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Automatic processing of biomedical documents is made difficult by the fact that many of the terms they
contain are ambiguous. Word Sense Disambiguation (WSD) systems attempt to resolve these ambiguities
and identify the correct meaning. However, the published literature on WSD systems for biomedical doc-
uments report considerable differences in performance for different terms. The development of WSD sys-
tems is often expensive with respect to acquiring the necessary training data. It would therefore be useful

ﬁeyworldi: > ) to be able to predict in advance which terms WSD systems are likely to perform well or badly on.
Ni;ura anguage frocessing This paper explores various methods for estimating the performance of WSD systems on a wide range

Word Sense Disambiguation .Of ambiguous biomgdical terms (inclqding ambiguous words/phra.ses and abbreviations). The methods
WSD include both supervised and unsupervised approaches. The supervised approaches make use of informa-
tion from labeled training data while the unsupervised ones rely on the UMLS Metathesaurus. The
approaches are evaluated by comparing their predictions about how difficult disambiguation will be
for ambiguous terms against the output of two WSD systems. We find the supervised methods are the
best predictors of WSD difficulty, but are limited by their dependence on labeled training data. The unsu-

Ambiguity
Biomedical documents

pervised methods all perform well in some situations and can be applied more widely.
© 2013 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Word Sense Disambiguation (WSD) is the task of automatically
identifying the appropriate sense of an ambiguous word based
on the context in which the word is used. For example, the term
cold could refer to the temperature or the common cold, depending
on how the word is used in the sentence. Automatically identifying
the intended sense of ambiguous words improves the performance
of biomedical and clinical applications such as medical coding and
indexing; applications that are becoming essential tasks due to the
growing amount of information available to researchers.

A wide range of approaches have been applied to the problem of
WSD in biomedical and clinical documents [1-7]. Accurate WSD
can improve the performance of biomedical text processing appli-
cations, such as summarization [8], but inaccurate WSD has been
shown to reduce an application’s overall performance [9]. The dis-
ambiguation of individual terms is important since some of those
terms are more important than others when determining whether
there is any overall improvement of the system [8]. The
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importance of WSD is likely to depend on the application and re-
search question. For example, Weeber et al. [10] found that it
was necessary to resolve the ambiguity in the abbreviation “MG”
(which can mean “magnesium” or “milligram”) in order to repli-
cate the connection between migraine and magnesium identified
by Swanson [11].

It is now possible to perform very accurate disambiguation for
some types of ambiguity, such as abbreviations [12]. However,
there is considerable difference in the performance of WSD sys-
tems for different ambiguities. For example, Humphrey et al. [3] re-
port that the performance of their unsupervised WSD approach
varies between 100% (for terms such as culture and determination)
and 6% (for fluid). Consequently, it is important to determine the
accuracy of a WSD system for the ambiguities of interest to get
an idea of whether it will be useful for the overall application,
and if so, which terms should be disambiguated.

Historically, supervised machine learning approaches have been
shown to disambiguate terms with a higher degree of accuracy
than unsupervised methods. The disadvantage to supervised meth-
ods is that they require manually annotated training data for each
term that needs to be disambiguated. However, manual annotation
is an expensive, difficult and time-consuming process which is not
practical to apply on a large scale [13]. To avoid this problem,
techniques for automatically labeling terms with senses have

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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been developed [12,14] but these can only be applied to limited
types of ambiguous terms, such as abbreviations and terms which
occur with different MeSH codes. Therefore, it would be useful to
be able to predict the difficulty of a particular term in order to
determine whether applying WSD would be of benefit to the over-
all system.

This paper explores approaches to estimating the difficulty of
performing WSD on ambiguities found in biomedical documents.
By difficulty we mean the WSD performance that can be obtained
for the ambiguity since, in practise, performance is the most
important factor in determining whether applying WSD to a partic-
ular ambiguity is likely to be useful. Ambiguities for which low
WSD performance is obtained are considered to be difficult to dis-
ambiguate while those for which the performance is high are con-
sidered to be easy to disambiguate.

Some of the methods applied in this paper are supervised since
they are based on information derived from a corpus containing
examples of the ambiguous term labeled with the correct sense.
Other methods do not require this resource and only require infor-
mation about the number of possible senses for each ambiguous
term which is normally obtained from a knowledge source, such
as the UMLS Metathesaurus (see Section 2.1.1).

Section 2 provides background information on relevant re-
sources and techniques for computing similarity or relatedness in
the biomedical domain. Section 3 describes a range of methods
for estimating WSD difficulty, including ones that have been used
previously and an unsupervised method based on the similarity/
relatedness measures described in Section 2. Experiments to eval-
uate these are described in Section 4 and their results in Section 5.
Finally, conclusions are presented in Section 6.

