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DESIGN OF MISMATCHED SMITH PREDICTORS USING PLANT STEP DATA

A. Chotai and D. H. Owens

Department of Control Engineering, University of Sheffield

Systematic design techniques for mismatched Smith control
schemes are presented using the open-loop plant and model
unit step responses. The approaches are all graphical in
nature and are easily implemented in an interactive CAD mode.

1. Introduction

In the design of Smith control schemes (see, Owens and Raya [1], Chotai
et al. [2] and Marshall [3]) for time-delay plant, it is common to in-
clude a mismatch between the plant and model dynamics either

(a) because the plant is high order and a reduced order model will
reduce computational requirements or

(b) because the plant is subject to uncertainty in its structure, hence
precluding the possibility of constructing an exact model.

In both cases, design will proceed assuming that the plant is modelled
exactly by the model. On implementation however the plant/model mis-
match will affect both the stability characteristics and the performance
characteristics - possibly severely. This paper describes a systematic
procedure for assessing the effect of mismatch by using information on
the error in the modelling of the plant open-loop unit step response in
(i) frequency-domain design and (ii) simulation-based design to produce
estimates of stability characteristics and closed-loop performance

deterioration,.

The design procedures are illustrated by application to simple process
plant using both time-domain and frequency-domain techniques.

2. Background Theory and Assumptions

Consider an f%-input/m-output linear, convolution plant expressed in the
separable form TG where the m-input /m-output element T represents output



time-delays and the 2-input/m-output element G represents strictly proper
delay-free dynamics. The destabilizing effect of the time-delay T can
be offset with a considerable improvement in performance by the use of
the Smith Predictor control scheme illustrated in Fig.1l(a) where K
represents a proper m-input/f-output delay free controller and Gy and Ty
represent convolution models of G and T respectively. The plant TG

may not be known in detail but it is frequently the case that the plant
step response matrix

i Yll(t) ..... Ylg(t)
Y(t) = . silld)
le(t) ..... - Ymg(t)
is known from plant trials or complex model simulations. Here, Yji(t)

is the system response from zero initial conditions of the ith plan
output to a unit step in the jth input, with all other inputs held to
Zero. Let Yjp(t) be the step response matrix of the model T,G, and
define the error matrix

E(t) 2 Y(t) - ¥,(t) e (2)

The problems considered in this paper are (i) how the error E.can be
used to guarantee the stability of the implemented mismatch Smith scheme
of Fig.1(a) if the predictor is designed off-line based on the assump-
tion that the plant TG is equal to the model TpGp (see Fig.1(b)) and
(ii) how the same information can be used to bound the deterioration in
predicted transient performance due to the mismatch.

3. Stability and Performance Theory [2]

The stability Eheory is crucially dependent on the use of bounds on the
modelling error as follows:

Proposition 3.1 (see ref [2])

. I T(s)G(s) - T,(8)G,(s) || p < N(E) , Res > O o (3)
where the quantity Ng(E)‘ié the 'matrix total variation’ of E,
N (Byq) covnes N (E{,)
No(E) & : - (8
No(E ) wevens No(Ep))

and Nm(Eij> is the norm of E.. regarded as a function of bounded varia-
tion on "“[0,®). d

(Remarks: (i) ||M|| p denotes the matrix obtained by replacing Mij
by |Mij|, and

(ii) A < B denotes the inequalities Aij < Bij for all 4..J).

This characterization leads to the result -

Theorem 3.1 (Fiequency domain stability result (see [?]))

The mismatched Smith predictor of Fig.l(a) is input/output stable in the



L2 sense if

(a) the Smith scheme of Fig.1(b) is stable,
(b) both G and GA are stable, and

(c) the inequality

» L sup r (JICI,R(s)6, () RS | PNo(E)) < 1 ... (5)
SED '

is satisfied, where D is the usual Nyquist contour in the complex
plane, r(M) denotes the spectral radius of M.

The result given above can be interpreted as providing lower estimates
of the largest permissible mismateh that retains stability. The
special case (which includes the scalar case) of the above result has

a useful graphical interpretation similar to that of the inverse Nyquist
array technique [4].

If-m = £ and GA and K are diagonal of the form

GA(S) = diag{gj(s)}lfjim , K(s) = diag{kj(s)} .(6)

1<j<m

+hen the above result .remains valid with condition (c) replaced by the
two conditions:

(i) The inequality

Lim sup |k.(s)|<: L
J m
Re s>0 _
|s|+5 I N (Egy)
k=1
is satisfied for 1§j5m e (7))

and

(ii) the 'confidence band' generated by plotting the inverse Nyquist
loci of gj(s)k-(s), 1<j<m, for s = iw, w20, with superimposed
'confidence citcles'.at each point of radius

. A -1, o 5
rj(lw) = Igi (iw) | k£1 Nm(Ejk) . s 5(8)
- does not contain or touch the (-1,0) point of the complex plane.

