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Abstract

Using the widely accepted philosophy that simple control design procedures are

of great value in producing acceptable controllers for plant with a degree of
dynamic and/or structural simplicity, particularly in the situation where
closed-loop performance requirements are modest, recent work oun the use of
approximate models and plant step data in multivariable design is applied to
produce simple, robust design algorithms for process plant which, in the presence
of suitable precompensation, has 'small' interaction effects and/or simple loop
dynamics that can be approximated by delay-lag models. In one form, the results
have a structure and generate a procedure identical to the inverse Nyquist array
design technique with Gershgorin circles replaced by 'confidence circles' deduced
from simple graphical operations on plant step data. Other interpretationd- of
the work lead to estimates of the maximum gain required to retain stability in
Davison's robust feedback regulator. An optimization procedure for choice of
precompensator using step data is also outlined with strong connections with the

method of pseudo-diagonalization.
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Introduction

In process control, simple design techniques such as that due to Ziegler
and Nichols [1] based on simple delay-lag approximate models of plant
behaviour play an important role in simplifying the design process. It is
natural therefore to conjecture that a similar philosophy could play a
useful role in simplifying the process of multivariable design and/or
generate preliminary insight into a design problem before more detailed
analysis or on-line tuning. In fact, the use of reduced-order models for
representation of process dynamics-is mow an accepted form of design aid
and a rigorous theory for the use of such models has been described by the
authors elsewhere [2] . In order to use this framework to generate simple
design methods for process plant however, it is necessary to recognize that
the enriched structure of multivariable (MIMO) systems (as compared with
single-input-single-output (SISO) systems) will require the use of different
forms of approximate models to suit different dynamic and structural

properties of the plant under consideration.

It is the purpose of this paper to investigate the possibility of and to
provide detailed descriptions of suitable approximate models and simple
design procedures for process plant that, in the presence of suitably

chosen precompensation, has one or more of the following properties:

(a) Interaction effects that, on physical grounds, are anticipated to have
only second order effects on closed-loop stability and performance.
(b) Simple step response dynamics that can be roughly approximated by

first-order 'delay-lag' dynamics.

Throughout the analysis, we take the viewpoint strongly proposed by

Davison Ei1 and fstrom [41 and accept the simplest and most straightforward
use of available plant data to produce the simplest possible design proced-
ure on the understanding that many process control applications have modest

closed-loop performance requirements and an 'inherent robustness' that makes

‘possible the achievement of a successful design despite the uncertainties

introduced by gross neglect of detailed plant dynamics.

The plant data assumed again fits into the framework processed by Davison
Eﬂ and Rstrom [4] (together with the authors [2]). More precisely, it is
assumed that the designer has access to reliable open-loop plant step—data
as described in section 2. With this assumption, section 3 uses diagonal
approximate models of the (precompensated) plant to extend the inverse
Nyquist array (INA) design procedure [5], [6] to cope with modelling errors

and the use of step data by replacing Gershgorin circles by "confidence



circles' deduced from plant step data and producing results on the system
integrity properties. Section 4 then considers the use of delay-lag models
of (precompensated) plant dynamics in the framework of Davisons robust tuning
regulator Eﬂ to produce simple estimates of the maximum stabilizing gain as
a prelude to 'on-line' control system tuning. Section 5 suggests compu-
tational tools for the construction of suitable constant precompensators.

Illustrative examples are given in section 6.

Data Requirements and Data Processing.

Throughout the remainder of the paper, it is assumed that the plant is stable,
has f-inputs and m-outputs with 22m and is described by a (possibly unknown)
transfer function matrix (TFM) G(s). It is also assumed that plant tests or
simulations of an available (assumed complex) model of plant dynamics give
the designer access to a reliable estimate of the plant open—loop step-

response matrix.
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where Y, J(t) is the response from zero initial conditions of the 1th output
th
¥ to a unit step in the j input u.(t) with uk(t)_ 0o, k¥j. We let K_ denote
P
an fLxm constant precomparator (as yet unspec1f1ed) and write the step response

matrix of Gp--GK,p as

A
Y (t) = Y(t) K tz o 2
n 3 » (2)
Note that Yﬁ is square of dimension mxm.

Following the procedure of [2], GA(é) denotes a stable (and, possibly, highly
simplified) approximate model of the dgnamics of the precompensated plant

c? =GKp and Kc denotes an mxm compensator . designed to produce the required

stability and performance from G, in the presence of dlagonal measurement

A

dynamics F(s) = diag {fj(s)}l<j<m' The control system to be 1mp1emented on

the real plant G has forward path TFM
K(s) = K, K, (8) (3)

and measurement dynamics F.




A major objective of the design analysis is to enmsure that the design procedure
takes full advantage of the simple structure of GA to reduce conceptual and
computational complexity and produce insight into a possible control structure
whilst assuming that the resultant design will regulate the plant despite the
modelling errors Gp # GA between the real plant and the model used for design

purposes.

