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IMPROVED STABILITY AND PERFORMANCE BOUNDS USING APPROXIMATE
MODELS ! i

D. H. Owens and A. Chotai
Department of Control Engineering, University of Sheffield

1. INTRODUCTION

In this paper we study the problem introduced by the authors in ref [i] of
undertaking multivariable feedback control design for a m-output/L-input stable
linear system G based upon the use of a simplified stable approximate or reduced-
order model G,. More precisely, if a forward path controller K is designed to
produce acceptable stability and performance characteristics from the model Gp
in the presence of linear measurement dynamics F in the configuration of Fig.l(a),
we consider how information on the step response characteristics of the real
plant G can be used to predict the stability and performance characteristics of

the closed-loop system shown in Fig.l(b).

The main results of this paper show that the procedures described in [l] can
be improved in both their frequency domain and time-domain form by simulation-
based data processing using filters and the technical trick of using exponen-
tially weighted L  spaces in the underlying fixed point problem. The results
provide a substantial generalization of those described in ref [l].

2. BACKGROUND MATERIAL AND ASSUMPTIONS

In all that follows all elements G, GA, ¥ and F are assumed to be described *
by convolution operators in extended product L spaces. All impulse responses
are assumed to be exponentially bounded and the step response matrices Y(t) and
¥n(t) of G and Gp respectively are assumed to be known. The modelling error

will be characterized by the mx{ matrix

A
E(t) = [El(t),...,Ei(t)J = ¥(t) - ¥, (1) g t >0 (2.1)

1f f is a scalar continuous function defined on BLa> and of bounded variation
on any finite interval EO,tJ, then Nt(f} will denote [i the norm of £ on [O,t]

le

k
A
N (£) = |£(00)] + jzl ]f(tj) - f(tj_l)| + |£(e) - £(1) ] (2.2)
where O = to <t <t. < ... are the local minima and maxima of £ on ED,m] and k
is the largest ifiteger satisfying tk < t. For t = += we define

N_(f) = sup Nt(f) = lim Nt(f) (2.3)

t>o toe
whenever the limit exists.
The development in the paper depends critically on the use of a vector form

of the contraction mapping principle for fixed points and, in particular, on the
use of vector norms on product Banach spaces and associated induced vector
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operator norms. The reader is referred to ref [1] for details which are
omitted here for brevity.
!

3. FREQUENCY DOMAIN ANALYSIS

To motivate the general discussion we begin by considering the single-input/
single-output case m = § = 1. If D represents the normal Nygquist contour in
the complex plane generated by the imaginary axis s = iw, -R < w < R, and the
semi-circle |s| = R, Res > O with R 'infinitely' large, then the basic sufficient
condition ensuring the success of the approximation theorem can be stated as
follows [1] in terms of the transfer functions of G, GA' K and F:

Proposition 3.1: If K stabilizes G_ in the configuration of Fig.l(a), then it
will stabilize the plant G in the configuration of Fig.l(b) if

sup K(s)F(s)
seD | T#K(s)F(s)G, (s) l s IR (3.1)

where A(s) is any available real-valued function on D with the property that

lats) -6, (s)] <ats) , Y s€ED (3.2)

(Remark: stability is here, and in the following, interpreted as input/output
stability. Asymptotic stability requires the addition of (generically satis-
fied) controllability and observability assumptions on GKF).

The result is a phase-independent result in the sense that it ignores the

phase of the error G-GA. Clearly, the best result is obtained by choosing

As) = |a(s) - ¢, ()] (3.3)

as it describes the gain characteristics of the error exactly. The 'best’
frequency independent general choice of A is [1],

A(s) = N (E) ‘ (3.4)

obtained from the general result [l]:

Proposition 3.2: If L is a bounded convolution operator from L_(0,®) into it-
self with transfer function L(s) then, for all s€D

lnes)| < N () (3.5)

where YL(t) is the unit step response of L.

