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Abstract
A general gain phase structure for linear multivariable systems
is proposed and related to the ideas of quasi—Nyqﬁist loci and singular
value decompositions, the analysis of absolute stability using positive

real conditions and eigenvalue estimation using Gershgorin's theorem

and the numerical range.

A Introduction

A number of gain and phase characterizations of a linear mul tivariable
system described by the mxm invertible transfer function matrix G(s)
have been proposed in the form of

(i) the gain and phase characteristics of the characteristic
loci (Postlethwaite and MacFarlane, 1979) of G,
(ii) a use of the polar decomposition of G (Postlethwaite, Edmunds
and MacFarlane, 1981) and the identification of the gains
(resp. phases) of G with the eigenvalues (resp. arguments of
the eigenvalues) of the Hermitian (resp. Unitary) component
of the decomposition, and
(iii) the use of approximation methods (Hung and MacFarlane, 1982)
and the idea of systems gains and phases as the gains and
phases of the guasi-Nyquist loci of G.
In all cases we can associate 2m input/output directions that describe
the way that the gain-phase structure propagates through the system.

In general, the input and output directions are distinct unless G is normal.
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It is the purpose of this paper to explore the possibilities of
systems theoretical concepts of gain and phase from a physical definition,
to underline the infinity of possibilities that can be generated and to
relate the existence of particular gain-phase structures to system
properties such as positive-realness (Anderson, 1967; Kalman, 1963).

The use of gain-phase structures is also considered in eigenvalue
estimation with results similar in structure to those using diagonal
dominance concepts (Rosenbrock, 1974) and singular value regions

(Postlethwaite, Edmunds and MacFarlane, 1981).

2. A Gain-phase Structure for G

The input/output relations of G can be represented as
y(s) = G(s)u(s) ees (1)
where u and y are the input and output vector transforms respectively.
The physical notion of a gain-phase structure on G(s) can be formulated

as follows:

Definition 1: Let  be a subset of the complex plane on which G is

bounded and nonsingular. A gain-phase structure on G(s) relative to
consists of a pair of bijections (TuS,Tys) defined on for and parameterized
by s€Q and a collection gj(s), 1<j<m, of mappings of Q into C such that
the transformed inputs u(s) = Tusu(s) and transformed outputs y(s) = Tysy(s)

satisfy the scalar relations

}}j(s) = gj(s)ﬁj(s) 7 1<j<m , se e..(2)

If gj(s) = bj(s)el%(S) with bj and ¢j real and bj > O then the sets

b.
{]CS)}

1<i<m and {¢j(s)}lfj<m will be termed gains and phases of G(s) in



. The gain-phase structure will be termed continuous if Tus, T ®

and gj(s), 1<j<m, vary continuocusly with s on Q.

The definition says, in effect, that the system can be transformed
into m independent scalar systems by redefinition of inputs and outputs.
In principle, the transformations could be nonlinear but, to remain
consistent with the linearity of the system, we will only consider linear
transformations. The obvious example of a gain-phase structure is

obtained for systems with a spectral decomposition in & of the form

G(s) = W(s) diag {gj(s)}lfjfm V(s) eee (3)

with eigenvalues §j(s), 1<j<m, eigenvector matrix W(s) and inverse
eigenvector matrix V(s) = %(s) (where & is used to denote the inverse
of a matrix M). The transformations Tus and TYs are defined by
§(s) = V(s)y(s) and a(s) = v(s)u(s) respectively and gj(s) = aj(s),
1<j<m. Note that the structure can always be taken to be continuous.

The form of gain phase structure considered in this paper will be
of a 'projective' form. Let Q(s) be a Hermitian, positive-definite
matrix that is continuously dependent on s in {i. For each point s& @,
let CIn be given a Hilbert space structure defined by the inner product

*
<x,y> = X Q(s)y e s (4)

(where * denotes complex conjugate transpose). Let xj(s), 1<j<m, be
m linearly independent vectors in CIn depending continﬁously on s in §
and normalized by the natural normalization

<xj(s),xj(s)> = xj*(S)Q(s)xj(s) = 1 , 1l<jsm, sefl ...(5)

but not necessarily orthogonal with respect to <-¢,°>, Define the matrix

X(g) = [xl(s),...,xm(s)] . o« JB



and T ® and T i by
u Yy

~

als) = X (s)0(s)uls) ,  y(s) = X(s)y(s) Nz

A *
In effect uj(s) = xj Q(s)u(s) is the orthogonal projection of the input

~

onto xj(s) and yj(s) is the jth coordinate of y(s) expressed in terms

of the basis {xj(s)}1<j<m in c", The existence of a gain-phase structure

depends upon the relation between y and u. More precisely,

Definition 2: With Q and Q(s) given, the basis {xj(s)}l<j<m induces a
gain-phase structure on G(s) in § if there exists mappingsgj(s) of Q

into €, 1<j<m, such that relation (2) holds with ; and ; defined by (6)
and (7). The structure is continuous on f if, and only if, the mappings

gj(s), lsjfm, are continuous.

Definition 3: If the conditions of definition 2 are satisfied for some

choice of (continucus) {gj(s)} , the system G(s) is said to permit a

1<jfm

(continuous) gain-phase structure on { with respect to Q(s).

The following matrix definition follows trivially from the above:

Theorem l: The basis {Xj(s)}1<j<m induces a (continuous) gain-phase
structure on G(s) in Q if, and_o;ly if,
(a) G(s) =X(s)D(s)X*(s)Q(s) , sef ... (8)
(b) the diagonal terms of N(s) Q X*(s)Q(s)X(s) are all unity,
(c) D(s) is diagonal of the form
D(s) = diag {gj(s)} eee (9)

lfjfm

with (continuous) diagonal terms gj(s), 1<j<m.




To illustrate the generality of the decomposition, write the

spectral decomposition (3) in the form
G(s) = W(s)D(s)W () (V (s)V(s)) , sES ... (10)

and choose Q(s) = V*(s)V(s), X(s) = W(s) and gj(s) = éj(s), 1<j<m.
Conditions (a) and (c) of theorem 1 are satisfied and also condition (b)
as N = X*QX = W*V*VW = Im. We conclude that the spectral decomposition
of G is a special case of a gain-phase structure described in Definition 2.
If G(s) does not have a diagonal canonical form at every point s€fl
then the above analysis fails. The following result demonstrates,

however, that suitable choice of Q(s) guarantees the existence of gain-

phase structures.