2. Resources and background
2.1. Resources

This section presents the resources that are used in the experi-
ments described later in the paper. In particular, they are used by
the similarity and relatedness measures described in Sections 2.2.1
and 2.2.2.

2.1.1. Unified Medical Language System

The Unified Medical Language System (UMLS) is a repository
that stores a number of distinct biomedical and clinical re-
sources. One such resource, used in this work, is the Metathe-
saurus [15].

The Metathesaurus contains biomedical and clinical concepts
from over 100 disparate terminology sources that have been
semi-automatically integrated into a single resource containing a
wide range of biomedical and clinical information. For example,
it contains the Systematized Nomenclature of Medicine-Clinical
Terms (SNOMED CT), which is a comprehensive clinical terminol-
ogy created for the electronic exchange of clinical health informa-
tion, the Foundational Model of Anatomy (FMA), which is an
ontology of anatomical concepts created specifically for biomedical
and clinical research, and MedlinePlus Health Topics, which is a
terminology source containing health related concepts created
specifically for consumers of health services.

The concepts in these sources can overlap. For example, the
concept Cold Temperature exists in both SNOMED CT and MeSH.
The Metathesaurus assigns the synonymous concepts from the var-
ious sources Concept Unique Identifiers (CUIs). Thus both the Cold
Temperature concepts in SNOMED CT and MeSH are assigned the
same CUI (C0009264). This allows multiple sources in the Metathe-
saurus to be treated as a single resource.

Some sources in the Metathesaurus contain additional informa-
tion such as a concept’s synonyms, its definition,' and its related
concepts. The Metathesaurus contains a number of relations. The
two main hierarchical relations are: the parent/child (PAR/CHD)
and broader/narrower (RB/RN) relations. A parent/child relation is
a hierarchical relation between two concepts that has been explicitly
defined in one of the sources. For example, the concept Cold Temper-
ature has an is-a relation with the concept Freezing in MeSH. This
relation is carried forward to the CUI level creating a parent/child
relations between the CUIs C0009264 [Cold Temperature] and
C0016701 [Freezing] in the Metathesaurus. A broader/narrower rela-
tion is a hierarchical relation that does not explicitly come from a
source but is created by the UMLS editors. For this work, we use
the parent/child relations.

2.1.2. MEDLINE

MEDLINE? is a bibliographic database that currently contains
over 22 million citations to journal articles in the biomedical domain
and is maintained by the National Library of Medicine (NLM). The
2009 MEDLINE Baseline Repository> encompasses approximately
5200 journals starting from 1948 and contains 17,764,826 citations;
consisting of 2,490,567 unique unigrams (single words) and
39,225,736 unique bigrams (two-word sequences). The majority of
the publications are scholarly journals but a small number of other
sources such as newspapers and magazines are included.

2.1.3. UMLSonMedline

UMLSonMedline, created by NLM, consists of concepts from the
2009AB UMLS and the number of times they occurred in a snap-
shot of MEDLINE taken on 12/01/2009. The frequency counts were
obtained by using the Essie Search Engine [16] which queried
MEDLINE with normalized strings from the 2009AB MRCONSO ta-
ble in the UMLS. The frequency of a CUI was obtained by aggregat-
ing the frequency counts of the terms associated with the CUI to
provide a rough estimate of its frequency.

2.1.4. Medical Subject Headings (MeSH)

The Medical Subject Headings (MeSH) Thesaurus ([17]) is the
NLM'’s controlled vocabulary thesaurus consisting of biomedical
and health related terms/concepts created for the purpose of
indexing articles from MEDLINE. Each MEDLINE citation is associ-
ated with a set of manually annotated MeSH terms that describe
the content of the article. The MeSH terms are organized in a hier-
archical structure in order to permit searching at various levels of
specificity. The 2013 version contains 26,853 terms organized into
11 different hierarchies.*

2.2. Measures of similarity and relatedness

This section described measures of similarity and relatedness
between biomedical concepts that have been previously explored
in the literature.

2.2.1. Similarity measures

Existing semantic similarity measures can be categorized into
two groups: path-based and information content (IC)-based.
Path-based measures use information about the number of nodes
between concepts in a hierarchy, whereas IC-based measures
incorporate the probability of the concept occurring in a corpus
of text.

Not all concepts in the UMLS have a definition.
http://www.ncbi.nlm.nih.gov/pubmed,.
http://mbr.nlm.nih.gov/.
http://www.nlm.nih.gov/pubs/factsheets/mesh.html.
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Path-based Similarity Measures Rada et al. [18] introduce the
conceptual distance measure which is the length of the shortest
path between two concepts (c1 and c2) in MeSH using RB/RN rela-
tions from the UMLS. Caviedes and Cimino [19] later adapted this
measure using the PAR/CHD relations in the UMLS.