It can be expected that, between these two extremes, there is an infinity of
frequency dependent upper bounds on lG(s)—G (s)[ that can be used to refine the
results of [1] and yet do not need detailednknowledge of G(s). The following
result describes a class of bounds that can be obtained by filtering operations
on the error data E(t):
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Lemma 3.1: Let Fu be a filter with the properties that

4

(a) E FEEL (0,«), and ]
o o 0 ’

(b) Fa-l(s} is bounded and analytic in the open right-half plane.
Then, for all s€&€D,

|
lats) - GA(S)] < (s) 2 ]Fa (s)le(Ea) (3.6)

...l
P : i -G, = F - i i s =l
roof: Write G GA o (Fa(G GA)) and apply proposition 3.2 to FQ(G GA)

In the case of Fy = I, the result reduces to the bound (3.4) used in previous

studies. More generally, however, Fu produces a frequency-conscious bound
capable of producing more refined results approaching that of {3:.3)x For
example, choose F_ = (G-G )"l and note that Ea(t) = 1 and hence that (3.6)

reduces to (3.3). In practice this choice of F is not available but other,
more simple choices, can intuitively be used to produce easily computed inter-

mediate ‘estimates.

Estimates obtained from a number of filters can also be used:

Theorem 3.1: Suppose that K stabilizes G, and that {Fa} <A is a collection of
filters satisfying the conditions of lemma 3.1, then K s¥abilizes G if (3.1)

holds with

A(s) = AA(S) é inf A (s) (3.7)
oer Y

The result follows trivially from proposition 3.1 with

Als) - inf 4 (s) (3.8)
, o _
a€A
and is omitted for brevity. It is clear that suitable choice of {F_} will

enable a considerable refinement of the results of [l]. The resultahas a
simple graphical interpretation described below:

Corollary 3.1: The conditions of theorem (3.1) are satisfied if the following
conditions are satisfied

(1) lim K(s)F(s)
|s | L+K(s)F (5) G, (5) A, (s) <1 (3.9)
Reszo

(ii) the inverse Nyquist plot ofG,KF with s = iw, w>0, and superimposed
'confidence' circles of radius

r @ 26, aw | A, ) (3.10)
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at each point generates a'confidence band that does not touch or contain the
(-1,0) point of the complex plane.
!

[

Turning now to the multivariable case, it can be expected that the general
structure and conclusions of the single-input/single-output case will be
retained. The main result is stated as follows:

(i,j)}
a a€A(i,])
lfjfﬂ,, are filters satisfying the conditions of lemma 3.1 in the sense that

Theorem 3.2: Suppose that K stabilizes G, and that {F , l<i<m,

@ £ Lp43s e 0,0, and

o ij
i r j -1 . s .
(b)y (F (; 3) (s)) is bounded and analytic in the open right-half-plane

for all a€A(i,j), 1<i<m, 1<j<L. Then K stabilizes the real plant G if

-1
sup x( || (I +K(s)F(8)G,(8)) "K(s)F(s) | 501 <1 (3.11)
s€D
wherxe AA (s) is the mxf matrix with elements

(a0, & inf 13 (5)) Iy @03 (3.12)
E % o st o
a€A (i, )

Proof: Following the development of [1], a sufficient condition for stability
is that

i r((12+K(S)F(S)GA(S))—lK(S)F(S)(G(s)—GA(s))) <1 (3.13)
seD

and the result follows trivially from the inequality HG(s)-GA(s) ” P < AA(S) "

The result has an interpretation identical to the results of {l] and, in the
case of the choice of K, F and G, diagonal, it can be realized in the form of an

INA-type design process [1] - [3] .

4. TIME DOMAIN ANALYSIS

The simulation philosophy implicit in the discussion of section 3 can also be
used to bound the possible performance deterioration due to the approximation
in a similar manner to that described in ref I:l]

4.1. Input Assessment

The basic stability result underlaying the performance assessment can be
stated as follows [l] :

Proposition 4.1: If K stabilizes GA' then it will also stabilize G if

rn,” (W) <1 (4.1)
(3)

where WA(t) = [WA(l) (t),...,wA”') (t)] and, 1<j<%, WA (t) is the response from
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zero initial conditions of the system (I+KFGA)—1KF to the error data E(j)(t),

!