To ensure this vital design objective, it is, of course, necessary to use some
numerical measures of the effect of the modelling errors on stability. Following
the philosophy of Davison [3] and Rstrom [4], we will take the simplest and most
straightforward approach to data usage as outlined in the introduction. More
precisely, the designer is expected to compute the step response matrix YA(t),

tzo, of GA and to store the modelling error data

) & (0 - Y0, o )

This error can be processed in many ways but, in the remainder of the paper, the
error will be represented by its 'matrix total variation' [2] or matrix total
variations of filtered versions. More precisely, let Fij(s) , 1€i,j¢m, denote

a chosen set of promr filters and define Eg(t) to be the mxm matrix whose (i,j)
element is the result of passing Eij through the filter Fij' Using the easily

proved identity

wes)| glsl 7w+ \Z [w(e) - w(=)| de , Reszo (5)

valid for any scalar function w(t), to, with the property that w(®)= lim w(t)
t > o

exists and possessing a Laplace transform W(s), it follows that, fori<i,j¢m,

and Reszo,
B -
IFij(S) (6, (s) (GA(S))ij)l
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where eIJ(t) is the impulse response o Fl:J (GlJ (GA)lj) and
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eij( ) lim eij (t) lim s Fij(s) (Gij(s) (GA(S)ij) (7)
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Defining
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and, using the results of [2], we can bound the gain of the modelling error by
=1,

]ng(s) - (€ 6Ny« |Fij-1(s)| s 1efj(w)| + Nm((Zg)ij)}(9)

where Ng(f) denotes [2] the total variation of f as deduced from graphical



inspection of its time variatiom.
The choice of filters Fij is open to the designer subject to the constraint

e i ; F
of boundedness of Nm((Zg)ij) and existence of eij (*). Two cases are considered
in this paper as representative of the simplest possible procedures:
P

2 F
; . .51 lead Py =wP ¥ (o) =
Case l: Choosing F1J eads to (EF)lJ El:J and e (») = o so that,from (6),

1
!G?j(S) - (GA(S))iJ- |§fi\:-(Lj)(5)é N (Eli)j) » Res>o (10)

which is precisely the bound used in [2]. It represents the best possible constant
upper bound in the semse that it is gemerally applicable and equality holds at

s = o if Egj is monotonic. Other choices of Fij permit some frequency dependence
of the bound and hence, in principle, allows tighter characterizationsto hold.

For example,

Case 2: Choosing Fij(s)= 1/s leads to eij(t) = E?j(t) and hence

t Z :
P P / p N #)
£.(t),. = E..(t)- E} d¥
(2, )lJ \O ( lJ( ) i; () (11)
is just the integrated modelling error. This gives the bound

P - (2) AP o P
LN (6, ()45 | 5857 (o) = [EB; () + sl w,((2p) ;)
Res2o , (12)
Note that (10) and (11) can be combined to yield the improved bound
P - (1) (2) .
Gij(s) (GA(S))ij| < mln{ﬂij (s),Aij (s)} , Res>o (13)
The improvement is guaranteed at low frequencies as [Egj(m)l & Nm(E?j) from

the definition of the total variation.

Finally, we note that non-proper filters can be incorporated in the formulation.

To illustrate this, let

V() = ~a s tz0 , (14)
then clearly, for Re szo, o
[ ]
P _ P S -st _p
G, . = 23 = i S
|5(65,()=(6, () ;)| = [ Vg (o) + ) e ™" vy (0)de |

oo (o]

]
p P
S Ivij (o+)} +\c|) Vi (©® |at

_ p
= Nm(Vij) (15)

leading to the bound
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Re szZo (16)

If a model of the plant is available then vP can be computed reliably but, if
Y(and hence Ep) is obtained from plant tests, noise contamination of the signal
will make the derivative unreliable. It is expected therefore that the result
will only be of practical use when a detailed model of the plant S(A,B,C) 1is

available to be used to obtain vP as the step response matrix of S(A,B,CA,CB).
(3)
ij
on the modelling error at high frequencies. It can be combined with these

Comparing A with A(iﬁ and A(§§ we note that it provides tighter bounds

estimates to produce the bound

|GP.(s) - (6,(s8))..| 5 min {A(l.‘).(s): k=1,2,3% , Res2o : (17)
1] A 157 1]

Finally, the bounds described above are easily computed but do contain a degree

of conservatism when compared with bounds from a detailed plant model. For

example, if

(18)

P ” - s
65 7 G5 T A

the bounds are shown in Fig 1 together with the exact form of the error gain
indicating that the characteristicsare overestimated by up to 150 %e. This
situation can easily be improved by the use of more detailed calculation but

is not pursued further . here as it is inconsistant with our declared philosophy

of minimal data usage for a simplest possible design procedure.

3. Diagonal Models for Systems with Small Interaction

With the notation defined in section 2 we now concentrate on the special case
of process plant G for which it is possible to chwse a constant precompensator
K such that the interaction effects in the precompensated plant Gp=GKp (as
dggcribed by the off-diagonal terms of YYp) are sufficiently 'small' as to make
the designer suspect that the performance objectives can be achieved by
neglecting them during the design process. In a gimilar manner to the work
described in [2], thus suspicion can be converted into a systematic design

procedure by choosing a diagonal approximate model

GA(S) = diag%gj (s)% 5 (19)

of the precompensated plant cP by inspection of'Yp(t) followed by the construction

of models of the diagonal terms of the required complexity. The resultant



procedure is similar in structure to that implied by theorem 3 in [2]. The
contribution of this section therefore is primarily to demonstrate that those
results can be extended to provide a complete generalization of the INA [5], [6}
design procedure to cope with approximate plant representations and limited
plant data obtained from step response experiments. In particular, the work in

[2] is extended to include

(i) more detailed frequency domain bounds deduced from plant step data,
(ii) constant precompensation to improve the accuracy of a diagonal model,
(iii) graphical design aids based on 'row' and 'column' dominance and spectral
radius methods using the magnitudes of interaction effects as observed
in the time—domain, and
(iv) integrity assessment procedures based on time-domain data in a frequency-

domain context.

The resultant techmique has. all the basic ingredients of the INA method with the
exception of performance assessment using Ostrowski bands. This can however be

approached using the simulation method described in [2].

Given the diagonal model (19) of plant dynamics, it is natural to consider the

use of single-loop compensators in the form of the diagonal compensator.