Our first measure, path, is a modification of Caviedes and Cimi-
no’s approach. Similarity is defined as the reciprocal of the length
of the shortest path between the two concepts in the UMLS hierar-
chy. This is shown in Eq. (1), where path_length(c,,c) is the number
of nodes in the shortest path between c¢; and c;.

. 1 1
SiMpara (€1, €2) = path_length(cy, c3) (1)
Wu and Palmer [20] extend this measure by incorporating the
depth of the Least Common Subsumer (LCS). The LCS of a pair of
concepts is the lowest concept in the hierarchy which subsumes
that pair. In this measure, the similarity is twice the depth of the
two concepts LCS divided by the product of the depths of the indi-
vidual concepts as defined in Eq. (2), where depth is the number of
nodes between ¢ and the root node in the hierarchy.

2 + depth(Ics(cy, ¢2))

SiMMyup (€1, €2) = depth(c;) + depth(c,)

(2)

IC-based Similarity Measures Information content (IC) is for-
mally defined as the negative log of the probability of a concept
[21]. The probability of a concept, c, is obtained by summing the
number of times it or one of its descendants is seen in a corpus.
The concepts descendants are obtained from some concept hierar-
chy, such as one of those contained in the UMLS Metathesaurus.
Very general concepts have high probabilities since their descen-
dants are mentioned frequently and this leads to them having
low IC values. Conversely, specific concepts have low probabilities
and high IC values. Resnik [22] modified IC for use as a similarity
measure. He defined the similarity of two concepts to be the IC
of their LCS, see Eq. (3).

Simys(€1, ¢2) = IC(Ies(cr, 62)) = —log(P(les(ca, c2))) (3)

Jiang and Conrath [23] and Lin [24] extended Resnik’s IC-based
measure by incorporating the IC of the individual concepts. Lin de-
fined the similarity between two concepts by taking the quotient
between twice the IC of the concepts’ LCS and the sum of the IC
of the two concepts as shown in Eq. (4). This is similar to the mea-
sure proposed by Wu and Palmer; differing in the use of IC rather
than the depth of the concepts.

2 +1C(Ies(cr, ¢2))

Simyin(€1,C2) = IC(q) +1C(cz) 3

Jiang and Conrath defined the distance between two concepts to
be the sum of the IC of the two concepts minus twice the IC of the
concepts’ LCS. This measure is often modified to return a similarity
score by taking the reciprocal of the distance as shown in Eq. (5).

1

SiMjen (€1, C2) = IC(c;) +1C(cz) — 2 *IC(Ies(cq, ¢z)) )

2.2.2. Relatedness measures

Lesk [25] introduces a measure that determines the relatedness
between two concepts by counting the number of shared terms in
their definitions. An overlap is the longest sequence of one or more
consecutive words that occur in both definitions. When imple-
menting this measure in WordNet, Banerjee and Pedersen [26]
found that the definitions were short, and did not contain enough
overlaps to distinguish between multiple concepts. They extended
this measure by including the definition of related concepts in
WordNet.

Patwardhan and Pedersen [27] extend the measure proposed by
Lesk using second-order co-occurrence vectors. In this method, a
vector is created for each word in the concepts definition contain-
ing words that co-occur with it in a corpus. These word vectors are
average to create a single co-occurrence vector for the concept. The
similarity between the concepts is calculated by taking the cosine
between the concepts second-order vectors.

3. Estimating WSD difficulty
3.1. Previous approaches

There has been little previous work on estimating the difficulty
of WSD. Kilgarriff and Rosenzweig [28] analysed the difficulty of
disambiguating terms used in the first SemEval WSD evaluation
exercise [29] and found the entropy of the sense distribution to
work well. This is calculated as follows:

Entropy(S) = —iPr(si)logzPr(s,-) (6)

i=1

where S ={s1, s, ... sy} is the set of possible senses for some ambig-
uous term and Pr (s;) the probability of sense S; obtained from a la-
beled corpus.

In domain-independent WSD the Most Frequent Sense (MFS) is
commonly used to indicate the difficulty of a particular term
[30,31]. MFS is simply the sense that is found most frequently in
a training corpus and is computed as follows:

MFS(S) = arg maxP(s;) (7)

MEFS is often used as a simple baseline for supervised WSD systems
[32]. Like entropy, MFS also requires labeled training data.

Both of these approaches are based on the distribution of senses
in text and the assumption behind them is that this information is
a useful predictor of the difficulty of disambiguating that term. For
example, consider an ambiguity where one of the senses is much
more likely to appear than the others. The ambiguity will probably
be easy to disambiguate, since always assigning the most probable
sense will lead to reasonable WSD performance.

Stevenson and Guo [33] applied entropy and MFS to analyse the
difficulty of automatically generating labeled WSD training data.
However they did not explore whether they could be used to deter-
mine the difficulty of WSD for particular terms.