The response of the input is described by [1]

i % wie) & u, - (1+1<FGA>“1KF(G~GA)u (4.2)

which is here regarded as a fixed point eguation in X l(ta) with
o
A t
X (£)={f:e £€L_(0,t)]} (4.3)
o a © o

where t 1is to be determined from a contraction condition and the norm of f is
taken to be the norm of e®tfin Lm(O,td).

Proposition 4.2: Let L be a convolution operator from L (0,”) into itself with
impulse response satisfying Ih (t)l < h e'At, t>0, for some A>O. If £ Sy

the induced operator norm of L restrlcted to x (t ) SatlelESIIL” < Nt (YL;a)
for all o where o
] | g By (@)
N, (Y ;a) Y (o+) | + (v.) - N (Y.)) (4.4)
ta k=1 T M) "Ny

Y, is the unit step response of L, Bk(u} = atk if 0>0 or atk-l if «<0 and
_ < ... < _ : £
0 to < tl < t2 tN ta is any partition of ED,ta] with the property
< <o > 1. i =
that O h tk tk 1S < rk>1 Moreover, if tu +o, L maps xa(tu)

into itself for a<X with I[L” < N (Y_;a) < 4o,
- o' L

Proof: The induced norm of L in X (t ) is

[l ]

% (o+) | +f IhL(t)fdt
o

N B(u) %
IY ¥ | + } e f ]hL(t)]dt (4.5)

k=1 tk—l

which is just (4.4). It 1§ clearly finite if t is finite. If ta = +4w then

PA

N = +=, ~ If a<O then e < 1 so that Nm(YL'u) < Nw(YL) < 4w, If O<a<X then

Bk(a) tk atk—ltk_l

e / [hL(t)Idt <h (t -t )e

Y1
(a—A)tk+l(tk—tk_l)

1A

h (t tk 1

(a—l)khl Ah

h
hD 2e e

and the (infinite) series in (4.4) converges. This completes the proof.

2 (4.6)

1A
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It is easily verified that Nt (YL;a) is continuous and monotonically in-

o
i in both dt with N (Y_; =0 ; = s
creasing in o an & i o( L,a) and Nt(YL,O) Nt(YL) ?lso

Proposition 4.3: If condition (4.1) holds, then

* *
(i) for each choice of o, there exists ta>o such that, for taftu 7

P

¥ <

r(Nt (WA,a)) 1 (4.7)

p 2 th

where N (WA;a) is the £xf matrix with (i,3) entry Nt ((WA)ij;u),
o * % o *
(ii) there exists a >0 such that we can choose tcx = +» for a<a , and

1

(iii) if L = (I+KFGA)" KF(G—GA) satisfies the conditions of proposition 4.2
*
then we can choose o >0,

Proof: Follows simply from the previous discussion and is omitted for brevity.

We now state the main result of this section.

Theorem 4.1: Suppose that the conditions of proposition 4.1 hold and define
t
n(t) = =([ W, (t-t")H_(£')dt")g (4.8)
(o]

where Ho(t) ig the impulse response matrix of (I+KFGA)_1K and BGRE. 1f uA(t)

(resp u(t)) is the input response of the approximating (resp real) feedback
scheme of Fig.l(a) (resp Fig.l(b)) to the step set point signal r(t) = B, t>O,
then, for any choice of a, 1<j<%,

lu,8) - u, P )] < %, o<t<t (4.9)
j 3 -3 -=a
where
(a) u(l) (t) 2 uA(t) + n(t) ' t>0 (4.10)
(b) €% (t) = e"ut(Ig—NtP(WA;u))FthP(WA;a) sup et [Incen) || s (4.11)
O<t'<t

(the supremum being interpreted with respect to the partial ordering

(G

in Rg‘[l ), and
(c) t, is any time choice such that (4.7) holds true.

Proof: Condition (c) ensures that the unique solution to (4.%) can be obtained
by successive approximation [l] as W is a P-contraction in Xa (t) for any finite

t<t with
- O

P
lwix) - w) || g XN, (W, 70) [~y | b (4.12)

for all x,yEXaE(t) . Let the initial guess be u(o) = u, to yield the - first
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. (1) ; ; L
iterate u and the norm estimate in X (t)
o

a1 < CEURIURT R U RN ! (4.13)

Equation (4.9) then follows from the definition of the vector norm.