Kc(s) = diag {kj(s)} (20)

lfjsm
where the loop control kj(s) is designed to produce stability and desirable loop
dynamics for the loop model gj(s) in the presence of loop measurement dynamics
fj(s). As in the INA procedure the interaction effects (and, in this case,
errors in modelling the diagonal terms) are ignored at this stage. As in the

INA procedure however, the prediction of stability of the implemented closed-
loop feedback scheme for the real plant G with control K=KPKc and measurement
dynamics F must take into account the modelling error. It is therefore assumed
that the data Ep(t), t>o0, has been processed in the way described in section 2

(or otherwise) to provide an array of error bounds.
lcﬁj(s) = (6,() ;.| € 8;(8), 1si,jem, Reszo (21)

Given this data, the following result provides a systematic INA-type graphical
technique for assessing the stability of the implemented scheme. The proof is

similar to that of theorem 3 of [2] and is outlined only for brevity.




Theorem 1: Suppose that the control elements k.(s) 1$j$m, are designed to
produce stability and desirable loop dynamics from the loop models gj(s),
1<jsm, in the presence of measurement dynamics fj(s), l§j§m, and that the
composite system GKchF is both controllable and observable. Then the control
K=K Kc will stabilize the real plant G in the presence of measurement dynamics
F if

(i) the inequality

lim sup ky (s) £,(s) a;(s) <1 (22)
Re s3>0 l+kj(s)fj(s) gj(s)

|8l
is satisfied for 1lgjsm, and

(ii) the 'confidence bands' generated by plotting the inverse Nyquist
locus of gj(s) kj(s) fj(s) for s=iw,w20, with superimposed 'confidence

circles' at each point of radius
P A -1
r;(s) = |g. (s)| d.(s) (23)
] 1 J ( )l J

does not contain or touch the (-1,0) point of the complex plane.

In the above, at each point s of interest, the functions dj(s), 1£j€m, can be

taken to be equal to any of the following error dependent quantities,

m
(a) dy(s) = 2 Ay4(8) (row-sum) (24)
m
(b) dj(s) = izé:l Aij(s) (column=sum) (25)
or
(c) dj(s) = r ( A(s)) (spectral-radius estimate) (26)

where A(s) is the mxm matrix with (i,j)th element Aij(s) and r(M) denotes the

spectral radius (maximum modulis of eigenvalues) of a matrix M.

Proof: Using the results of [2] with G, approximating the precompensated plant
Gp, closed-loop stability is guaranteed if the controllability and observability

conditions are satisfied and (using the notation of [Z])

r (11, + K (s) E(s) 6,(s))7K () F()|] ale)) <1 (27)

for all s on the Nyquist contour. At any point s on the contour, (27) is

satisfied if any of the following three conditions holds



max
1<jsm kj(ﬁ) fj(s) d.(s) <1 (28)
s 1+gj(3) kj(S) £, (s) J

where dj(s) is given by (24), (25) or (26). This requirement leads to the

conditions (i) and (ii) of the theorem as required.

We méke the following observations
(1) the graphical interpretation of (ii) has been given in [2],

(2) the error data Aij(s) can, in principle, be obtained by any means. It is
assumed in this paper that it has been obtained by processing plant step
data as described in section 2. It does however permit the designer the
flexibility of obtaining the data in other ways if the data is available
or if the effort in obtaining the data is feasible or thought to be worth-
while or necessary. In the 'best' case, for example, we could choose Aij(s) =
o7,

j(s) - (GA(sDijl when the result boils down essentizally to the stability
theorem underlying the Direct Nyquist array [5], [6].

(3) The radii of the confidence circles increase as the modelling error increases
(in the time-domain). In particular they are small if GA is a good rep-

resentation of the step response dynamics of cP = GKP.

(4) For a given modelling error, the result limits the predicted control gains
that can be applied to ensure stability. This problem is shared by the INA
method but the effect can be partially offset by choice of Kp or by
'reducing control gains' into the predicted maximum range. It can also be
offset by using improved models GA but, if this option is not taken, it is
clear that closed-loop performance is limited by the modelling error. In
high performance designs this limitation may not be acceptable, the designer

being committed to detailed analysis of plant dynamics.

In process control applications however, where performance requirements are

modest, the implicit gain limitation will have little effect as a successful

design can still be achieved.

(5) The controllability and observability requirement holds generically but can
be reduced to stabilizability and detectability of GKPKCF if stable
uncontrollable and/or unobservable modes are acceptable. This is described

in more detail in ref Bﬂ.



Overall, the above analysis indicates that the basic INA methodology carries
over with little change to CAD of control systems based directly on processed
plant step data and the use of approximate system models. Our final result in
this section underlines this fact by showing that integrity of the closed-

loop system can also be assessed in a simple manner.

Theorem 2: If the conditions of theorem 1 are satisfied, then the resultant
feedback scheme is stable in the presence of simultaneous failures in the
sensors fj(s) and/or actuators kj(s) s ] = jl’ j2, ‘e oy jq, provided that there

networks are stable.

(Remark: In practice, this reduces to the requirement that there are no

integrators in loops jl, N N jq).

25
Proof: The failure conditions correspond to the situation fj(s)kj(s)Eo,
j= jl’ j2, vees j_ « Condition (28) is hence still satisfied and stability is

guaranteed [2].

In the following section, similar results to the above are constructed to

provide information on Davidson's tuning regulator [3].