Stevenson and Guo [33] also made use of additional measures.
One was the number of possible senses for the ambiguous term.
The advantages of this measure is that it is very simple to compute
and does not require any labeled training data. The intuition be-
hind this approach is that ambiguities with a large number of pos-
sible senses will be difficult to disambiguate, simply because of the
number of senses to choose from.

3.2. Pairwise similarity

Stevenson and Guo [33] also describe an approach that relies on
computing the average pairwise similarity between the possible
senses of ambiguous terms (see Section 2.2.1). Like counting the
number of possible senses, this approach also has the advantage
of not requiring any labeled training data.

The assumption behind this approach is that if the possible
meanings of an ambiguous term are similar then that term will
be more difficult to disambiguate than one where the meanings
are clearly distinct. This is motivated by previous work on manual
annotation of word senses which have shown that humans often
struggle to distinguish between closely related meanings [13,34].
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We extend this approach by considering the maximum simi-
larity between senses in addition to the average. Two metrics
were applied: mean similarity and maximum similarity. For the
mean similarity, the degree of similarity between the concepts
of each of the ambiguous word’s possible senses is computed
and combined by taking the mean of the similarities. This is
calculated as follows:

sim(s;, S;
Z{siﬁj}((g) (5i5)

() :

where S is the set of senses and sim(s;,s;) is the similarity between
two of these senses as determined by one of the measures described
in Section 2.2.

The maximum similarity measure is computed in a similar way.
However, instead of taking the mean of the pairwise similarities
the maximum is chosen:

mean_similarity(S) =

max_similarity(S) = argmax{si‘sj_k(g)sim(si,sj) 9)

3.3. Implementation

The 2009AB version of the Metathesaurus was used for the
experiments described in Section 4. The pairwise similarity ap-
proaches described in Section 3.2 are implemented using the
UMLS::Similarity package [35], a freely available open source Perl
package.’ Path information is obtained using the parent/child rela-
tions throughout the entire UMLS. The probabilities required by
the IC-based measures are generated using the UMLSonMedline
dataset. For the relatedness measures, the definition information is
obtained from the concept definitions, as well as the definitions of
its parent, child, narrower and broader relations, and its associated
terms.

3.4. Example

In this section, we step through an example using the ambigu-
ous term cold. In the UMLS, the possible senses for cold include
Temperature, Cold [C0009264], the Common Colds [C0009443],
or Chronic Obstructive Airways Disease [C0024117]; also referred
to as the acronym COLD (Chronic Obstructive Lung Disease).
Table 1 shows some of the UMLS Definitions for each of the above
senses and Fig. 1 shows the CUIs and paths between each of the
senses. The mean similarity for cold is calculated by first summing
the similarity scores of each combination of senses and dividing it
by its number of combinations. An example, using the path mea-
sure (see Section 2.2.1), is as follows:

wa (s )Sim(Xd’)

16

+ sim(C0009264,€0024117) +

mean similarity = sim(C0009264, C0009443)

sim(C0009443,C0024117)
3
2

=0.1574 (10)

0.1111+0.1111+0.25 0.4111
3 /3
2 2

5 http://search.cpan.org/dist/UMLS-Similarity/.

Table 1
Definitions of the possible senses of cold.

Term UMLS CUI

Temperature, C009264  An absence of warmth or heat or a temperature
Cold notably below an accustomed norm; Having
less heat energy than the object against which it
is compared; the absence of heat
Common €009443 A catarrhal disorder of the upper respiratory
Colds tract, which may be viral or a mixed infection. It
generally involves a runny nose, nasal
congestion, and sneezing
A chronic, irreversible obstruction of air flow
from the lungs. A disease of chronic diffuse
irreversible air-flow obstruction

Example UMLS Definitions

COLD C0024117

C1256741: Index
Medicus Descriptor

C0012674:
Diseases

C0079023:
Biological Sciences

C0035242: Respiratory
Tract Diseases

C2350446: Physical
Phenomena

|

€0039808:
Thermodynamics

C0035243: Respiratory I
Tract Infections C0039476:

C0600260: Lung Temperature
Diseases, Obstructive I

| €0024117: COLD |

Fig. 1. Relationship between three senses of the term cold in the UMLS (2009AB
version). Parent/child relations in the MeSH hierarchy are shown (e.g. C1256751
‘Topical descriptor’ is parent of C0012674 ‘Diseases’ and C2930671 ‘Phenomena and
Process’).

C0024115:
Lung diseases

€0009264:
Cold Temperature

€0009443:
Common colds

4. Evaluation

We evaluated the approaches by determining how well they
predict the accuracy of a WSD system on a set of ambiguous terms.
Two WSD systems were used in our experiments: one supervised
[36] (see Section 4.1.1) and one unsupervised [37] (see
Section 4.1.2).

