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Abstract

The practical aspects of identifying nonlinear systems are
discussed by using the identification of a heat exchanger as a case
study example, Methods of determining if the system is linear or
nonlinear prior to parameter estimation are illustrated. Techniques
for estimating the unknown parameters in a nonlinear difference equation
model called a NARMAX model are discussed and the application of model
validity tests which detect the existence of unmodelled linear or non-
linear terms in the residuals are demonstrated. Throughout the emp-
hasis is placed on the practical implementation of the techniques

introduced.
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1. Introduction

The identification and digital control of linear systems is
primarily based on the linear difference equation model relating
sampled outputs to sampled inputs. Numerous parameter estimation
routines and controller design procedures have been developed based
on this descrintion fGoodwin &.Payne, 1977; Isermann, 1981; Ljung &
Soderstrom, 1984, Harris,rBillinéé, 1931}. If the response is
dominated by nonlinear characteristics however it will be necessary
to use a nonlinear model rather than an approximate linear description
and this immediately raises the problem of what class of models to
use {Mirmarelis & Marmarelis, 1978; Billings, 1980}. The choice
of model is vitally important since this will influence its usefulness
in prediction and control, and in view of the success of the linear
difference equation model it is natural to search for a nonlinear exten-
gion of this description.

In the present study the identification of a nonlinear difference
equation model of a heat exchanger is discussed based on a NARMAX or
Nonlinear AutoRegressive Moving Average model with eXogeneous inputs.
The derivation and conditions for thé existence of such models
have been discussed elsewhere {Leontaritis & Billings, 1985a}. and the
emphasis in the present investigation will be on the practical implemen-
tation of identification procedures based on this description. Methods
of detecting if the system is linear or nonlinear prior to parameter
estimation are illustrated and the selection of input signals are discus-
sed. Techniques for estimating the unknown parameters in the NARMAX
model are described and the application of model-validity tests which .
detect the existence of unmodelled linear or nonlinear terms in the
residuals are demonstrated. Throughout it is shown that blind applica-
tion of linear identification techniques to the estimation of nonlinear

models usually leads to incorrect results.



2. Identification of a Heat Exchanger

2.1 The System

The heat exchanger which is illustrated schematically in Fig. 1la
consists of a radiator through which heated water is passed and a fan
which blows air across the radiator. Water is pumped through the
radiator around a closed loop which includes a heater tank. The control
objective is to control the temperature drop across the radiator together
with the air flow rate across it by adjusting the inputs to the heater
and the fan. A block diagram of the system is shown in Fig. 1b.
Extensive experimentation has shown that the loops G22 and G, are linear
while Gqq is nonlinear. Lack of space precludes a complete multivariable

analysis here and so only the nonlinear loop will be considered.

2.2 Testing for Nonlinearities

In the early stages of experimentation on a process it is important
to determine if the process under test exhibits nonlinear characteristics
which will warrant a nonlinear model. The simplest method of achieving
this objective is to inject step inputs of varying amplitude into the
process and plot the system gain against input amplitude. If the process
cannot be taken off normal production however or if the data is pre-
recorded or the analysis relates to the system residuals alternative tests
must be used {Billings & Voon , 1983}.

It can readily be shown that whenever the input u(t)+b, wlE) = 0;

b # 0 is applied to a system, the system cannot be linear 1 zb(t) # z(t)

where zb(t) and Z(T) are the mean levels of the system output for the inputs
b (i.e. u(t) = 0) and u(t)+b respectively. Alternatively, if the third
order moments of the input are zero and all even order moments exist (a sine
wave, gaussian or ternary sequence would for example satisfy these properties)
then the process is linear iff-

¢z, 2 (V) = B2/ (e+v) (2 (t))2] =0¥V (1)

where the dash superscript indicates that the mean has been removed. The
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test will distinguish between additive noise corruption of the measure-
ments and distortion due to nonlinear effects providing the noise and
input are independent.

Application of step tests to loop G11 of the heat exchanger indicated
significant nonlinear effects and this was confirmed by ¢ZJZIZ(V),
illustrated in Fig 2,which is clearly well outside the confidence bands.
The latter was computed based on a Gaussian white input with mean -0.1177
and bandwidth O.5Hz. Similar tests on the 100ps(%2 and G12 indicated

that these could be adequately described by a linear model.

2.3 Input Design

Experiment design is probably the most important step in a system
identification study because all the results thereafter are dependent upon
the quality and information content of the data collected. Whilst normal
operating records could be used as a basis for the identification it is
preferable whenever possible to inject externally generated inputs which
can be tailored to the process. These inputs are often designed, based
on preliminary experiments on the process, to be persistently exciting.
For a nonlinear system this means that the input should be selected to
excite all the modes and amplitudes of interest within the system.