4. Robust Tuning Regulation

Given a stable, linear f-input/m-output, time-invariant process whose model is
either unknown or known, the work of Davison [j] and Porter [7] has shown how
plant step data can be used as the basis of an on-line tuning procedure for a
simple control scheme capable of ensuring plant stability, asymptotic tracking
of step set-point changes and rejection of constant disturbances at the output.
The basic idea of the method can be expressed (in a mildly genmeralized form) in
terms of the notation of sections 1-3 for the precompensated plant GP=GKP.
More precisely, if Gp(o) in the matrix of precompensated open-loop d.c. gains
obtained from plant step responses via the relation Gp(o) =‘Yp(w), then a unity

negative output feedback scheme with controller TFM K=K KC and (similar to the

form originally proposed by Rosenbrock ESJ),
- e Plo) =
Kc(s) e 6 (o) 3 (29)

is capable [3] of achieving the specified objectives for scalar gainsein a



— lo -
non—empty range

0 <e <g % (30)
provided that the required inverse exists,

(Note: In the following, the symbol M will frequently be used to denote the

inverse of a matrix M).

The possibility of including proportional action has been noted in [ 3], [7],

[8], {9] but, in all cases, the upper gain bound e%* is unknown, being revealed
only at the on-line tuning stage. In this section we consider the problem of
obtaining easily computed off-line estimates of lower bounds e:> o for e*. Given
such a lower bound, stability is then known to be guaranteed in the gain range
o< g <€*. The availability of such information could be of great practical value
in applications (see eg [3], [10] ) of tuning regulator theory by providing a
range of initial gain settings that guarantee stability and from which on-line
tuning can be initiated. A large value of s: indicates large stability margins
whilst a small value suggests that gains may be severely limited in practice.

* . -
Exact evaluation of € requires, in principle, root-locus [6] or similar analysis

of a detailed plant model. To retain the spirit of Davisons work however, we
concentrate here on the use of minimal step response information that is
required to produce an estimate i.e. graphical operations on the results of

plant step tests in a manner similar to that described in section 2 above.

Following the procedure of sections 2 and 3 suppose that a constant precompensator
KP has been specified and the (precompensated) plant step response Yp(t), tzo,

computed and stored. To obtain a gain estimate we consider the use of a

(conceptual) approximate plant model of the form

-sF,
% e ]
G, (s) = GP(o) diag { —— } (31)
A .
1+sTj lgjgm

when Tjao , l<jgm, and 5&, 1lgjgm are representative time constants and delays
of the (precompensated) plant responses to step inputs in channel j as deduced
from inspection of the elements of'YP(t), tzo0. ép(o) is a nonsingular estimate
or conveniently structured (e.g. diagonal) approximation of the d.c. gain

Gp(o) =‘Y?(m). The consequent modelling error Ep(t) =f%(t) -'%ﬁt), t>0, can
now be computed. Note that both GP and GAhave identical steady state

characteristics if and only if, ap(o) = Gp(o) when it is easily seen that

o (32)

lim E (t
" )
t > o

Throughout the remainder of this section, the basic form of Davisons controller

is extended to include proportional action and loop gains of differing magnitude
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~

: N
K (s) = 4 giag {k(J) kéJ)} ¢P (o) (33)

F ] s » . ~
which reduces to (29) if kij)=o, 1<j¢m, kg = £, 1<j<m, and Gp(o) = Gp(o).

1gjsm

4.1 eg and the Modelling Error

*
The techniques proposed for estimating € vary depending upon the chosen means

of proce531ng the error data Ep(t) A,ba81c result is stated as follows:

Theorem 3: If the precompensated plant cP = GKP is stable with Gp(o) nonsingular
and it is possible to choose representative time constants Tj>o and delays

3530, 1<j<m, such that the modelling error generates the inequality.

rhr ([P, ¥ @) <min 1, min GPHTH (34)
lgjsm

then the controller K = KyK with K given by (33) will stabilize the plant G
(J) (J

for any gains k >0 , 1sgsm, satisfying

. . . —-s,
(a) k(i)+ s 1 kéJ)Tj stabilizes e 93/(s+l) , 1<j<m, and

(i)

(b) ); max  sup (1+s) (k(j)s+k T.)
lgjsm s€D €D (j) oo <1 (35)
=S s(s+l) + (k s + k2 Tj) e T

where D is the usual Nyquist contour in the complex phase, dj 5 /T 1<j<m,

X < min (11<J<n (k(J)

the 'matrix' total variation of E® on [b, mJ(see [”]) ie the matrix with (1,3)

element N (E )

) 7) is a convenient upper bound on r_  and Np (E ) denotes

Proof: Using the results of [2] stability is guaranteed if

(1+sTj) (kij)s -+ k(g)) A
sup r (diag { } ||Gp(0)!|pNi (EP))
seDd . -sd.| 1lgjgm

s (14T, ¥ # (k(J) (J))e j (36)

<1
as the nonsingularity of Gp(o) ensures the stabilizability and detectability of
GK. Imequality (36) is satisfied if

(3 . Q)
Xm max  sup (1+ST.) (kl S""k ) <1 (37)

l-<.j$m SED S(l"’ST ) 4 (k(J) S+k(3))e l
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(35) following by replacing s by s’= T.s. The necessity of (34) is seen by
noting that (35) must be satisfied at s=o and |s|+ o and (9) follows from the

requirement [2] that Kc stabilizes GA.

For practical purposes, the result indicates that a range of gains kij), k(g)
can be obtained by analysis of (35) provided that the precompensated plant cP
can be modelled by the 'delay-lag' model (31) with error EP small enough to
satisfy (34). This situation corresponds to the case when all plant responses
are overdamped with essentially delayed first-order characteristics. In many
process control situations (34) is not a severe constraint as, for example, in
the case of m = 1 and k1<1, it reduces to the requirement that the total
variation of the modelling error is strictly less than the plant d.c. gain.

In the case of plant with oscillatory or violent reverse-kick characteristics
(due to low damping or non-minimum phase elements) or badly conditioned d.c.

gain matrix however (34) can be violated as a first order model is then mnot

sufficiently representative of plant dynamics.

