interesting results
(optimal strokes, required power, related forces, efficiency, etc.) for various N-sphere
swimmers. We briefly address some of these questions below. In all these examples,
we consider only homogeneous micro-robots, consisting of equal spheres Ri = 1 and of
equal arms Lα = 1.

The scalar product of the main equation (2.11) and xt leads to the average power of
a micro-robot

P ≡ 〈f · xt〉 = ε2〈x̃2
1τ 〉 + O(ε2δ), (5.1)

where we have taken into account that xt = εx̃1τ + O(ε2), which follows from (3.7)

and (3.5). Another expression, P s = ρV
2

0, represents the power which is required

to drag a micro-robot with velocity V0 in the absence of its oscillations (when the
main approximation for the dimensionless Stokes’s friction force is −ρV0). Lighthill’s

swimming efficiency (see Becker et al. 2003) is the ratio E ≡ P s/P , which in our
case is

E ≃
ε2δ2

ρ3

(
∑

i<k<l

Gikl

)2

〈x̃2
1τ 〉

, (5.2)

where x̃1τ is determined by (3.15).
For a three-sphere swimmer, (4.2), (4.3) yield

V0 =
ε2δ

9
G123, G123 =

7

2

〈
l̃1̃l2τ

〉
. (5.3)

Further simplification can be achieved if we accept that oscillations of both arms are
harmonic and have equal amplitudes:

lα = cos(τ + ϕα) then 2〈̃l1̃l2τ 〉 = sin(ϕ1 − ϕ2) (5.4)

with constant phases 0 6 ϕα 6 2π. The substitution of (5.4) into (5.3) and (5.2) gives

V0 = ε2δ
7

36
sinφ, E =

(
7εδ

12

)2
sin2φ

2 + cosφ
, φ ≡ ϕ1 − ϕ1 (5.5)

which shows that their maxima take place at different φ:

max V0 ≃ 0.19ε2δ at φ = π/2 ≃ 1.57, (5.6)

max E = 0.182ε2δ2 at φ = 1.80. (5.7)

Similar consideration for a four-sphere swimmer yields

V0 =
ε2δ

16
(G123 + G124 + G134 + G234), (5.8)
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which (with the use of (5.4)) leads to

V0 = ε2δ
7

64
S4(φ, ψ), S4(φ, ψ)≡ (1 + C)(sinφ + sinψ)+ 2C sin(φ + ψ), (5.9)

where C = 41/63 ≃ 0.65, φ ≡ ϕ1 − ϕ2, and ψ ≡ ϕ2 − ϕ3. Then (5.2) can be expressed
as

E =

(
7εδ

16

)2
S 2

4 (φ, ψ)

5 + 2 cosφ + 2 cosψ + cos(φ + ψ)
. (5.10)

The computations show that

max V0 ≃ 0.44ε2δ at φ ≃ ψ ≃ 1.10, (5.11)

max E ≃ 0.55ε2δ2 at φ ≃ ψ ≃ 1.38. (5.12)

For a five-sphere swimmer, one can write

V0 =
ε2δ

25
(G123 + G124 + G125 + G134 + G135 + G145 + G234 + G235 + G245 + G345),

(5.13)

which leads to

V0 =
ε2δ

50
S5, S5 ≡ (4a + b + c)(sinφ + sinχ)+ (5a + 2b) sinψ

+ (a + 2b + c)[sin(φ + ψ)+ sin(ψ + χ)] + (a + 2c) sin(φ + ψ + χ); (5.14)

a = 7/8, b = 41/18, c = 151/72;

φ ≡ ϕ1 − ϕ2, ψ ≡ ϕ2 − ϕ3, χ ≡ ϕ3 − ϕ4.

}
(5.15)

Then (5.2) takes the form

E =

(
εδ

10

)2
S 2

5

P5

, P5 ≡ 10 + 3 cosφ + 4 cosψ + 3 cosχ

+ 2 cos(φ + ψ)+ 2 cos(ψ + χ)+ cos(φ + ψ + χ). (5.16)

The computations give

max V0 ≃ 0.77ε2δ at φ ≃ χ ≃ 0.86, ψ ≃ 0.83, (5.17)

max E ≃ 1.00ε2δ2 at φ ≃ χ ≃ 1.14, ψ ≃ 1.08. (5.18)

The numerical results (5.6), (5.7), (5.11), (5.12), (5.16)–(5.12) show that both max V0

and max E grow when N increases. For reasonably small values of parameters (say,
ε ≃ 0.2 and δ ≃ 0.2) we have max E ∼ 0.1%, hence the efficiency of the micro-robots
considered is low.