Theorem 2: Let G(s) have a polar decomposition of the form

G(s) = U(s)H(s) ee.(11)
if, (s)
with U(s) unitary with eigenvalues e J 7 1fjfm, and H(s) Hermitian,

positive-definite with real eigenvalues 0(G(s)) 2 Ul(s) < Uz(s) < e
K =
< Gm(s) = o(G(s)). If U(s) has the spectral decomposition

if, (s) *

. : J
Uls) = Xo(s) diag {e }lf_jfm X (s) , s€Q 53 (12)

with Xo(s) unitary, then G(s) permits a gain-phase structure on ! with

A
respect to Q(s) = H(s) with

A , -1
X(s) = Xo(s) diag {aj (s)}lfjfm ... (13)
io, (s)
g.(s) = a, (s)e ,  l<i<m woue (1)
3 3 ===
— a.(s) & (x “(s)H(S)X (8)),. = a.(s) > 0, 1<j<m.
3 o o 33 3 ==

Proof: We verify conditions (a), (b) and (c) of theorem 1 by noting that

i, .

G = X diag{e J}x H
o o

*
X diag{gj}X Q from the definitions. This verifies



- *
(a) and (c) whilst (b) follows from the relation N = diag{aj %}xo HXO

diag{aj"%} and examination of the diagonal terms.

The result can be interpreted as stating that G permits a gain-
phase structure with phases ¢j(s) = Gj(s) equal to the principal phases
(Postlethwaite, Edmunds and MacFarlane, 198l1) and gains bj(s) = aj(s)

bounded by the principal gains cl(s),...,cm(s) by the relations

9(G(s)) < by(s) < o(G(s)), 1l<j<m, s€Q s v 5 {15]

m m
) b.(s) Y o.(s) ...(16)
j=1 j=1

1

as is easily proved by the definition of aj(s), 1<j<m, and noting that

11

tr H tr(XO*HXO). The gain-phase structure defined is very similar
to the quasi-Nyguist decomposition (Hung and MacFarlane, 1982) of G but
differs in that it associates gain with the principal phases rather than
phase with the principle gains.

It is clear that gain-phase structures do exist by suitable choice

of Q. In fact, an infinite number appear to exist and can be

characterized as follows:

Theorem 3: Given Q(s) and 2, G(s) permits a gain-phase structure on §
with respect to Q(s) if, and only if, the matrix
A A # -
M(s) = Q(s)G(s)Q(s)G (s) SO 1 By
possesses m linearly independent eigenvectors zj(s).r 1<j<m, at each point
s €0 with the property that

zj*(s)s(s)écs)zk(s) —0 ., j#k, sef ...(18)



Moreover, under these conditions, the structure is induced by xj(s},

lfj<m, defined by

~

z, (s)
2

Il

» 1<j<m, s€Q ...(19)

~ ok

x, (s) n
4 (2, Q(s)z, ()

L
A o o
where zj(s) is the jth column of Z (s) where Z(s) = [él(s),...,zm(s)].

The corresponding scalars gj(s), 1<j<m, are given by

A

g, (&) 4 (zj*(s)Q(s)é‘j (s))(zj*(s)scs)é(s)zj<s)) ... (20)

for 1<j<m, s€Q.

Proof: If G possesses the gain-phase structure (8) onfl, then

it .7 o * *
M(s) = X (s)D(s)D (s)X (s) ’ s€N .e0(21)

et
so that X (s) is an eigenvector matrix of M(s) in Q. We can therefore

identify zj(s) with xj(s), equation (18) following from the consequent
- ~ Ak

identity X(s)G(s)Q(s)X (s) = D(s) by equating off-diagonal terms.

Conversely, if M(s) has a complete set of eigenvectors zj(s), 1<j<m,

satisfying (18), it is clear that

* & é _ . %* ]
Z (s)G(s)Q(s)Z(s) = Do(s) &= dlag{zj (s)G(s)Q(s)zj(s)}lSjfm ... (22)

PO
or G £ 2 DOZQ which has the required form if the normalization (19) of

A %
the columns of Xo = Z 1is performed and leads directly to the form (20)

for gj(s), 1<j<m.

If the conditions on M(s) are satisfied, the result provides a
computation scheme for the factorization. In fact, the existence of
linearly independent eigenvectors is generically satisfied but not always

as evidenced by the example



G(s)Q(s) = =  M(s) swa (23)
If however, M(s) has a complete set of eigenvectors in {i, necessary
and sufficient conditions for the existence of the gain-phase structure

can be stated as follows:

Theorem 4: M(s) satisfies the conditions of theorem 3 if, and only if,
it has a complete set of eigenvectors and eigenvalues lj(s), 1<j<m, of
unit modulus only at each point s€Q.

Proof: Writing M(s)zj(s) = lj(s)zj(s) leads to

ok

QG Z ., = )\.GQZ, r l<’|<m o--(24)
a[ld h.ellce

®N % * ~
z G z. = A,Z Z. i 1<j,k<m aow (2D)
. 96 2, §% 692 <3.ks

By symmetry we obtain

" % *
zj QG z, = Akzj Gsz ; 1<j,k<m ...(26):
and hence
2Tz Feo 0 1<j,k 27
e - < < . e
(j ) 2 Gsz ' <j,k<m (27)

If all eigenvalues {Aj} are distinct and of unit modulus, it follows that

zk*(S)G(S)Q(S)Zj(S) =0 , k #£3, s€Q ...(28)

as required. If all eigenvalues are not distinct then (27) indicates that
(28) holds if Aj # Ak. Let M have distinct eigenvalues uj, 1<j<q, of
multiplicity qj, 1<j<q, and let Vj be the eigensubspace of Cm correspending

b
to uj. Let Vj be a quj basis matrix for Vj and set the eigenvector

b

; b
matrix Z = Ejl ,V2

b
peeerVy ]. Relation (28) indicates that



R
Z GQZ = block diag {Gj}lfjsq ..-(29)

where Gj is nonsingular of dimension qjxqj, 1<j<q. A simple calculation

yields

M = 2 block diag {&jGj*}lfij 7 34 130)
and hence é,G.* = u,Iq., 1<j<q. Each Gj is hence normal and we can choose
unitary qjxqj matricesJUj, 1<j<q, such that Uj*GjUj = diag{gjk}lfkéqj' 1<j<q.