There are several ways of approaching the analysis of (35) apart from the
obvious numerical search procedures. The following corollary provides a simple

graphical technique suitable for CAD.

Corollary 3.1.: The conclusions of theorem 3 hold if (a) and (b) are replaced

by the equivalent condition that, for 1£jsm, (a) the point (-(k(%)Tj)-l,o) of
the complex plane does not lie in or on the band generated by plotting the

Nyquist locus of the transfer function

. . . : —sa,
g'(s , k(J) . k(J)T.) é (k(J)S & k(J)T,) e J
i 1 2] . (.)2 ] (38)
|
s(s+l) k 5 Tj
and superimposing at each frequency a circle of radius
(1 L@ A (3) (1) (1)
rj(s,k 1 s k) Tj) Xm|k 1t k) Tj[ /(s |k 5 Tj) (39)
and (b) that the band does not encircle that point.
Proof: Write (35) in the form, 1gjgm,
. (3) =l (i) €1 () @)
[e™s Tj) +gj(s, ks k) Tj)| > rj(s, kT, kT Tj) (40)

for all s on the Nyquist contour D and interpret in graphical form as illustrated
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in Fig.2. for s=iw, w3o0. It is automatically satisfied for ]s|¢m by (34).

The similarity in graphical structure of corollary 3.1. with that of theorem 1
is self-evident with the main difference that the radius of the 'confidence
circles' now depends upon the control gains. This dependence can be 'removed',
in practice, by choosing the ratio f?.= k(i)/k(g)T. to correspond to a fixed
and specified ratio of reset time tthime constani in loop j and regarding

A j 2 ’
= k(%)as a design variable. The corollary can then be applied using the

E..
]
identities.
(1) (s 5= :
gj(S 3 k 1 » k 2 Tj)— gj(s s qj, 1) E] }-SJSm 3 (41)
() +E3Yn e . '
T.)=
rj(s 5 k 1 .k P j) rj (s ,qjs 1) s 1$J$m’ (42)

and noting that the plots are now independent of sj. In these circumstances

an easily computed estimate of the largest (predicted) value of ej is obtained

as

o< e, < 1 (43)

%C.T,
J 3

where (ﬂ/qj,o) is the point where the trailing edge of the uncertainty band cuts

the negative real axis as illustrated in Fig.2.

The need for graphical analysis can be removed in the case of integral control
only and opens up the possibility of 'back-of-envelope' estimates of stabilizing
gains. To the best of the authors knowledge this result, together with that of

Rstron\[4], are the only available results of this degree of simplicity.

Corollary 3.2.: The conclusion of theorem 3 remains valid in the delay—free

integral control case of k(%)= §5=0, lgjgm, if (a) and (b) are replaced by the
algebraic inequalities

o <xPr, <21, 1giem (44)
Proof: Elementary calculus indicates that the supremum in (35) is achieved for
some j and frequencies wj satisfying mj=o or, if Bj = k(%)Tj,

m§ T /sj(sj+2) (45)

Relation (44) ensures that (45) has no real solution and hence (35) reduces to
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xp4]_which is satisfied by assumption. Condition (a) is automatically satisfied

as (44) is a connected set containing small gains.

In the case of k{J) =0, k(%)= ¢, 1gjsm, the control scheme reduces to Davisons

controller and corollary 3.2. produces the estimate

#
e = (V2-1)/ max Ti (46)
1£jsm
%
which yields an easily computed estimate of €, but will be more conservative

than the estimate obtained from corollary 3.1.

*
4.2. ¢ and the Integrated Modelling Error
—0—

Although the techniques of section 4.1. yield values of S:’ the modelling error
must be small enough to satisfy (34). If this constraint is not satisfied then
more plant data must be included in the design exersize. There are many possi-
bilities such as the use of the techniques of section 3 or ref [2] but here we
concentrate on the use of the error bounds (12) based on the integrated model
error data (11). It is also assumed that the plant and model have the same
steady state step response characteristics in the sense that E(®) = o. The main
result of this section is stated as follows. Note the absence of any constraint

on the modelling error!

Theorem 4: With the above conditions, the unity feedback controller K = K K

with integral precompensator
K (s) = diagle.}, . P(oys ' (47)
c J171£3sm

will stabilize the plant G for any choice of gains Ej, 1gjgm, such that

=80

(a) e:jTjs_l stabilizes e J/(s+1) , 1gjsm, and
' +
(b) X: max Ej sup s(s+1) <1 (48)
1<jgm s=iw | s(s+l) + ejTje'SCLj

w20

o . ;
where x“}ls any convenient upper bound for

P8y (||ép(o)||p NP (20)) (49)
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Proof: Follows in a similar manner to theorem 3 using G(o) = G(o) and the
upper bound |s]| NQKig)ij) for IGEj(s) -'(GA(s)ij|obtained from (12) by noting
that Ep(m) = 0 5 1KLL S

There is a graphical interpretation as follows:

Corollary 4.1.: The conclusion of theorem 4 hold if (a) and (b) are replaced

by the equivalent conditions that, for each value of j, (a) the point (-(EjTj)‘
, o) of the complex plane does not lie in or on the band generated by plotting

the Nyquist locus of the transfer function

X -0,
8 (s,aj) 8 o 1 (50)

s(s+l)

and superimposing at each frequency a circle of constant radius
A
SRONE XZ/TJ. (51)

and (b) that the band does not encircle that point.

If the trailing edge of the band cuts the negative real axis at the point

(—/%3, o) then we can choose

e

£, S€,.