In order to compare the velocities of micro-robots and micro-organisms we use the
dimensional variables, in which max V

∗

0 ∼ ω∗L∗ε2δ; this shows that (for typical stroke
frequency of self-swimming micro-organisms, which is about several Hz, see Pedley &
Kessler 1987; Vladimirov et al. 2004; Pedley 2009; Polin et al. 2009) a micro-robot
can move itself with the speed ∼10% of its own size per second. This estimation is
20–40 times lower than a similar value for natural micro-swimmers, see Vladimirov
et al. (2004); it again shows the low efficiency of the micro-robots considered. If we
suggest that function max V0(N) grows with a similar rate (as has been calculated for
N = 3, 4, 5), then micro-robots with N = 7–10 could swim with speed similar to that
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of micro-organisms. This estimation depends on the type of extrapolation, which could
be linear or exponential.

6. Discussion

Our approach (based on the two-timing method and a distinguished limit) is
technically different from all previous methods employed in studies of micro-robots.
The possibility deriving explicit formulae for an N-sphere micro-robot shows its
strength and analytical simplicity. The version of the two-timing method used has
been developed in Vladimirov (2005, 2008, 2012a).

One can see that V0 = O(ε2δ) (4.2), which coincides with the result by Golestanian
& Ajdari (2008, 2009) for a three-sphere swimmer. At the same time our choice of
slow time s = ε2t (3.5) agrees with the classical studies of self-propulsion for low
Reynolds numbers, see Taylor (1951), Blake (1971) and Childress (1981), as well as
geometric studies of Shapere & Wilczek (1989).

The ‘triplet’ structure of a formula for self-propulsion velocity (4.2) can be expected
(without any calculations) on the basis of the linearity of the original problem for
Stokes’s equations as well as the known result for N = 3.

In our examples, all arms move harmonically (5.4); this does not provide the

maximum of V0. For example, for a three-sphere robot V0 ∼ 〈̃l1̃l2τ 〉 (5.3). Since l̃1

and l̃2τ represent mutually independent functions that are 2π-periodic in τ , it is clear
that the maximum of this correlation appears when these functions coincide or are

proportional to each other. If max〈̃l1̃l2τ 〉 is calculated under the constraint of fixed
amplitudes (which is natural for realistic experimental devices of variable arm lengths),
then it can be found that the theoretical maximum of this correlation is 2/π, which
is higher than 1/2 for harmonic oscillations (5.4). This improvement will increase

with the growth of N. In particular, non-harmonic periodic l̃α(τ ), providing optimal
strokes, had been discovered in computational studies of four-sphere micro-robots by
Alexander et al. (2009).

In our study we construct an asymptotic procedure with two small parameters:
ε → 0 and δ → 0. Such a setting usually requires the consideration of different
asymptotic paths on the plane (ε, δ) when, say δ = δ(ε). We can avoid such
considerations, since small parameters appear (in the main order) as a product ε2δ.

The mathematical justification of the presented results can be performed as in
Vladimirov (2010, 2011) by the estimation of an error in the original equation. One
can also derive the higher approximations of V0, as has been done by Vladimirov
(2010, 2011) for different cases. The higher approximations can be useful for studies
of motion with V0 ≡ 0.

In the literature quoted in the Introduction one can find interesting discussions about
the physical mechanism of self-propulsion of micro-robots. A clear illustration of this
mechanism is given by Avron, Kenneth & Oaknin (2005). At the same time, one
can see that the self-propulsion of deformable bodies in an inviscid fluid represents
a classical topic, e.g. Saffman (1967) and Kanso & Newton (2009). It is interesting
to note that the qualitative explanations of self-propulsion in an inviscid fluid and in
self-propulsion in a creeping flow could be seen as the same if one replaces the term
virtual mass (for an inviscid fluid) by viscous drag (for creeping flows).

Studies of different micro-robots by the same method as used in this paper can be
found in Vladimirov (2012b,c). In Vladimirov (2012d) the same method resulted in a
new asymptotic model and a new equation (the acoustic-drift equation) for oscillating
flows in acoustics.
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