The accuracy of each approach was determined by ranking the
terms using the approach and then comparing this with another
ranking based on the accuracy of the WSD system. We compared
the rankings using Spearman’s Rank Correlation (p). Spearman
measures the statistical dependence between two variables to as-
sesses how well the relationship between the rankings of the vari-
ables can be described using a monotonic function. Spearman’s
Rank Correlation was used rather than Pearson’s because Pearson’s
assumes that the relationship between the data is linear. We used
Fisher’s r-to-z transformation to calculate the significance between
the correlation results.

4.1. Word sense disambiguation

4.1.1. Supervised method
The supervised WSD system developed by Stevenson et al. [36]
combines linguistic and biomedical specific features in a Vector
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Space Model (|38]). A binary feature vector is created for each pos-
sible sense of the ambiguous term and the ambiguous term itself. A
range of features are used including local collocations, salient bi-
grams, unigrams and MeSH terms. Local collocations are bigrams
or trigrams containing the ambiguous term constructed from lem-
mas, word forms or part of speech tags. Salient bigrams are those
bigrams with a high log likelihood score. Unigrams are lemmas
of all content words in the sentence containing the ambiguous
term. MeSH terms are indexing terms that had been manually as-
signed to each abstract for the purpose of indexing (see Section 2).

The sense of an ambiguous term is determined by computing
the cosine between the vector representing the ambiguous term
each of the vectors representing the senses. The sense whose vec-
tor has the smallest angle between it and the ambiguous term’s
vector is chosen as its most likely sense.

4.1.2. Unsupervised method

We also used the unsupervised WSD system developed by
Mclnnes et al. [37]. In their method, a second-order co-occurrence
vector is created for each possible sense of the ambiguous term and
the ambiguous term itself. The appropriate sense of the term is
then determined by computing the cosine between the vector rep-
resenting the ambiguous term and each of the vectors representing
the sense. The sense whose vector has the smallest angle between
it and the ambiguous term’s vector is chosen as the most likely
sense.

The vector for a specific sense is created by first obtaining a tex-
tual description of the possible sense. This consists of its definition,
the definition of its parent/children and narrow/broader relations
and the terms associated with the sense from the UMLS. Second,
a word by word co-occurrence matrix is created where the rows
represent the content words in the description and the columns
represent words that co-occur with the words in the description
found in MEDLINE abstracts. Lastly, each word in the sense’s
description is replaced by its corresponding vector, as given in
the co-occurrence matrix. The average of these vectors constitutes
the second order co-occurrence vector used to represent the sense.
The second-order co-occurrence vector for the ambiguous term is
created in a similar fashion by using the words surrounding the
ambiguous term in the instance as its textual description.

4.2. Data

Evaluation was carried out using three data sets that include a
range of ambiguous terms and abbreviations found in biomedical
documents.

4.2.1. Abbreviation dataset

The “Abbrev” dataset® [39] contains examples of 300 ambiguous
abbreviations found in MEDLINE that were initially presented by Liu
et al. [40]. The data set was automatically re-created by identifying
the abbreviations and long-forms in MEDLINE abstracts and replac-
ing the long-form in the abstract with its abbreviation [39]. The
abbreviations long-forms were manually mapped to concepts in
the UMLS.

4.2.2. NLM-WSD dataset

The National Library of Medicine’s Word Sense Disambiguation
(NLM-WSD) dataset’ contains 50 frequently occurring ambiguous
words from the 1998 MEDLINE baseline [41]. Each ambiguous word
in the NLM-WSD dataset contains 100 ambiguous instances ran-
domly selected from the 1998 abstracts totaling to 5000 instances.

8 http://nlp.shef.ac.uk/BioWSD/downloads/corpora.
7 The NLM-WSD and MSH-WSD (Section 4.2.3) datasets are available from http://
wsd.nlm.nih.gov.

Table 2
Corpus statistics and overall disambiguation accuracies of WSD systems.

Dataset WSD Corpus statistics
Unsupervised Supervised # Senses MFS Entropy
NLM-WSD  0.52 0.91 2.3 0.78 045
Abbrev 0.91 0.98 2.6 070  0.82
MSH-WSD  0.78 0.97 2.1 0.54  1.00
Combined 0.75 0.96 2.10 0.67  0.89

The instances were manually disambiguated by 11 evaluators who
assigned the ambiguous word to a concept in the UMLS (CUI) or as-
signed the concept as “None” if none of the possible concepts de-
scribed the term.