*
Setting U = block diag{Uj} and applying to (29) yields (ZU) GQ(ZU)

1<j<q

to be diagonal and hence the columns of ZU are eigenvectors of M satisfying
the required condition (18). This proves sufficiency. To prove

g B
necessity, note that (18) requires that z), Gsz £ 0, 1<k<m, s€Q and
*" %

= o
hence, using (25) with j = k, Ak =2z, oG Zk/zk Gsz has unit modulus,

1<k<m, s& Q.

Corollary 4.1: Under the conditions of theorem 4,

arg gj (s) = njﬁ - % arg )\j(s) ¢ 1<j<m, s€Q ws o (31

by suitable ordering and choice of integers nj.

X ow
Proof: Use (20) to show that arg gj = arg(zj Gsz) = njﬂ = %arghj as

Il

— * -~ * B
(25) indicates that A, = z, GQz./(z., GQz.).
J J &Q J J & J

Although the unit modulus reguirement of the result appears to be

restrictive, the paper will illustrate that this is not so. For example,

Theorem 5: Sufficient conditions for M(s) to have linearly independent

eigenvectors and eigenvalues of unit modulus are that either

~

{(a) G(s)Q(s) is a normal matrix in Q or

(b) O¢.VO(M(S)) , s€EQ
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where

%N

VO(M(S)) {u:us= x*é(s)G*(s)x , x Q(s)x = 1} siww (32)

. *
is the numerical range (Bonsall and Duncan, 1971) of G with respect to

*A
the inner product <x,y>' é x Q(s)y in Cm.

~ *
Proof: For case (a), let GQ = VDOV with V = [%l,vz,...,vm] unitary and

* * .
oV so that lljl =1, 1<j<m, s €Q and we

Do diagonal. Clearly M = VBOD
can choose zj = vj, 1<j<m, s€q. For case (b), note that zk*Gsz # 0O,
1<k<m, s€Q and hence all eigenvalues of M have unit modulus from (25).
In fact M must have a complete set of eigenvectors otherwise we can choose

an eigenvalue XA and non-zero vectors X,y such that Mx = Ax and My = Ay+x.

It follows that

* 7~ * " *
Ax GQy = X QGy ...(33)
L * *x
X QGy = Ax GQy + x GQx saai34)
k™ ok

from which x QG x= O which is impossible.

There is hence a rich class of systems possessing gain-phase structures
for a given choice of Q, whilst theorem 2 indicates that a given system
permits a gain phase structure on { with respect to a non-empty set of Q.

Previous studies (Postlethwaite, Edmunds and MacFarlane, 1981;

Hung and MacFarlane, 1982) have noted that important design implications
follow from normality of G (when the input/output directions are orthogenal).
A similar situation can be identified for the gain-phase structures

presented above:

Theorem 6: If G(s) permits a gain-phase structure (8) on R with respect
*
to Q(s), then we can choose X (s)Q(s)X(s) = Im on § if, and only if,

G(s)0(s)G (s)a(s) = 0(s)G (s)Q(s)G(s).



= IF =

*
(Remarks: (1) X QX = Im simply means that the wvectors xj(s), 1<j<m, are

*
orthonormal with respect to the inner product <x,y> = x Q(s)y in e which,

if Q(s) = Im, reduces to the more well-known orthonormality condition

* y
xj (s)xk(s) = ajk' s€ 0 used in Postlethwaite, Edmunds and MacFarlane (1981)

and Hung and MacFarlane (1982).

~ %

~ ok
(2) The identity GQG Q = QG QG simply states that G is normal in the

sense that it commutes with its adjoint QG Q with respect to the inner
product <e¢,+> in Cm. This can be viewed as stating that Q%GQH% is normal.

In both interpretations, we obtain the classical normality condition

* *
GG =G Gif Q9 = I).

* "~k k%

* *
Proof: If G = XDX Q and X QX = Im we have GX = XDor GX = XD .

Ak
As (theorem 3) X can be identified with an eigenvector matrix Z of M,

*® AN % An g ok A g

* A ox
we conclude that G commutes with M ie G QGQG = QGOG G or GQG Q = QGOG

~ % ~ ok
as required. Conversely, if GQG Q = QG QG, s €0, we can use the implied

1 *
= VD.V where V

1 X =
normality of QTGQ & (remark (2) abowve) to write Q%GQ 1

is unitary and Dl is diagonal. After rearrangement this takes the form

*
£ lEV) o We note now that (theorem 1) this is a gain-phase

G = (Q V)Dl(Q

decomposition of G in § with Dl'identified with D and X with Q_%V and
* o P

E - -
X QX =VQ 00

vV = Im as required.

The normality conditions have a strong impact on the form of the

gj(s), lfjfm:

Corollary 6.1: Under the conditions of theorem 6, X(s) is an eigenvector

A

*
matrix of G(s) in Q, gj(s), 1<j<m, are its eigenvalues and X(s) = X (s)ol(s),
sefl.
(Remark: under the stated conditions, the gain-phase structure is essentially

that of (10) induced by the spectral decomposition).



— D s

* * A
Proof: If G = XDX Q and X QX = I, then GX = XD or G = XDX.

This 'spectral' result indicates that the gj(s), 1<j<m, can be
strongly related to the eigenvalues (and hence characteristic loci) of G,
equality holding under the 'normality' conditions of theorem 6.
Intuitively, it can be expected that the gj(s), 1<j<m, can be used
as approximations to the eigenvalues §j(s), 1<j<m, even if normality
is not present, the deviation from normality (represented by the elements
of X*QX—Im) being a measure of the quality of the approximation. We
will return to this problem in section 4 and content ourselves with the
observation that the gain-phase structures permitted by G have a strong
physical interpretation and links with well-established methods. This
theme is continued in the next section by relating the gain-phase

structure to positive-real properties of G.

3. Linear Absolute Stability and Positive-realness

The system G is considered in the presence of unity-negative feedback

with forward path controller K = pIm where p is a positive scalar.

Definition 4: G is absolutely stable in the linear sense (ASILS) if it

is closed-loop stable in the presence of all scalar gains p>O0.