L AC T (52)
g ©Ey T My |

. - - - *
and, in the Davison case of Ej = g, 1£j<m, we obtain the estimate Eo = 1/max

M. T.. l<jgm

Proof: Write (48) in the form

—s0;
e . + (e.T.) i >
- J J

=<

(6]
o , 5=iw , w>o0 (53)

H‘

s(s+l) j

and interpreting in graphical form as illustrated in a similar manner to Fig.2.

We conclude this section with the observation that

(i) the limitations in gain implicit in the result are revealed by noting that

#
(53) requires that Ej < 1/X§i, 1<j<m, by letting w* = and hence €0<1/X:-
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(ii) 1In the case of Tj =T, 1gjsm, and Hj = F, 15j<m, the mm plots described

by the result are identical and yield a single value of,/qj =/, 1gj<m.

5. Choice of Constant Precompensation.

In the techniques described in previous sections, the choice of K will play a
crucial role in determining the size of the error in modelling (cgmpensated)
plant dynamics. In a conceptually similar manner to the INA methodology, it is,
in general, necessary to make the error Ep(t) as 'diagonal as possible' for

t>0. This process is then followed by comstructing models of the diagonal terms.

The problem of choice of KP could be approached intuitively by, for example,
choosing Kp=1m (if m = ) if the plant G has naturally low interaction. Alter-
natively, if interactiin tends to peak in all loops around t i t (say), it is
natural to try KP =Y (to). For example, if tO = @, Kp = Y "(») will remove
all steady state interaction from the plant and have the added bonus of ensuring

that E (¢) = o if gj(o) =1, 1gjsm, in section 3.

More generally, a numerical/algorithmic proceaure will be necessary to relieve
the load on the designer. The following procedure is a direct parallel to the
method of pseudosdiagonalization [5] that has proved to be invaluable in the
INA design technique. The following development is geared to the techniques of

section 3.

Suppose that the model G to be used is diagonal and, as yet, unspecified. The
choice of constant precompensator K to minimize the width of the confidence
bands as deduced from the columm-sum (25) is équivalent to the solution of an
optimization problem. As the total variation (10) is an absolute upper bound
on the effect of modelling errors, this measure of modelling error will be used

as the basis of the optimization procedure by choosing K.p to solve the problem,

m

. P
min max § N_ (Eij) (54)
it]
6 =2F &t € « « 4T <t =T (55)

be a partition of [6,11. Write Kp in column form

B = (K> Kys o s K] (56)
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and note that (54) can be approximated by m independent optimization problems

m N
i P P
min ; E lEij (tk) - Eij (tk—l)l (57)
it ]

as the data E?j , lgigm, is independent of Kr’ r + 3
This problem can be regarded as a minimum norm problem and solved algorithmically

but is not easily solved analytically. For this reason, we propose that the

problem is relaxed to a quadatic form

m N
: P _ P 2
min > > [?ij (tk) Eij (tk-ljl (58)
K i=1 k=1
it
in a manner similar to the relaxation of the dominance condition to a quadatic

condition in pseudo-diagonalization.

Introducing the notation

A K M=M (tk) - M (tk_l) , 1gkgN (59)

for any matrix function M(t) on [6,T] and letting {ej}1<j<m denote the natural
. .. om . _ T T
basis in R (ie el—(l,o,...o) s €, (0,1,0,..,0) , etc etc) replaces ESQ]by

2 N T "y
min = = [e;a tx, ]
i=1 - J (60)

'Kj k =1
id] "
=min K. Q. K.
] J J
K.
J
where
m N . "
Q. = > (A Y)Y e, e, (A Y
J = 1 &t = 1 Ak 1 1 ( k ) (61)
it ]

To avoid the trivial solution Kj=0, add the additional constraint that

T .

Ak ; 3
where R = R >0 is arbitrary. Elementary analysis then indicates that the optimal

. * L * %
solution Kj satisfies QKj = )\RKj with min K§ Q. K. = A. That is, K.* is an
J J J

K.
4
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5 =1, ; i :
eigenvector of R = Q corresponding to an eigenvalue of smallest magnitude.

6. Illustrative Examples

6.1 A Boiler—furnace System

Consider the case of unity feedback control of the boiler furnace system

described by Rosenbrock [51 with 4X4 TFM

1.0 0.7 0.3 0.2
1+4s 1+5s 1+5s 1+5s

0.6 1.0 0.4 0.35

1+5s 1+4s 1+5s 1+5s

G(s) =

0.35 0.4 1.0 0.6

1+5s 1+45s 1+4s 1+5s

0.2 0.3 0.7 1.0
L 1+5s 1+5s 1+5s 1+4s

= 1 o o * 1 (G(o) - 14) (63)

1+4s % 1+55

Despite the relatively large number of inputs and outputs and the known fact
[5] that the pfoceés turns out to be relafiveiy easy to control, we include it
in the paper to highlight the conceptual and numerical simplicity of the step
data techniques described in previous sections and the manner in which they

reflect the simple structure of the system.

Considering initially the use of theorem 1 and the simple possibility of loop
controllers only, choose the precompensator Kp £ 14 and the diagonal compensator
Kc(s) = kI4 with identical proportional gain ko in all loops to reflect the
identical diagonal plant dynamics. We choose the model GA(S) = IA/(1+4S) and
note that it is stabilized for all gains k>o. Noting that all interaction

effects are monotonic leads to the matrix total variation.
P (EP) = 6(o) - I (64)
and hence, choosing the error bound (10), we obtain the column sums (25) as

dl(s)z d4(s) = 1.15 , dz(s) =d, (s) = 1.4 (65)

3

A preliminary estimate of the predicted permissible gain range is now obtained

from (22) i.e.
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k <min d, (») = 0.71 (66)
J J

gimulation studies indicate closed-loop stability in this range but sluggish
response characteristics and large steady state errors. Consideration 185y
therefore, given to the use of a precompensator.
(Note: the above result should be compared with that of Rosenbrock [ﬁ] where
the INA method predicts stability for all k>o. The techniques in this paper
are much simpler than the INA but more conservative. This is to be expected
however as we have started from a different data base (ie the step response)
and need only the simplest representation of the modelling error. The pre-
compensator described below improves the interaction considerably, but in the
absence of precompensation, it is necessary to use a more detailed error

characterization approaching that used in the INA method).