4.2.3. MSH-WSD dataset

The National Library of Medicine’s MSH Word Sense Disambig-
uation (MSH-WSD) dataset® contains 203 ambiguous terms and
abbreviations from the 2010 MEDLINE baseline [14]. Each target
word contains approximately 187 instances, has 2.08 possible senses
and has a 54.5% majority sense. Out of 203 target words, 106 are
terms, 88 are abbreviations, and 9 have possible senses that are both
abbreviations and terms. For example, the target word cold has the
abbreviation Chronic Obstructive Airway Disease as a possible sense,
as well as the term Cold Temperature. The total number of instances
is 37,388.

5. Results and discussion
5.1. WSD performance and corpus statistics

Table 2 shows the disambiguation accuracy of the WSD sys-
tems for each of the datasets (Abbrev, NLM-WSD and MSH-
WSD) and their combination (Combine). The results show that
overall the supervised system obtains higher disambiguation
accuracies than the unsupervised one, which is consistent with
previous results, for example [4-7]. They also show that the accu-
racy on the Abbrev dataset is higher than the MSH-WSD or NLM-
WSD datasets. We believe this is because the Abbrev dataset con-
tains only abbreviations, which have a more coarse grained dis-
tinction between their senses. We also see this between the
MSH-WSD and NLM-WSD datasets. NLM-WSD primarily contains
terms where, as mentioned above, MSH-WSD contains a mix of
terms and abbreviations. This explains why the WSD systems ob-
tain a higher disambiguation accuracy on the MSH-WSD dataset
than the NLM-WSD dataset.

Table 2 also shows statistics for all three corpora, the average
number of senses per ambiguous term (# Senses), the average
MES and the average entropy. There is not much variation in the
average number of senses, with the number varying between 2.1
for MSH-WSD and 2.6 for NLM-WSD. The NLM-WSD dataset has
the highest MFS and lowest entropy of the three corpora while
the opposite is true for MSH-WSD. The differences in these statis-
tics are due to the way in which these datasets were constructed.
The NLM-WSD and Abbrev dataset use the sense distributions that
are found in corpora which are often highly skewed. For example,
all of the instances containing the term association in the NLM-
WSD dataset are annotated with the same sense. However, the
MSH-WSD dataset was created by selecting roughly the same
number of examples of each possible sense. Consequently informa-
tion about the sense distribution is less useful for MSH-WSD than
it is for the other datasets.

8 Available from http://wsd.nlm.nih.gov.


http://nlp.shef.ac.uk/BioWSD/downloads/corpora
http://wsd.nlm.nih.gov
http://wsd.nlm.nih.gov
http://wsd.nlm.nih.gov

88 B.T. McInnes, M. Stevenson/Journal of Biomedical Informatics 47 (2014) 83-90

Table 3
Correlations with WSD accuracy.
Dataset Measure WSD
Unsupervised Supervised
NLM-WSD # Senses -0.30 -0.17
MFS 0.15 0.89
Entropy -0.17 —0.88
Abbr # Senses —0.46 -0.14
MFS 0.18 -0.57
Entropy -0.33 0.32
MSH-WSD # Senses —-0.05 —-0.06
MFS 0.11 0.14
Entropy 0.11 0.17
Combined # Senses -0.11 -0.11
MFS —-0.05 0.03
Entropy 0.03 —0.09

5.2. Results for previous approaches

Table 3 shows the Spearman’s Rank Correlations obtained when
the WSD difficulty measures presented in Section 3.1 were com-
pared against the WSD systems.

Overall these measures are better at predicting the accuracy of
supervised WSD systems than unsupervised ones. For the NLM-
WSD dataset there are high correlations between the accuracy of
supervised WSD and two statistics (MFS and entropy). However,
this is not surprising since both of these measures make use of
information about the distribution of senses in labeled data, and
this is the same data that is used to train the WSD system. Corre-
lations using these measures are lower for the other two corpora,
which have more balanced sense distributions.

Although the number of senses is not a good indicator of super-
vised WSD accuracy, it is better than the other measures at predict-
ing unsupervised WSD accuracy on the NLM-WSD and Abbrev
datasets. The MFS and entropy measures are not effective at pre-
dicting unsupervised WSD accuracy, presumably because the
unsupervised WSD approaches do not make use of labeled training
data.

This analysis suggests that measures such as MFS and entropy
are strong indicators of WSD accuracy under some conditions,
namely when the WSD system is supervised and the distribution
of senses is skewed. However, both of these measures rely on la-
beled training data. Consequently they are not useful for predicting
the accuracy of supervised WSD systems since the labeled data
they require could simply be used to train a WSD model and the
accuracy computed directly.

5.3. Results for similarity and relatedness measures

The pairwise measures (Section 3.2) were evaluated using the
measures of similarity and relatedness described in Section 2.2.