Lemma l: G is ASILS if, and only if, it is stable and no eigenvalue

g.(s) of G lies on the negative real axis R Q {z : 2z=2 < 0} for

s = iw, -w<w<w,

Proof: A trivial application of characteristic locus methods (Postlethwaite

and MacFarlane, 1979).
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The following development indicates a strong relationship between
ASILS and the structure of gain-phase decompositions by taking
Q=1{z : z = iw, -»<p<w}. The analysis is initiated by the following

eigenvalue phase location result:

Theorem 7: Let G(s) permit a gain-phase structure on {i with respect to
Q(s). Then, for each point s€Q, all eigenvalues of G(s) lie in the
smallest closed cone P(gj(s); lfjfm) of vertex the origin of the complex
plane containing all gj(s), 1<j<m.
Proof: If |Mm—G(s)| = 0, then [J\Im—X*QXDl = 0. Defining the self-
adjoint 'frame-matrix'
A '

N(s) = X (s)Q(s)X(s) wn GO

this indicates the existence of a non-zero vector xécflsuch that

ANx = Dx and hence

1 v 2
A= —— ) g.(s)|x,|"€ P(g.(s); 1<i<m) s (36)
x Nx 3j=1 J J ]

o
as x Nx is real and strictly positive.

In many cases (namely when the phases of the gj(s) have a spread of
more than ) P(gj(s);lfjfm) will consist of the whole complex plane.
We will concentrate on the case when P is proper however. This

situation is formally characterized as follows:

Lemma 2: P(gj(s);lfjfm) is a proper subset of the complex plane if, and

only if, there exists a phase rotation 6(s) such that

i6(s)
e g

Re{ j(s}} >0 g 1<j<m wresns LD

(Remark: that is, all gj(s) can be notated into the closed-right-half

plane by a common rotation 0 (s)).
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Turning now to ASILS we obtain the following sufficient condition:

Theorem 8: Let G(s) be stable and permit a gain-phase structure on
Q= {z = iw, wZO} with respect to Q(s) with the property that either

ig(s)
e

(a) Ref gj(S)} >0 ' 1<j<m, S€Q wue [ 28]

ig(s)

or (b) Refe gj(s)} >0 p 1<j<m, s€Q = v (39)

where 8(s) is an angular rotation in the complex plane in the ranges
(a) [- %y gﬂ or (b) ]— gw'g[ respectively. Then G(s) is ASILS.

Proof: If G is not ASILS, there will exist sz, p>0 such that
i6(iw) i6 (i
Q) N iw+pet® ) p(iw) | = 0.  Let x
: ie’ ie
be any non-zero vector in the kernel of e N+pe D and note that

IIm+pG(im)| = 0 and hence |e

i6(iw) *-
e

x N(iw)x + px*(eie(iw)D(

iw))x =0 .+ (40)

Taking real parts yields

"o m T
0 = cos B(iw)x N(iw)x +p )} Ixj[2Re{elﬁ(lw)

g.(iw)} ... (41)
j=1 .

which is impossible under the stated conditions. G(s) is hence ASILS.

The geometrical interpretation of the conditions is simply that

(—1,0)§ér%gj(s); 1<j<m) ,  s€Q ... (42)

which (lemma 2) precludes the possibility of any characteristic locus
crossing the negative real axis of the complex plane. A systems

theoretical connection is obtained by writing

-i6 (s) s)

03 5510014622 B g(s)67 (8) = x(s)diagizre (™

*
gj(S)}}lfjme (s)

... (43)

which indicates that the conditions (38) and (39) of theorem 8 are satisfied

ie ~ -iB” * ; s g .
if, and only if, e” GQ+e o QG is positive definite and positive semi-
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definite respectively. These connections with positive realness can

be strengthened as follows:

Theorem 9: G(s) is strictly positive real on 2 in the sense that
*
G(s) + G (s) >0 . s€Q ... (44)
if, and only if, there exists an mxm nonsingular matrix X(s) and

functions gj(s), 1<j<m, defined on & such that

1

*
(a) G(s) = X(s) diag {gj(s)}x (s) sEQ
and (b) gj(Q) lies in the open right-half complex plane, lfjfm.
(Remark: The conditions correspond to the requirement that G permits

a gain-phase structure on { with respect to Q(s) = Im with the property

that the phases of the generated gj(s), 1<j<m, lie in the interval

l“%;';-r'[in Q).

Proof: Sufficiency follows from (43) with 6(s) = O and Q(s) = Im.
Necessity follows from theorem 5(b) by noting that (44) implies that
C)QEVE(M(S)) and hence that the factorization (a) above exists.

Condition (b) follows from (43) again as G+G*>O implies Re{gj(s}}>0,

- 1<j<m, SEGN.

In essence, the result states that G(g) is strictly positive real
in § if, and only if, the m scalar functions gj(s) are strictly positive
real on . This is rather a nice intuitive result consistent with
the idea pervading multivariable control (Postlethwaite and MacFarlane,
1979; Owens, 1978; Rosenbrock, 1974) that mxm systems are best
characterized for design purposes by m (independent) scalar systems.

A similar (but slightly weaker) statement can be made for positive-real
systems, but requires the process G to possess a defined (generic)

structural property:
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Theorem 10: There exists an mxm nonsingular matrix X(s) and functions

gj(s), lfjfm, defined on @ such that

*
(a) G(s) = X(s) diag {gj(s)} . X (s) , el
(b) gj(ﬂ) lies in the closed right-half complex plane, 1<j<m,
if, and only if,

(1) G is positive real on Q in the sense that

Gm)+(;(@ >0 . sEN vuie (45)
and (ii) R(G(s)-l-G*(s)) N G(s)ker(G(s)+G*(s)) = {0} , s€ ... (46)

(Note: Here R(K) and ker(K) denote the range and kernel of K respectively) .
Proof: To prove necessity note that (i) follows from (43) with 6(s) = O

and Q(s) = Im whilst (b) follows by noting that, for s&€Q,

R(G(s)+G (8)) = span(x,(s); g (e) + 3 (s) # O} ... (47)
whilst
* —_—
G(s)ker (G(s)+G (s)) = span{xj(s); gj(s) + gj(s) = 0} ... (48)

where X(s) = [xl(s),...,xm(s)]. To prove sufficiency, suppose that z
-1 * *

is an eigenvector of M = G ~G with eigenvalue X ie G z = AGz. If

* * * *
z Gz = O, then z (G+G )z = O and hence (G+G )z = O ie A= -1. If

* * % *

z Gz # O we have A = z G z/z Gz which has unit modulus. We conclude
that all eigenvalues of M have unit modulus on Q. To prove the existence
of a complete set of eigenvectors, let A be an eigenvalue of M. Suppose
that there exists non-zero vectors X,y such that Mx = Ax and My = Ay+x.