Pseudo random sequences are not in general appropriate for nonlinear
systems since they exhibit discontinuous probability density functions
and will not yield a persistently exciting input over the full amplitude
range of any input nonlinearities. The design of inputs for nonlinear
system identification is complex but general rules have been derived from
information and theoretic arguments {Leontaritis and Billings, 1985b}.
These indicate that for a power or amplitude constraint on the input,

the input should be an independent sequence. In addition the input
should have a gaussian distribution for a power constraint, and a uniform
distribution for an amplitude constraint.

In the case of the heat exchanger simple step tests were initially

performed to provide estimates of the system bandwidth. The amplitude
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range of interest was the total allowable variation on the input
transducers. Based on this information a gaussian white excitation

was designed with a mean of -0.1177 and a bandwidth of 0.5Hz. To
ensure that all possible modes of the process were excited inputs either
side the designed bandwidth, in this case 0.05Hz, 0.15Hz and 1l.5Hz,

were also injected into the system. Whilst this is not normally
necessary it can often be very worthwhile providing experimentation

time on the process is available. The range of input bandwidths increases
the probability of capturing the true dynamics of the process and the
different pieces of data can always be used in model validation studies.

In all cases 1000 data pairs were digitized at a sampling rate of
0.3 secs.

As a rule of thumb in linear ideﬁtification the sampling rate is
fixed by the bandwidth of the input. This will not necessarily follow
when the process is nonlinear because there may be high frequency harmonics
in the output which reflect the nonlinear dynamics of the process.

2.4 Linear Identification

Because the structure detection test ¢Z;Z;2(t) was nonzero this has
already established that the process is nonlinear. It is worthwhile
however illustrating what happens if a linear model is fitted to the data.

Many simulation studies have indicated that fitting linear models
to data with significant nonlinearities can provide very misleading results.
This occurs because the linear parameter estimation routines tend to
yield an estimated combination of process and noise model which visually
provide a good prediction of the system output. The model is however
significantly biased and prediction over a different data set usually
reveals this. The application of the traditional linear covariance
tests for checking the validity of the model can fail to indicate the
inadequacy of the estimated model when the process is nonlinear { Billings

and Voon, 1983}. This can mislead the experimenter into believing that
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the model is adequate when it is not.

The first of these problems can be overcome by splitting the
data set into an estimation and a prediction set. Better still, estimate
the model using data from one experimental condition (the estimation set)
and analyse the prediction over data from a second experimental condition
(the prediction set).

A detailed theoretical study {Billings and.Voon, 1983} of model
validity tests based on correlation analysis has shown that when the
system is nonlinear the residuals £(k) should be unpredictable from all
linear and nonlinear combinations of past inputs and outputs and this

condition will hold iff

el =8 (T)
¢u€(T) =0¥T |
bepg(®) = E[E(®E (t-1-Du(e-1-1) |

0 ¥t>0 (2)

Notice that for nonlinear systems the traditional linear tests
) g(T) and ¢u€(T) are not sufficient. If instrumental variables or
suboptimal least squares are used the residuals may be coloured. It

can be shown that in this case the process model is unbiased iff

¢ug('r) =0O¥ T

¢ o7 (D g e
u g
'

¢u2.£2 (tv) =0¥% 1 (3)
Experience has shown that when using a prediction error algorithm
the tests in both equns (2) and (3) often give the engrimenter a great
deal of information regarding the deficiencies in the fitted model and
can indicate which terms should be included in the model to improve the
£1e,
For both the estimation of the linear and the nonlinear models 500
data pairs from the 0.5Hz bandwidth experiment will be used as the estimation

set. The prediction set will comnsist of 500 data pairs from the 0.05Hz

bandwidth experiment.
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Extensive preliminary analysis of the data involved estimating
the coefficients in linear models of varying process and noise model
orders and with various time delays computing the loss function and
analysing the residuals. Linear model wvalidity tests for a second
order process model with a second order noise model are illustrated
in Fig. 3. Although ¢ug(t) is slightly outside the 957% confidence
bands ¢E€(T) is well outside indicating a deficiency in the noise

model. Increasing the noise model order to four alleviated this

difficulty and gave what appeared to be the best linear model

2’ (t) = 0.851z(t-1)-0.15712"(£~2)+0.265u” (£-1)-0.333u”(£-2)

+¢ (£)=0.08942¢ (t-1)+0. 339 (t-2) +0.227¢ (t—3) +0. 081 3e (1+4) (4)
The coefficients in this model were estimated using a prediction error
algorithm. A comparison of the process output and the predicted
output of the estimated linear model eqn (4) is illustrated in Fig. 4.
Notice that whilst the predicted and the process outputs are virtually
coincident over the estimation set (the first 500 points) the deficiency
of the linear model is clearly evident over the prediction set (last 500
points). This illustrates the importance of analysing the prediction
errors over a different data set. Note the limiting in the output at
the beginning of the prediction set Fig. 4.

Computing the residuals and applying the model validity tests of
eqns (2) and (3) gave the results illustrated in Fig. 5.