In the case of o = 0, the result reduces to previously published work [l].
The exponential weighting adds a refinement that can in principle be used to
tighten the bounds. .= In practice, it is envisaged that £+% will be computed for
a variety of choices of o in a selection set A and extending (4.9) to the form

(

Yt)| < ing eja(t) (4.14)

OEA
t<t

- o
by noting that both u and u(l) are independent of a. The possibilities inherent

here can be illustrated by recalling that previous studies suffered from the
problem that the bound e t) is monotonically increasing and hence that the
uncertainty at infinity e (=)>0. In contrast, the bound (4.9) may have the
property that €*(t) -+ O (t++e) provided that we choose a>0 such that

(i) t, = +* (ii) condition (4.7) holds and (iii) e*Pn(t) is uniformly bounded.
The technical background to the existence of such choices is omitted for
brevity but we note that it is necessary that n(t)»0 (t*+=) which can only be
ensured if E(t)-0 (t=4=) ie the plant and model must have identical steady state
characteristics!

[u, (£) - u,
J J

4.2. Output Assessment: The Single-input/single—output Case

In the case of m = £ = 1, output performance deterioration can be assessed in
a similar manner to input as described in section 4.1. The output response is
described by [l]
| y =W _(y) g y +-(I+KFG )—lK(G—G ) (E~F¥) (4.15)
o A A A
which is regarded as a fixed-point equation in X (t,). Input-output stability
is guaranteed if Proposition 4.1 holds which, in the case of m = £ = 1, reduces

to
Nm(WA) < 1 (4.16)

where WA is the response of (I+KFGA)_1KF to the error data E. A similar tech-

nigue to that used in the proof of theorem 4.1 then yields the result:

Theorem 4.2: Let (4.16) hold and define n(t) to be the response of the linear
system (I+KFGA)“1K(I+KFGA)“1 to the error data E(t). If yA(t) (resp y(t)) is

the output response of the approximating (resp real) feedback scheme of Fig.l(a)
(resp Fig.1l(b)) to a wnit step demand signal r, then, for any choice of a,

ly(t) - Y(l)(t)l < % (¢) ' S W _ (4.17)

where y(l)(t) A yA(t)+n(t), t>0,
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e (t) £ e_ut(l - Nt(WA;a))tht(W ;a) sup g |n(t')| (4.18)

o<t<t )
and tu is any time choice such that Nt (WA;G) < 1
o
Proof: The result follows in a similar manner to Theorem 4.1 noting that W_is
a contraction on Xa(t) for any finite t < t_ with contraction constant

Nt(WA;a) and using successive approximation with initial iterate y(o) = Yp and
(1)

consequent second iterate y = yA+n' The details are omitted for brevity.

As in the discussion following theorem 4.1 the choice of several o in an
index set A can be used to refine the result to the form

@ ey ] < inf  e*(e) (4.19)
a€A

t<t
-0

ly(t) -y

and by choosing d>0, it is possible to ensure that Ea{t)+0 (t2) by careful
choice of o providing that the modelling error E(t)-0 (t3«).

Similar results hold for the multivariable case but are omitted for brevity.
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Fig.l. (a) Approximating and (b) implemented feedback schemes



6. APPENDIX

Illustrative Examples

Example 1

Suppose that a single-input/single-output system has an (unknown) transfer

function
1
G(s) = W (6.1)
with step response Y illustrated in Fig.2(a). The second-order model of the
form
, 1
GA(S:) = “‘2— (6.2)
257 +38+1

was fitted, with step response YA again illustrated in Fig.2(a) and the error
E(t) = Y- YA
0.25 and hence

shown in Fig.2(b). The total variation, N_ (E) was found to be

le-¢,| = —g* < 0.25, Vs €D (6.3)

2s +7s3+932+53+1

To use (3.6), we need to find a suitable filter. For example, choosing

F o= _(1+ 28) 2 (6.4)
s(1l+ so)

we obtain the following data

o Noo (Eet) Aux(s)
0.1 1: 173 s(1+0.18)
T‘Wi_ x 1.173
1.0 0.774 s(1+s)
(1728) ‘ x 0.774
2.0 0.541 . i 23{ o . B