*
Equations (33) and (34) then hold with Q = Im and hence x Gx = 0. From
the above this requires A = -1 ie all eigenvalues A # -1 of M have
*

geometric multiplicity one as required. If A = -1 then (G+G )x = O

* *
and (G+G )y = Gx. Condition (ii) then implies that (G+G )y = O ie

My = -y and x = O contrary to assumption. M(s) hence has a complete
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set of eigenvectors and eigenvalues of unit modulus only on .
Theorem 4 then indicates the existence of the gain-phase structure
(a) for G(s) on Q whilst (b) follows from (43) and (45). This

completes the proof of the theorem.

The interpretation of the result is identical to that of theorem 9
with positive-realness of G being equivalent to positive realness of the
m scalar functions gj(s), 1<j<m, provided that G(s) possesses the
structural characteristic (46). This constraint is important as can
be seen by the example of equation (23) with Q(s) = 12 which satisfies
G+G* >0 in any set Q but does not permit a gain-phase factorization
as M does not have a complete set of eigenvectors.

To conclude this section, we note that the gain-phase structures
described above are capable of describing many dynamic phenomena in
linear open-loop and closed-loop systems. The examples included
demonstrate that both spectral and polar decompositions can be set
in this framework including an intuitive relationship between the
spectrum of G on Q and the functions gj(s), 1<j<m, expressed in terms
of the deviations of G from normality. Also the existence of positive-
realness properties of G(s) is equivalent to the existence of certain
types of gain-phase structures. Thig connections are pursued further

in the next section by examination of the applications in eigenvalue

location.

4, Eigenvalue-estimation using Gain-phase Structures

Eigenvalue estimation plays an important role in design theory
(Postlethwaite, Edmunds and MacFarlane, 198l; Hung and MacFarlane, 1982;

Rosenbrock, 1974; Owens, 1978), and, in the authors opinion, can be
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fruitfully developed further. The use of gain-phase structures of the
general tyve discussed in this paper is considered in this section
based on the use of Gershgorins theorem (Rosenbrock, 1974; Owens, 1978)
and singular values and the numerical range (Bonsall and Duncan, 1971).
Throughout the section it will be assumed that G(s) permits a gain-phase
structure on £ with respect to Q(s). The 'frame-matrix' N(s) defined

by (35) will play an important role in the development.

4.1. Eigenvalue Estimation using Gershgorins Theorem

A complex number A is an eigenvalue of G(s) if, and only if,

|A1_-G(s) | = o.
m

Theorem 11: If X is an eigenvalue of G(s), then kEI%(S) for some j in

the range 1<j<m where Bj(s) is the circle

A
By(s) = {nec : |u~gj(s)] < Igj(S)l k;j [Njk(s)l} ... (49)
of centre gj(s) and radius
r.(s) 2 lg. ()| ) [N, (s)] ... (50)
3 ;| . Jk

k#3

Proof: The eigenvalues of G(s) are identical to those of D(s)N(s) and
the result follows by application of Gershgorins theorem (Rosenbrock,

1974; Owens, 1978), noting that ij(s) = 1; 1£j<m,

Corollary 11.1: If G(s)Q(s)G*(s)Q(s) = é(s)G*(s)Q(s)G(s) then the eigen-

values of G(s) are identical to gj(s), 1<j<m, and rj(s} = 0, 1<j<m.
(Note: this result duplicates corollary 6.1 and is stated for interest
only as it relates the normality condition to the Gershgorin circles

defined above).
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Proof: From theorem 6, N(s) = Im and hence rj(s) = 0, lfjfm, the result

being completed by application of corollary 6.1, or the following result:

Corollary 11.2: If A is a subset of {1,2,...,m} with g(A) distinct

entries with the property that

t U seng U se1-=9 o (51)
jea 7 jé&a '

then (_) B, (s) contains exactly gq(A) eigenvalues of G(s).
jE€n
: Repl i i N = (6§, + -
Proof place N(s) by NE(S) with entries ( E(s})jk i ik e(l ij))Njk(s)

and O<e<l and apply an eigenvalue continuity argument using theorem 11.

Note that the radii of the circles rj(s) depend critically on the
off-diagonal structure of the 'frame matrix' N(s). Corollary 6.1 and
11.1 indicate that, if the off-diagonal terms are zero the gj(s), 1<j<m,
are equal to the eigenvalues of G(s) whilst theorem 11 expresses the
magnitude of the approximation errors invelved in approximating the
eigenvalues by gj(s), 1<j<m, in terms of the off-diagonal terms of N(s).
The closer G is to normality (in the sense of theorem 6), the better the
approximation involved! These results are an exact analogue of those
té be found in Hung and MacFarlane (1982) but valid for the more general
gain-phase structures considered here.

The structure of N(s) has other implications:

Proposition 1: C)géBj(s), 1<j<m, if, and only if, N(s) is diagonally
dominant.

Proof: C)eéfg(s) iff rj(s)/|gj(s)| < 1 which is equivalent to row
dominance of N(s). As N(s) = N*(s), an identical conclusion follows

if N is column dominant.
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In particular, it is possible to prove a simple stability result
similar in structure to the direct Nygquist array (Rosenbrock, 1974;
Owens, 1978) but likely to be less conservative as the Gershgorin circles

used will have small radii if G is near normal in the sense of theorem 6.

Theorem 12: Let Q be identified with the Nyquist contour in the complex
plane. Then G(s) is stable in the presence of unity-negative feedback
if

m
(1) n_+ }) n, =0 es 5 0]
o} j=l J

where nj is the number of clockwise encirclements of the (-1,0) point by
the image Tj of  under the map sr—rgj(s) and ng is the number of poles

of G in the interior of &, and

(2)  (-1,0) éBj(s) ' 1<j<m , s€Q ... (53)

Proof: The proof is based on theorem 11 but is identical to standard
proofs to be found in Rosenbrock (1974) and Owens (1978). It is hence

omitted for brevity.

An inverse Nyquist form of the result is stated as follows,

Theorem 13: If § is the Nyquist contour, then G(s) is closed-loop stable
if

m
() n_+ ) (n,-n,) = O ' ce . (54)
o i, J 3

~

(b) (-1,0) ¢Bj(s) i lfjfm, s € Q where Bj(s) is the circle

& ]
B. eC @ =
5(8) = {u |u 9y

(s)| < § |n, (s)|} ... (55)
Txdy o K

~

where nj (resp. ﬁj) is the number of clockwise encirclements of the (-1,0)
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(resp. (0,0)) point of the complex plane by the image Tj of © under the

map s¥¥* gj_l (s).

proof: Write |I+G(s)| = |I+DN| = |13+N|/|13I and apply standard INA

arguments remembering that ij(S) 21, 1<j<m.