Table 4
Spearman’s rank correlation results over the combined set.
Category Measure Unsupervised Supervised
Mean Max Mean Max
Path-based path -0.16 -0.19 -0.21 -0.24
wup —-0.09 -0.11 -0.05 -0.07
IC-based res -0.10 -0.12 -0.17 -0.18
jen -0.18 -0.19 -0.27 -0.27
lin -0.15 -0.16 -0.23 -0.23
Relatedness a-lesk -0.33 -0.33 -0.48 -0.49
vector -0.06 -0.09 -0.18 -0.23

Table 4 shows the Spearman’s Rank Correlation results of the mean
(Mean) and maximum (Max) similarity metrics compared to the
accuracies from the supervised and unsupervised WSD systems
for the combined data set. A positive correlation signifies that as
the values of one variable increase, the values of the second vari-
able also increase; a negative correlation signifies that as the val-
ues of one variable are increasing the other is decreasing. Our
hypothesis is that the higher the similarity score the harder it is
to disambiguate the ambiguous word. If this is true, we expect that
terms with a high similarity score would have a lower disambigu-
ation accuracy. Therefore, if the accuracies and the similarity
scores of the ambiguous words in the datasets were correlated ex-
actly we would see a correlation of —-1.0 (exact negative
correlation).

Table 5 shows the p-values obtained from comparing the max-
similarity results using the Fisher r-z transform. Comparison be-
tween the measures using the supervised correlation results are
in the upper triangle of the matrix and the unsupervised correla-
tion results are in the lower triangle. (The p-values obtained using
the mean-similarity are similar.) All p-values lower than 0.05 are
considered to be significant and are printed in bold font.

The results show that the relatedness measure lesk obtains a
statistically significantly higher negative correlation than the other
measures (p < 0.05). The lesk measure quantifies the similarity be-
tween the possible senses of a target word based on the overlap be-
tween the terms in their definitions. The results indicate that this is
a better indicator of how difficult the senses are to distinguish be-
tween than the path information obtained from a taxonomy.

The results using the IC-based measures (res,jcn and lin) and the
path measure (path) are comparable; there is no statistical differ-
ence between the scores (p > 0.26). The path measure quantifies
the degree of similarity between two concepts using the shortest
path information. The IC-based measures extend this, by incorpo-
rating the probability of a concept occurring in a corpus. These re-
sults indicate extra information about the probability of a concept
is not useful for determining the degree of WSD difficulty. Table 6
shows the top five least and most difficult terms to disambiguate
and their scores using the Lin with the Mean Similarity Metric.
For example, the term cardiac pacemaker has a similar score of
0.0004 indicating that the similarity between its possible concepts
is low making it easier to distinguish between the senses. This is

Table 5

Significance of spearman’s rank correlations over the combined set for max similarity.
Measure path wup res jen lin a-lesk vector
path 0.03 0.26 0.33 0.47 0.0006 0.47
wup 0.18 0.10 0.28 0.03 0.0000 0.03
res 0.20 0.48 0.14 0.29 0.0000 0.56
jen 0.47 0.20 0.22 0.30 0.0023 0.30
lin 0.34 0.31 0.33 0.38 0.0004 0.50
lesk 0.05 0.005 0.006 0.04 0.02 0.0006
vector 0.13 0.41 0.38 0.14 0.23 0.003

Table 6

Top 5 least and most difficult terms to disambiguate using lesk with the mean
similarity.

Least Difficult Most Difficult

Term Score Term Score

cardiac pacemaker 0.0004 aa 1.9448
cda 0.0004 fat 1.9713
extraction 0.0005 secretion 1.9910
determination 0.0007 radiation 2.2477
surgery 0.0007 fluid 2.8214
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Table 7
Breakdown of spearman’s rank correlation results on the datasets.
Dataset Measure Unsupervised Supervised
Mean Max Mean Max

NLM-WSD path -0.25 —-0.40 —-0.06 -0.14
wup -0.03 -0.21 -0.28 -0.35
res -0.12 -0.13 -0.32 —-0.30
jen 0.03 —-0.04 -0.07 -0.10
lin -0.10 —-0.10 -0.31 —-0.26
lesk -0.30 -0.29 -0.44 -0.42
vector 0.002 -0.07 -0.22 -0.38

Abbrev path 0.23 0.15 -0.13 0.01
wup 0.29 -0.09 0.15 0.18
res 0.23 0.07 -0.18 -0.27
jen -0.11 —0.05 -0.19 —0.01
lin 0.16 0.04 -0.13 -0.24
lesk -0.23 -0.15 -0.39 -0.27
vector —0.05 -0.35 -0.07 0.02

MSH-WSD path -0.22 -0.22 -0.32 -0.31
wup 0.01 0.002 0.10 0.10
res -0.17 -0.18 -0.20 -0.21
jen -0.25 -0.25 -0.35 -0.35
lin -0.19 -0.20 -0.25 -0.25
lesk -0.41 -0.42 —-0.57 —-0.57
vector -0.03 —-0.06 -0.20 -0.21

contrary to aa which has a similarity score of 1.9448 indicating
that the similarity between its possible senses are high making it
more difficult to distinguish between them.