Following Rosenbrock [5] consider the use of the steady state precompensator

1.75 -1.21 -0.16 0.17
Kp = G_l(o) = Y”l(m) = -0.98 1.87 -0.23 -0.32 (67)
-0.32 -0.23 1.87 -0.98
G107 -0.16 -1.21 1.75 l

leading to the compensated plant

Py - 1 o)+ 1 (1, =G () (68)
l+4s 1+5s
with step response matrix
v () = a-e"% 6oy + d-eTH) (1, - 6NN (69)

Choosing GA to model the diagonal terms to high accuracy leads to

1.+ Dw/38 1+ 5.87s

g,() = g,(s) = . 8,(5) = g,(s) = (70)
(1+4s) (1+58) (1+4s) (1+5s)
with total wvariation of the error equal to
0 1.21 0.16 0.17
¥ (EP) = 0.98 0 0.23 0.32 Nm(e't/s—e*t/a)

0.32 0.23 0 Q.98 (71)
Ould 0.16 1.21 0

where graphical analysis indicate that Nm(e_t/s—e —t/A) = 0.164. This

produces column sums

dl(s) = da(s)E 0.24 , dz(s) = d3(s)E 0.26 (72)
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Choosing the compensator Kc(s) = diag ﬂ{i(sﬂ with diagonal terms

(1) -1 (1) . EEE .
ki(s) = k1 +s k2 , 1 =1, 4, the stability of the approximating feedback scheme

is guaranteed for all positive gains. . To check the stability of the implemented
scheme using theorem 1, note that (22) requires that

4.1 iwl, f=4
< (73)

‘ ey
3.8 i=2, i=3

1

the approximate model hence indicating that these gains allow an increase in
response speed of up to six times the open-loop response speeds. This is more

than normally necessary for process control applications.

Choosing the networks

k.(s) =3+ 1 ,1=1,,4 (74)
* 2s
to produce time constants of approximately 1.0 and reset times of approximately

6.0 for the approximating feedback system, then (73) is satisfied and condition
(23) of theorem 1 is satisfied as shown in Fig.3 (Note: the inverse Nyquist
plots with confidence bands are shown only for loops 1 and 2, the plots for

loops 3 and 4 are obtained by symmetry and interchanging). Clearly, the (-1,0)
point does not lie in or on any confidence band and hence the controller success-
fully stabilizes the plant. The resulting closed loop performance is shown in

Fig.4 indicating excellent loop performance and low interaction effects.

Although the design has been successful without the use of frequency dependent
estimates described in section 2, confidence in the design can be increased by

calculating the integrated modelling error to. yield the total variation

0 1.2 0.16 0.17

0.98 0 ' 0.23 0.32

Nf(ﬁg) _ 0.32 0.23 0 0.98
! 0.17 0.16 1.21 0

Again using column sums and incorporating the bound (12) into the analysis yields
the inverse Nyquist plots with confidence bands shown in Fig.5. Note the decrease

in the width of the confidence bands at low frequency by comparison with Fig.3.
Derivative data can also be used by evaluating the total variation

(P = 0 1.21 0.16 0.17 X 0.114
0.98 0 0.23 0.32
0.32  0.23 0 0.98
L 0.17 0.16 1.21 o | (76)

and incorporating (16) into the modelling error bound. The confidence bands are

illustrated in Fig.6 and indicate a substantial reduction in the radii of the
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confidence circles at high frequencies.

Turning now to the analysis of a unity feedback integrating tuning regulator
control (29) for the boiler-furnace, we will use a unit precompensator szIé
and choose Ep(o) = Gp(o) = G(o). Analysis of the dynamics suggests the use
of identical model time constants T. = 4,0, 15j$4, (to reflect the similar
time constants in all loops) and zero delays 5j= 0, 1£jg4. The modelling

error is hence

=t o i 5
BP(e) = (6(o) - 1) (e /4Tt (77)
leading to the total variation.
p Py _
N_(E) = (G(o) — IA) 0.164 (78)
Defining ||M[]m = max Zi: |Mij| for any mxm matrix M, we can choose the
-1y .
bound B(;= lle “(o) [|m [|N2 (E) ||m for r_ to yield J;= 3.4X(1.35X0.164)

= 0.753 < 1 and hence theorem 3 can be applied for integrating controllers (i.e.

: *
Kij) = o0, j=1, 4) to estimate e, Using corollary 3.2 in the form of (46) yields
%
€ = 0.1 (79)

In contrast, corollary 3.1 and (43) yields the improved estimate

n

s: 1/ (1.2 X 4.0) = 0.21 : (80)

by plotting the Nyquist plot of 1/s(s+l) with circles of radius X;/w as given
. . v % ] 4 y

in Fig.2 to obtan.n/’(j - 1.2, lgjg4. Finally, noting that the assumptionsof

theorem 4 are satisfied it is easily verified that the integrated error has

matrix total variation.

W (2 = 6) - 1, (81)

==,
and we can take k/z = |le “(o) |Im ||G(o) - I4||m = 4,59 and

r?(s) ==K2/Tj = 1.15 , 1gjg4. Plotting the Nyquist diagram of 1/s(s+l) with
cirecles of radius r?;(s) then yieldg/%? Y 1.55 , lgjs4, as shown in Fig.7 and

hence

sz 2 1/(1.55%4.0) = 0.16 (82)
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by corollary 4.1.