A number of other results can be derived based on gain-phase structures
on G(s), but they are omitted for brevity. Note however that the

possibility of either approach exists simultaneously:

Proposition 2: If G(s) permits a gain-phase structure on  with respect

to Q(s) that so does G(s).
* % B B Ky o
Proof: If G = XDX Q, then G = QX DX = (QX )D(QX ) Q which is a gain-
& ARk

phase structure on G after normalization of the columns of QX .

4.2. Eigenvalue Estimation and Singular Values

In this section we continue with the use of gj(s), 1<j<m, and the
' frame matrix' N(s) in eigenvalue estimation to obtain results similar
in structure to those of Postlethwaite, Edmunds and MacFarlane (1981).
The results essentially add gain information to the phase spread
information provided by theorem 7. We begin with a statement of
Postlethwaite's result (198l1) using the cone notation of
theorem 7 and using

A(a,b) - {z€C : a < |z| < b} ... (56)

to denote an annulus in the complex plane of internal and external radii

a and b respectively.

Theorem 14: With the notation of theorem 2, all eigenvalues of G(s) lie

in the set



= P8 =

A _ ie, (s)
s_,(8) = Alg(6(s)),a(G(s))) N Ble 7 5 1<icm) ves (57)

The following results have a structural similarity to the above but

are expressed in terms of general gain-phase structure permitted by G.

*
Theorem 15: Let the Hermitean, positive-definite matrix No(s) £ N(s)D (s)D(s)N(s)
have eigenvalues O < ulz(s) < u22(s) < .. < umz(s), then all eigenvalues
of G(s) lie in the set

A .
Sgp(s) = Aly (s),u (s)) N P(gj (s); 1<j<m) ... (58)

Proof: If A is an eigenvalue of G(s), then theorem 7 indicates that

AGEP(gj(s); 1<j<m). Note that ) is also an eigenvalue of D(s)N(s) and

2 <y ? ana

* *
write DNy = Ay in the form lk|2y y =y Noy ie plz < |A h T

AEA (pl i um) as required.

The similarity in the structure of theorems 14 and 15 is best made

apparent by noting that pl(s) = og(D(s)N(s)) and um(s) = g(D(s)N(s)) and
1¢j(s); 1<j<m).

that (using the notation of definition 1) P(gj(s); 1<j<m) = P(e

The results are therefore identical in structure with DN replacing G for
the calculation of the annulus and the phasestﬁj replacing the principal
phases in the calculation of the cone P. Note the following observations:
(1) As the sufficient conditions for closed-loop stability described
by Postlethwaite, Edmunds and MacFarlane (1981) depend only on
the fact that all eigenvalues of G(s) lie in the region Ssv(s)
for all s€Sl, the results still hold true if Ssv(s) is replaced
by SGP(S) for all s€Jfl. The details are omitted for brevity
but we note that the flexibility available in the choice of Q(s)

can make possible a refinement of their results. More precisely,
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(2) the flexibility in the choice of Q(s) can locate the eigenvalues
to the interaction of an annulus and a cone of smallest area.
This is easily proved by noting that, if Q(s) is chosen to
satisfy the normality conditions of theorem 6 we have
N(s) =1 , ; = g.(s 1<j<m, and S = A (mi q

(8) = I, g (s) = §(s), 1icm o (s) = Almin |gj(5)|r

J
max |§j(s)|) n P(éj(s); 1<j<m) which is clearly the smallest

J
set (of the type considered) containing the eigenvalues of G(s),

and is contained by SSV(S) unless G(s) is normal when equality

holds.

4.3. Eigenvalue Estimation and the Numerical Range

The numerical range V(R) of a complex mxm matrix R en " regarded as
*
a Hilbert space with inner product <x,y> = X ¥ is defined (Bonsall and
Duncan, 1971) to be the subset of the complex plane defined by

* *

V(R)é{vEC:u=xRx,xx=l} e (59)

V(R) is known to be compact and convex but, for our purposes, we will need
only the following structural and spectral properties (Bonsall and

Duncan, 1971).

Proposition 3: If R = diag{rj} is diagonal, then V(R) is the closed

1<j<m

convex hull CO{rj}lfjfm of the point set {rj}lfjfm'

Proposition 4: If Rl and R2 are complex mxm matrices with C)ﬁé V(Rl),

then Rl is nonsingular and all eigenvalues of Rl_lRZ lie in the compact

set

A T
V(Rl,Rz) = {uyec : u ATE, Aev(Rl) + E,ev(Rz)} ... (60)




oo [,

Proposition 5: If R is Hermitian with (real) eigenvalues rl < r, L g €

then V(R) is the real interval [rl,rmp regarded as a subset of the complex

plane.

Our main concern here is the combination of the gain-phase structure
with the eigenvalue location possibilities inherent in the numerical
range as indicated by Proposition 4. These possibilities are formalized

in the following result.

Theorem 16: All eigenvalues of G(s) lie in the compact, convex set

1]

A B
Syp(®) = (n€c s w=2g, A€l (@)n ()] , £ecoly e)l) yp})

NR <m
...(61)
where O < nl(s) < nz(s) <.l < nm(s) are the (ordered) real eigenvalues
A *
of N(s) = X (s)Q(s)X(s).

Proof: All eigenvalues of G(s) are identical to those of ND. Apply

Proposition 4 with R2 = D and Rl = N noting that (Proposition 5)

V(R) = [nm-l(s),nl“l(s)] # 0 and (Proposition 3) V(R,) = Eg{gj(s)}b:jfm'

Note that SNR(S) is easily computed graphically as the area contained

between all lines joining points in {gj(s)}l<j<m and scaling using points
in Dﬁ}s),nm(s)]. The result has a very similar structure to theorems
14 and 15 as can be seen by writing

5g,(8) = (ueC : u = A& , A€ [9(6()),3(G(s»] and

io, (s)
£E= aof|al] with 0#a € Ple o 1<j<m)} ... (62)

Sep(s) = {MEC : w=2E, A€[u (), ()] and

£= af|a|] with 0#a €& P(g (s); 1<izm)} ws ¢ (B3]

r

I
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The set SNR(S) has a distinctly different shape however. This fact is
underlined by the example of section 4.3. We conclude this section
however with the following observations paralleling those following
theorem 15,
(1) The results of Postlethwaite, Edmunds and MacFarlane remain
valid with SSV(S) replaced by SNR(S). - In fact any combination

of S s and SNR will do as, for any eigenvalue A of G(s),

sv’' “gp

)€ ssv(s) N SGP(S) N SNR(s) ... (64)

which could represent a considerable refinement in eigenvalue
location.