Note that a graphical interpretation of condition (ii) is given in
Fig.2. ,

Stability can also be approached using simulation methods:

Theorem 3.2 (Time domain stability result (see 2h

Suppose that
(a) the Smith control scheme of Fig.1l(b) is stable,

(b) both G and G, are stable and that simulations are undertaken to
reliably caléulate the matrix

4 (1) (2)
w,(t)y £ [, (fc),...,wA (t)J ves(9)



where ng)(t) is the response from zero initial conditions of the
'delay-free' system (I+KGA)_1K to the input vector E(J)(t)

(E(3)(t) is the jth column of E(t)). Then the Smith scheme of
Fig.1(a) is input/output stable in the L  sense if the following
inequality holds:

r(NL(W,)) < 1 .. .(10)

An advantage of simulation based methods is the ability to predict per-
formance deterioration:

Theorem 3.3 (Input performance assessment result due to mismatch (see [2])

Suppose that the time domain stability result holds and that

(a) up(t) is the input response of the Smith scheme of Fig.1l(b) to a
step input demand r(t) = B, t>0, ,

(b) £(t) is the &x1 vector computed by the convolution

t
ECt) = =(J Wy(t-t")H)t')dt')B R ELE
o

where H(t) is the impulse response matrix of (I£+KGA)_1K, and

e (B)) -1
(c) e(t) = | . = (I-P,) P, sup lecen |l ... (12)
: O<t'<t
ey ()
where Py = NP(WA) is the matrix total variation of WA on the interval

[0,t] (see [5])

Then, the real input response u(t) of the Smith scheme of Fig.l(a) to
the step demand r(t) from zero initial conditions satisfies the bound

uy () - ugl)(t)| <eg(t) , 1k, 20 ... (13)

where u(l)(t) = uA(t)+£(f) is the first order correction to the approxi-
mate response uA(t). '

The graphical intepretation of (13) is simply that u (t) lies in the
region between the curves us (L) (t)ze (t). Both uf and £ are easily
evaluated by simulation of iow order” feedback systems generated by K

and GA‘

Theorem 3.4 %?utput performance assessment result due to mismatch (see

21)
With the above result holding and also that TG is stable, then

90 -y () ] p < No()e(£)+N(E) sup_ NP e llp .-
<t'<

where y(l) is the response of TAGA from zero initial conditions to

NEI T

A better bound is however available in the case of scalar systems
(m = & = 1) and is stated below:



Theorem 3.5

Suppose that m = & = 1, and that the time domain stability result is
satisfied, then the controller K will stabilise the Smith scheme of
Fig.1(a) and the response y(t) from zero initial conditions to a unit
step demand r(t) satisfies the bound

|y (t) - y(l)(t)l < e(t) , t>0 ...(15)
where
(t) & ————(—;Nt(wA) InCt' )] £>0 (16)
£ = . max n{(t')] , 5
1Ny (W, o<t'<t -
y(l)(t) 2 va(t) + n(t) t>0 - ... (17)

and n(t) is the response from zero initial conditions of the system
-1 .
I-(I+GAK) GAKTA to the input WA(t).

4. An Illustrative Scalar Example

Consider the single-input/single-output system TG described by

G(s) = k 3 and T(s) = o2 ll8 ...(18)
(s+1) -
The model TAGA of the form
_ i _ =-2.7s

GA(S) = 73 4s and TA(S) = e ...(19)
was fitted. The open-loop step responses of the plant TG and the model
TAGA are shown in Fig.3 together with modelling error E(t). The total
variation of E is obtained graphically as-

P » -

N_(E) = N_(E) = 0.36 ...(20)
Using the frequency domain technique and a P+I controller of the form

- -1 '
K(s) = k1 * kzs s (2L

with kl = 1.5, k2 = 1, we can check the stability of the mismatched
Smith predictor control scheme of Fig.1(2a) by checking conditions (7)

and (8). Condition (7) boils down to

|k1| < 2.78 ...(22)
which is clearly satisfied, whilst condition (8) is checked by plotting
the confidence band as shown in Fig.4. As the (-1,0) point does not
1ie in or on the confidence band at any frequency, the stability of mis-
match Smith scheme is guaranteed. = This is verified by examination of

the closed-loop step responses illustrated in Fig.5.

Turning our attention now to the problem of prediction of the error y-y
‘using -simulation-based technique. Applying theorem 3.2, to the above



scalar example with the same model and the controller, the response
W,(t) was computed to be as in Fig.6. Graphical analysis of this res-
pgnse leads to the conclusion that N_(W,) = 0.59<1, hence verifying the
stability prediction. The deterioratidn in output characteristics is
obtained by the use of theorem 3.5 in the scalar case. The correction
term n(t) (the response from zero initial conditions of the system

I-(I+GAK)‘ GAKTA to the input WA(t))is shown in Fig.7 and the bounds

y(l)is(t) together with the responses y and y, are illustrated in Fig.8.
Note that the performance predicted by the id8a1 Smith scheme was a
reasonable indicator of the performance to be expected of the mis-

matched Smith scheme.

5. Conclusions

- The paper has outlined the principles underlying a new approach for the
design of multivariable Smith predictors using plant step data in the
present of the plant/model mismatch. The paper has concentrated how
the step response modelling error E = Y-Y, can be used in producing
both graphical frequency-domain and simulétion~based time-domain methods
to-assess the stability and closed-loop performance for mismatch pre-

dictor control scheme. The details of theory are given in refs [2]
and [Bj and, at no stage in the design process, is an accurate plant
model required. The techniques have been illustrated with one simple

scalar example and more examples are given in ref [6].
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