A (s) is shown in Fig.3 for the cases a= 0.1, 1.0 and 2.0, together with
I&(s)—Gﬂ(s)l' Using (3.7), a better upper bound on |G—GAlis obtained and

this is illustrated in Fig.4. Choosing the P+I controller of the form
K(s)=2.0+0.7s_1 with F(s)=1, the inverse Nyquist plot of GAKF=GAK with
superimposed confidence circles is given in Fig.5 for the cases A(s)=
N_ (E) and A(s) = inf Aa(s)

o€ [0.1, 1, 2]
Note that the radii of the confidence circles are smaller in the Fig.5(b).
Using the time-domain method for the above example, the respomse W (t) was
computed to be as in Fig.6 and graphical analysis of this response leads to

the conclusion that N_(W,) = 0.61<l, hence verifying the stability pred-
ictions for the real system.
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Using (4.4) we obtain following data

e Nyg Wyt
0.10 0.84
0.08 0.79
0.06 0.74
0.04 0.69
0.02 0.65

0 0.61
~0.05 0.55
-0.1 0.48
-0.3 0.31

Figure 7(a) shows the error bound ea(t) for various fixed values of a, and
0 : . a
the error bound £ (t) and improved e(t) = inf & (t)
o €A
tg 30

are shown in Fig.7(b). The bounds y(i)__
y and yp are illustrated in Fig.8 and the improved bounds y
with the responses y and y, are illustrated in Fig.9.

+ eo(t), together w%&? the responses
+ e(t), together

Example 2

Consider a plant with transfer function

G(s) = 1L (6.5)
1.+ 4z

The first-order model of the form

G. {s8) = 1 (6.6)
A 1. =+ 58

was fitted. The total variation, N () was found to be 0.164. Using the
frequency-domain technique with A(sY= N (E) and the P + I controller

K () = 5 4 5a - (6.7)

with F(s) = 1, the inverse Nyquist plot of Gpl with superimposed confidence
circles shown in Fig.lO indicates that the (¥1,0) point does lie in the
confidence band, hence the theory cannot predict stability or instability
of the real plant.

Now using the filtering method with

B, o= (1458 (6.8)
s(1 + as)

Aa(s) is shown in Fig.ll for the cases a=0.1 and 1,0 together with |G—GA',

using A(s) = inf A (s), the inverse Nyquist plot of G,K with superimposed
a A
ae [0.1,1]
confidence circles shown in Fig.l2 indicates that the (~1,0) point does not
lie in or on the confidence band and stability of real plant is hence guaran-
teed as the controllability and observability condition is satisfied.
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The time-domain analysLs lead to the error bound & (t), shown in Fig.13(a).
the error bounds ¢ (t) and e(t)= inf =« (t) are shown in Fig.13(b). The

(1) (1)

bounds y " + Eo(t) and y "+ €(t), together with the responses y and Yy

are illustrated in Fig.lé4.

Example 3

Consider a system with transfer function

G(s) = = B (6.9)
(s“+2s+4) (s+1)

with step response Y(t) illustrated in Fig.15{(a). The first—-order model
of the form

1
A TN (6.10)

was fitted, with step response Y (t) again illustrated in Fig.l5(a) and
the error E(t)=Y - YA shown in Fig.l5(b). The total variation, N_ (E) was

found to be 0.72.
Using the filtering method with
E = (L+ 2.58)° (6.11)

s(1+ os)

we obtain A (s) for various fixed values of a, sho in Fig.16. Choosing
the p + I coftroller of the form K(s) = 0.7 + O 6s ~ with F(s)=1; thé invesrse
Nyquist plot of GAKF with superimposed confidence circles is shown in Fig.l7

for the cases A(s)= N_(E) and A(s) = inf A (s).

The time-domain anglysls lead to the ergor bound € (t), shown in Fig.18(a).

The error bounds & (t) and e(t) = inf ¢ (t), are shown in Fig.18(b). The
1

bounds y( ):_Eo(t) and y(l)i_e(t), together with the responses vy and Y

are illustrated in Fig.l1l9.
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