(2) Theorem 16 potentially provides the best choice of eigenvalue
estimates as, under the normality conditions of theorem 6,
N(s) = Im' gj(s) = Qj(s), 1<j<m and SNR(S) is just the convex
hull of the spectrum of G(s). Under these conditions, it is
trivially verified that

=
SSV(S) SGP(S):D SNR(S) ++ 4+ (65)

whenever inf{z : z SNR(S)} is achieved by z = gj(s) for some

index j.

4,.3. Illustrative Example

To illustrate the form of the results described above consider the

constant transfer function matrix

G(s) = —ciY)

with polar decomposition G = UH of the form



= B =

G(s) = e (67)
o 1 ] 1

The corresponding gain-phase structure obtained from theorem 2 by choosing

Q(s) = H is simply

)
= 9 21 o] 9|2 1
G(s) = V2 V2 s 5o NGB
' 0 1 o 1 o 1 {1 1
with the natural identification of
LI
X(g) = V2 , gj(s) =2i , gy(s) =1 ...(69)
o 1

Considering first the eigenvalue estimation using singular values

6. =0 d
r 2 an

ST

using theorem 14, the principal phases are simply 61 =

2.618. That is

the principal gains are g = 0.382 ¢

c <2618, 0<¥<z} ...(70

S (s) ={z : z =ce™”, 0.382

I A

Turning now to the gain-phase structure (68), a simple calculation

yvields

(Yo}

N (g) = ... (71)
o

w w
N

-9
V2

and hence ul = 0.3685, My = 2.7137. Invoking theorem 15 leads to

}oes < [72)

[N

Sgp(s) =1z : z = ce™ | 0.3685 < c <2.7137 , 0 <y <

which is slightly more conservative than (70). In contrast theorem 16

leads to
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SNR(S) = {z = A , 0.2929 < Ax1l.7071 ,E = 2ia+(l-a) , Ofufl}

eee (73)

as

=

1
V2 s 74)

I

N(s)

=

1
V2

and hence nl(s) 0.2929, n2(s) = 1.7071. The relative form of the results
is shown in Fig.l where both Ssv(s) and SNR(s) are given together with

the eigenvalues

A1=11+i(1+—‘/§—_) ’ A2=%+i(l—"/2§_~) . » o LT5)
of G(s). Note the distinctly different shapes of the regions, the
singular value estimate being a better estimate of maximum eigenvalue
gains corresponding to phases in the vicinity of g and the numerical
range estimate being better in all other areas. Clearly the intersection
of SSv and SNR yields an improved estimate and further improvements are
possible by incorporation of the Gershgorin circles (theorem 1l1l) as
illustrated in Fig.l.

Finally, the improvements possible by choosing Q(s) can be illustrated
by choosing

2 1-241

o(s) = % ... (76)
1421 4

*
when G = XDX Q with

; /3 . V3
gl(s) =% + i(l + 5 ), gz(s) =% 4+ i(l - 7;-) i )



- 28 -

and
“hbi (147'/5) 34 (1--?- )
X(s) = ... (78)
1 1

*

A simple calculation yields N = X QX = 12 when theorem 15 leads to

S (s) ={z : z= celIJJ , 0.517 < c < 1.93 , 0.26<y<1.30 §
G -7 T wws (79)

whilst SNR(S) = ES'(gl(s),gz(s)) is just the line segment joining gl(s)

to gz(s). In fact, as N = I_, Corollary 6.1 indicates that gl(s) and

2!

gZ(S) are the eigenvalues of G(s).

Sa Interchange Phenomena

Although theorems 3 and 4 provide both a computational and spectral
characterization of the existence of gain-phase structures, they do leave
open the structure of the system if the conditions are not satisfied.

In particular, it leaves open the question of whether an alternative
structural decomposition exists that permits a physical interpretation.
The following treatment is not exhaustive but indicates that the answer

can be positive.

==1
Lemma 3: If XA is an eigenvalue of M, then so is A .

* * - % %
Proof: If Mz = Az then G z = AGz or z G = Az G ie A is an eigenvalue

il
G .

* -
of GG . and hence an eigenvalue of M = G

For simplicity, we concentrate on the case when M(s) has a complete
set of eigenvectors zj(s),.ifjfm, corresponding to distinct eigenvalues
Kj' 1<j<m, but allow the possibility that the eigenvalues do not have
unit modulus. Using lemma 3, there exists a permutation QS of {1,2,...,m}
with the property that ls(ls(j)) = j, 1<j<m, and such that Xj_l - Ags(j).

Using this fact in (27) yields the 'orthogonality' relation, s€
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* A~
2, (s)G(s)Q(s)zj(s) =0 g k # Es(j) ... (80)

Let X(s) £ [xl(s),x2(s),...,xm(s)] be defined by (19) and let P2 be the
S

mxm permutation matrix defined by

2
= P = i <j< . s
P£ Im i Iy ej el 4) 1<j<m (81)
=] s s
T
where e. = (1,0,0...,0)", e, = (0,1,0,...,0),... are the natural basis

1 2

: m ;
elements in C . We obtain the result:

Theorem 17: If M(s) has a complete set of eigenvectors on @ with distinct
eigenvalues, then there exists a nonsingular matrix X(s) on & and

permutation PE on {§ such that
s

*
(a) G(s) = X(S)P£ D(s)X (s)Q(s) ... (82)
> :

*
(b) the diagonal terms of X (s)Q(s)X(s) are all unity, and
{c) D(s) is diagonal of the form of equation (9).
Proof: Using the above discussion, equation (80) indicates that the

matrix

~ A %
pts) & P, X(s)G(5)Q(8)X (s) ... (83)
=]

has zero off-diagonal terms. Requirements (a) and (c) follow immediately

from the fact that Pz e PR e
s s

(b) following from the normalization (19).