Each technique produces a different estimate, all results being improved
somewhat if better choices of KP (eg KP=Gﬁ1(o)) or J; and {;?&re:used (eg.
k;=,rm = 0.702).  This is unnecessary in this case as the closed-loop
responses to a unit step demand in ¥4 indicate in the case of €= 0.1 (Fig.8).
Note the stable response characteristics, zero steady state error and small
interaction. The response speed is slow but this can be improved by including

proportional action.

6.2. A Level Control Study

Consider now the problem of level control considered by Tomizuka [11]. a

two—input—-two-output three vessel system is described by the model.

® (t) = | -0.375 0.125 0 x(t) + | 0.25 0 | u(t)
0.25 -1.0 0.25 0 0.5
0 0.5 -1.5 0 1
y (t) = 0 i 0 x(t) (83)
0o o0 1

u. are input flow variables.

where Xj denotes the level in vessel j and ul, 5

Unity output feedback is assumed throughout.

The step response matrix of the process after precompensation by

5.
K = g Q (84)
p 0 200 4

(to normalize the d.c. gains of the diagonal elements to approximately unity)

are given in Fig.9. The diagonal approximate model G, was fitted by visual

A
inspection to be defined by
g () = 0% g (e) = 104 (85)
l+s 3.8 1+ 8

with step responses indicated on Fig.9 also. A simple calculation then gave

0.219 0.888
N (EP) = (86)
0.332 0.085

Choosing a diagonal compensator Kc(s) = diag-{kj(s)} yml, 2 with
L
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kj(s) = k(i)+ 5_1 k(%), j=1,2, and application of condition (22) of theorem 1

gives the preliminary gain estimate

()
max kl < 1.43 (87)
]
where (26) has been used to represent the modelling error with A(s) = NE(EP).
Choosing kj(S) =1.2 + 5_10.3 , j=1, 2, the inverse Nyquist plots with confidence
bands again deduced from (26) are shown in Fig.10 verify that condition (ii) of
theorem 1 is also satisfied and the implemented scheme will be stable. This is
verified in Fig.ll. Confidence in the predictions can be obtained by reducing
the width of the confidence bands using filtered error data (section 2) but is
not necessary here and is hence omitted for brevity.
Turning now to the design of an integrating tuning regulator of the form
Kc(s) = diag {Ej} ?ﬁ(o)s‘-1 with KP given by (84) and
1.0 0
o) = (88)
0 1.04 .

chosen to represent the steady state behaviour of the diagonal dynamics and to

produce a simple loop controller.

Choosing T1=4.1, T2=1.O, g =3 0, the total variation of the error is given

1 2

by
0.288  0.888
No(EP) = (89)
0.332 0.085

aﬁd, using theorem 3 with );= Ex 0.727 < 1, we see that we can apply corecllary

3.2. to ensure stability'in the fange (equation (46)).

b} <gl< /2-1

. = 0.101 , o<g, < V2-1 = 0.414 (90)

1 T2

Choosing e = 0.1 and £2=0.2, the closed-loop unit step responses are shown in
Fig.12 and indicate the excellent tracking capability of the controller. Response
speeds can be increased and interaction reduced by incorporating proportional
control action but this is not considered here for brevity. Alternatively, the
proven existence of stabilizing loop controllers with estimated gain range can be

used to initiate on-line tuning operations on the integral gains € and €ye
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7. Conclusions

The paper has illustrated that the flexibility introduced into the design process
by offering the designer the capability of representing the plant by an approx-
imate model can be used to produce simple design procedures based on plant step
data for process plant which, after suitable precompensation, has one or more

of the properties,

(a) 'small' interaction effects as observed by inspection of transient step

data.

(b) simple response characteristics that suggest that the process can be modelled

in its dominant characteristics by first order 'delay-lag' models.

The illustrative examples of simple, but representative systems, indicates that

the procedures can work well in practice.

The material of section 2 has demonstrated that filtering and graphical total
variation calculations on step resﬁonse data can be used in a systematic way to
produce frequency domain error bounds that can be incorporated (section 3) into
a CAD framework for control design that is essentiallﬁ a general form of INA
technique that uses plant step data as its sytem description. A feature of the
methodology is hence that a detailed model of the process is not required for

the design study. Section 4 has demonstrated that Davison's tuning regulator
design method can also be set in the framework in the same way that suitable
choice of approximate model yields easily computed estimates of upper gain bounds
for feedback regulators. In its simplest form (corollary 3.2) the gains are
computed by simple 'back-of-envelope' calculations requiring minimal computational

backup.

Finally, we note that, when compared with detailed designs based on a detailed
plant model, the predictions obtained from the techniques are, of course, conser-
vative. This is a feature of many design techniques that seek to simplify the
design process by neglecting information on modelling errors or interaction
effects. Well known examples of this procedure are the INA method (that neglects
phase information on off-diagonal terms), the work of Rstrom [4} (that uses only
monotonicity and gross time-constant representation), the work of Davison [3]
(which uses only known stability and steady state data) and that of Lﬁnze [li]
(who uses upper bounds on i/o relationships for modelling errors). In each case,
conservatism is present (in general) but this need not prevent the attainment of
a satisfactory control design as illustrated by examples included above and in

the stated references.
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The desigﬁer is, in essence, taking advantage of a trade—off between the
computational and conceptual simplicity of an approximiate model as a vehicle
for design and the conservatism in the treatment of the modelling errors. The
trade—off will be sucecessful provided that the performance objectives are
compatible with the approximations involved. The theoretical CAD methods
described provide, in this context, a numerical indication of the success of

the approach.
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