The path-based measure, wup, quantifies the degree of similar-
ity based on the depth of the concepts in the hierarchy. The depth
signifies the specificity of a concept; the deeper the concept the
more specific it is. The results using wup show the correlation to
the disambiguation accuracies are random, indicating that using
the specificity of the possible senses of a word does not indicate
the degree of difficulty to disambiguate it.

The relatedness measure (vector) quantifies the relatedness be-
tween the possible senses by looking at the context that surrounds
the terms that surround the ambiguous word. Results indicate that
this second order information is too broad to determine the diffi-
culty of disambiguating between the senses of a target word.

The results also show that using the maximum similarity met-
rics obtains a higher or equal negative correlation than using the
mean. Overall, the difference in the results is not significant
(p = 0.05) and either the maximum or mean of the individual sim-
ilarity scores can be used to quantify the degree of disambiguation
difficulty.

5.3.1. Results by data set

Table 7 shows the break down of the correlation scores on the
NLM-WSD, Abbrev and MSH-WSD datasets individually. The stron-
gest negative correlation is produced by the lesk measure in the
majority of cases. For example, using lesk with the mean similarity
measure results in a correlation of —0.57 for MSH-WSD and —0.44
for NLM-WSD. The picture is more mixed for the Abbrev data set
where several of the correlation co-efficients are close to 0. This
suggests that the measures are more useful for determining the
WSD difficulty of terms than abbreviations.

Further analysis of how well the methods perform on terms and
abbreviations was carried out on the MSH-WSD dataset. This data-
set contains 203 target words where 106 are terms, 88 are abbre-
viations, and 9 have possible senses that are terms and
abbreviations. Table 8 show the correlation results for each type
of ambiguity in this data set. The supervised results show that
there is little difference in the correlation results for abbreviations
and terms. This indicates that it is able to determine the difficulty

Table 8
Breakdown of Spearman’s Rank Correlation on MSH-WSD using lesk.
Unsupervised Supervised
MSH-WSD Mean Max Mean Max
Abbreviations -0.26 -0.30 -0.32 -0.35
Terms 0.02 0.01 -0.30 -0.31
Terms/abbreviations -0.94 -0.92 -0.48 -0.52

of disambiguating a target word regardless if it is a term or an
abbreviation.

The unsupervised results show that it was unable to determine
the difficulty of the terms in this dataset which is contrary to what
was seen in the Abbrev results from Table 7. We believe the results
from MSH-WSD may provide a more accurate indication on how
well the unsupervised method works for two main reasons. The
first is that the number of ambiguous abbreviations in the Abbrev
dataset is low (16 abbreviations) compared with the MSH-WSD
dataset (88 abbreviations). The second is that the disambiguation
accuracies of abbreviations in the Abbrev dataset is smaller than
those in the MSH-WSD dataset. The accuracies range from 0.96-
1.00 in the Abbrev dataset to 0.89-1.00 in the MSH-WSD dataset.

6. Conclusion and future work

The accuracy of WSD systems for biomedical documents varies
enormously across ambiguous terms. It would be useful to be able
to predict the difficulty of a particular term for WSD systems in or-
der to determine whether applying WSD would be useful. In this
paper, we explore a range of approaches to estimating WSD diffi-
culty. Some of these are based on information extracted from
sense-labeled corpora while others make use of information from
knowledge sources. Evaluation was carried out by comparing the
predictions made by these measures with the actual accuracy of
two different WSD systems on three data sets.

Results show that the supervised methods are good predictors
of WSD difficulty in some cases, but that their results are not con-
sistent across different data sets. These methods also require la-
beled training data, limiting their usefulness. The unsupervised
approaches do not have this limitation and can be applied to a
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wider range of ambiguities. Our experiments showed that these
approaches were also good predictors of WSD difficulty. The best
performance was obtained using the relatedness measure pro-
posed by Lesk [25] and aggregating the scores using the mean sim-
ilarity metric. This method obtained a statistically significantly
higher negative correlation than the other measures when com-
pared to both the supervised and unsupervised WSD systems
(p < 0.05). The performance of this measure was also reasonably
consistent across different data sets and types of ambiguity (terms
and abbreviations). The methods explored in this paper are useful
tools for estimating the performance of a WSD system that can be
computed without the need for labeled data.

In the future, we plan to explore other relatedness measures
that use contextual information about the senses rather than (or
in conjunction with) their placement within a taxonomy. We
would also like to explore semantic groups of the terms to deter-
mine if some types are easier to disambiguate than others.
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