In the case when M has eigenvalues of unit modulus only, theorem 4
indicates that RS is the identity and PR = Im which reproduces the
previous results. If, however, M has eigenvalues of non-unit modulus,
Rs is not an identity permutation and the result differs from previous

work. To obtain a physical interpretation of the gain-phase structure
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(82), note that the input-output transformations (7) are still defined

and possess the same physical significance but that y = Gu reduces to

yls(j) (s) = gj(S) uj(S) ' 1<j<m, s€Q ... (84)

Comparing with (2) we see that a physical gain-phase structure still
exists but that the projection Gj(s) of the input onto xj(s) is modified
inrgain and phase by gj(s) and injected into the output coordinate
§£s(j)(s) rather than §j(s). As Rs(Es(j)) = j, 1<j<m, we see that
ais(j) is injected into §j(s) and hence the input-output relations have
suffered a loop-interchange.

In principle, the modified gain-phase structure (82) could be used
in eigenvalue estimation.in a similar manner to that described in section
3« In particular, this will change the form of the Gershgorin circle
based results.{theorem 11) as N is replaced by X*QXPQ, producing
substantial off-diagonal terms in DN even if X*QX is diagonal. This

problem is not pursued further here except to state the following special

case motivated by theorem 6 and corollary 6.1.

Proposition 6: If G(s) permits a gain-phase structure on {i with respect

*
to Q(s) of the form of (82) with loop interchange and X (s)Q(s)X(s) = Im,

i = i i) =3 +Ve
then G(s) has eigenvalues A gj(s) if ﬂs(j) j and gj(s)gﬁsfj)(s)
if 2_(3) # 3.

*
Proof. Note that the eigenvalues of G are those of DX QXPQ = DPR'

Note, in particular, that the presence of loop interchange ensures
that at least two eigenvalues of G(s) differ in phase by exactly m radians.
Theorem 15 fails in the presence of loop interchange as theorem 7

is no longer wvalid. It is possible to state however that all eigenvalues



T

of G(s) lie in A(ul(s),um(s)) if No is replaced by N(S)D*(S)P* P_ D(s)N(s),

LR
s s
but this result carries no phase information whatsoever. In the case of

theorem 16, a similar result still holds with SNR(S) replaced by

A -
s,p(8) = {u€c : u=2g, A€ [nl(s),nm(s)_l , EE€ V(stn(s))}
... (85)

but the form of the numerical range V(PQD) is relatively complex. These

problems are not pursued further in this paper.

6. A Note on Normalization

In mathematical terms, the normalization (5) is not necessary for
the existence of factorizations of G(s) of the form of (8), although,
physically, it is preferred to use the normalization to provide a
physical interpretation of the structure. If the normalization
requirement is removed then the existence of one factorization implies
the existence of an infinity of factorizations with the gains of gj(s),
lfjfm, arbitrary. In this situation the polar decomposition of G(s),
written in the form (11l) with U(s) expressed in spectral form (12) is
an unnormalized gain-phase structure with Q(s) = H(s), X(s) = X (s) and

i0. (s) ©
gj(s) =e y 1<j<m, consisting of a pure phase change.

The effects of the removal of the normalization condition is to
require substantial modifications to the material of section 4.1 (which
relies heavily on the fact that the diagonal termsof N(s) are unity).
All of the results of section 4.2 and 4.3 still hold however and illustrate
the fact that an infinity of eigenvalue location sets can be identified.

For example, if G(s) is expressed in polar form (as described above)

theorem 15 still holds with uj(s) = oj(s), 1<j<m, s€Q, so that



— B

i6, (s)

A(dl(s),uﬁ(s)) N P(e J ; lfjfm) = S,,(s). That is the

s __(s) -

GP

location of eigenvalues using the polar decomposition (theorem 14) is
simply a special case of the eigenvalue-location possibilities using
unnormalized gain-phase structures. The possibilities inherent in
the numerical range methodology (theorem 16) are more interesting
however. Again, we will consider G(s) in polar form as described

above and note that theorem 16 still holds with

A _ __ie,(s)
Syg(s) = {u€c :u =g, A€ [a(G(s)),0(G(s))], Eecole 7}

1<j<m
...(86)

which represents a previously unnoted eigenvalue location theorem

expressed in terms of principal gains and phases of G(s). For the

example of section 4.3, it is easily verified that Bl = g-, 62 =0

and the unnormalized gain-phase structure leads to

SNR(S) ={z : z=Xf, 0.382 < A < 2.618 ,§ = a+i(l-a), O<a<l}
... (87)
as illustrated in Fig.2. A comparison with Fig.l indicates that the
change of normalization leads to a change in the eigenvalue estimate.

Finally, to underline the potential benefits of combining eigenvalue

estimates, we note the following special case:

Proposition 7: If G(s) is unitary on {i and SSV(S) and SNR(S) are defined

by (57) and (86) respectively, then S (s) is identical (with

sy(8) O Syp

appropriate multiplicities) to the set of eigenvalues of G(s).
Proof: If G is unitary then H(s) = Im so that E(G) = E(G) = 1 and the
if,

eigenvalues of G are simply e J, 1<j<m. Clearly Ssv{s) is a subset

of the unit cirele in C whilst SNR(s) (as given by (86)) is a polygon
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contained in the closed unit circle and touching that circle at the
ig,

J

points e , l<j<m.

e Conclusions

Starting from a physically motivated definition, the paper has
demonstrated that linear dynamic systems represented by an mxm transfer
function matrix G(s) can be viewed as permitting an infinite number of
gain-phase interpretations characterized by positive-definite, self-
adjoint matrices Q(s), bases {xj(s)}l<j<m for ¢ and m scalar 'transfer
functions' gj(s), 1<j<m, describing the input-output relationships
between 'projections' of the input onto the basis {xj} and coordinates
of the output in the basis {xj}. The generality of the framework has
been demonstrated by the fact that the spectral decomposition and polar
decomposition of G(s) can be regarded as special forms of gain-phase
structures and yet an infinity of other decompositions can exist by
suitable choice of Q(s).

The basic physical motivation for the gain-phase structures indicates
that they can have a real physical interpretation and systems theoretical
implications. This fact has been underlined by a proof of the equivalence
of positive-realness to the existence of a specific form of gain-phase
structure characterized by m positive-real scalar systems. The
possibilities of their application in systems analysis and control
design seems to be promising as illustrated by applications to eigenvalue
(characteristic loci) estimation using Gershgorins theorem, the polar
decomposition and the numerical range. In particular, the approach

yields general results identical in structure to previous work on the



- P

polar decomposition and reproduces those results exactly as a special
case if unnormalized gain—phase structures are permitted.

Overall, the results suggest that there is a larger degree of
flexibility available for system description than previously assumed.
Further work will attempt to identify the physical and computational

possibilities that this flexibility could allow.
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