Inspection of Fig. 5 shows that the standard linear covariance tests
'¢g€(r),'¢u£(T) now indicate that the model is adequate. A normal linear
analysis would therefore terminate at this point although it would appear
that there is room for a significant improvement in the prediction accuracy
of “the model, Fig. 4. The poor prediction would probably be assumed to
be a result of a low s/n ratio. The model validity tests designed to
detect unmodelled nonlinear terms in the residuals Fig. 5 however, confirm

the results of the ¢z/£2(t) test, Fig.2, which indicated that the process

is nonlinear. Since ¢€£ u(t) is acceptable this shows that there are no
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terms of the form uq(t—m)S(t—n) ¥n,m,oddq in the residuals.
¢u2,E?(T) is just outside the confidence bands and ¢u2fgCr) is
unacceptably large. This combination strongly suggests that even
terms (e.g. uz(-)) and /or internal noise terms of the form uk(t)eg(t)
¥ t, &,k even should be added to the model. The effects of introducing
these nonlinear terms into the model was therefore investigated.

2.5 Nonlinear identification

Before we can discuss the estimation of a nonlinear model of the
heat exchanger we need to consider the introduction of a class of non-
linear models and develop estimation routines based on these.

2.5.1 Parameter estimation for the NARMAX model

It can be proved {Leontaritis and Billings,1985a} that under fairly

mild conditions nonlinear r—input m—output multivariable stochastic
systems can be represented by the model

zi(t+p) = qi[il(t+n-1), eeo zl(t)

zm(t+nm—1), EFy zm(t)
ul(t+p) 5 cos ul(t)

.

u (t+p), o u (1)
%@rm-n, ...el&)

- o

+p- e 1 + e (e+

e (t+p=1), em(t)J e, (t+p) (5)
where 1 = 1, 2, ... m, the integeters 0,0, «. O are the observability
indices, q; are nonlinear functions and p = max (nl,n2 — nm). This

model is called the multi-structural input-output prediction error or
innovation model. For single-input single-output systems the model,
eqn(5) becomes

z(t) = q[z(t-1), ... z(t—ny), u(t=d), ... u(t~d—nu+1),

e(t=1) .... e(tn))] +e(£) (6)
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where q[L]is some nonlinear function,d is the time delay and ¢(-)
represents the prediction errors
Efe(t) | z(t-1), 2(1-2),... u(t) ..... 1=0 @ -
The nonlinear difference equation model, eqn (6), is referred to as the
nonlinear ARMAX or NARMAX model.

The models in eqns. (5) - (6) are valid provided the system is
finitely realizable and. could be approximated by a linear model if operated
in a region clese to the equilibrium point. A rigorous derivation of
these results and a comparison of the models with other well known non-
linear representations such as the volterra and state-affine models
is given elsewhere {Leontaritis & Billings (1985a)}-

Expanding eqn (6) as a polynomial and regrouping terms

zit) = qu[Z(t“l)- ve. z (t=n_) , u(t=d) ... u(t-d-n_+1J]
Y‘ u

+67 9 [2(t-1), ... z(tn),u(e=d) ... u(t=dmm ),
e(t=1), ... e(t-n )] + " [e(t-D), ... e(t=n_}]
+e(t) (8)

Separating out the unknown parameters gives

2(t) = v()TO(E-1)+ €(t)

ezu(t_l)
ik T T
[w u (t)wZuE (t) w€ (tﬁ} azug(t"l) relt)
6 (t-1) (9)

2 e T _ zuer 7 _ T _ SET. T
vhere G [*]=y_ ~(t) 8, (t-1), G [] = vy, (B8, (16 [-]=
@g(t) GE(t—l) and the definitions of the y's and®'s follows.

Grouping all terms involving e(t) and defining

E(E) =y, (0 o, (E1) + g ()0 (1) + e(t) (10)

zZu

gives

T
E t t-1)+
2(t) =y T(t) 6, (t-1)+E(E) an
Any noise which enters the nonlinear system as an internal distur-
bance cannot in general be translated to be additive at the output as in
linear systems. This induces the multiplicative terms, represented by

UET 7. §p .
g I-]ln eqn. (8), between the prediction errors and the measured inputs

and outputs. This problem arises even when the noise 1is additive at



the output because the NARMAX model maps past inputs and outputs

into the present output. Consequently, as eqn. (10) shows gt)

will in general be highly correlated with the elements of 1%uT(t) and the

direct application of many of the parameter estimation routines developed

for linear systems will yield biased estimates {Billings & Leontaritis 1982}.

Fortunately, the recursive extended least squares algorithm can be
readily applied to the NARMAX model eqn.(9) by expanding wzu(t),
wzue(t), ¢€(t) as polynomials based on a previous estimate of the
prediction errors g(t). The development of a recursive maximum
likelihood algorithm is slightly more involved and required a major
rederivation. It can be shown that instrumental variables will yield
unbiased estimates providing the noise terms in the NARMAX model can
be represented as a purely linear map. This restriction can be
widened slightly by employing a new suboptimal least squares routine

based on the model

z(t) = q [f(e-1) .... y(t-uy),u(t-1-d) ... u(t—d—nu)] +e(t)
where y (t) represents the predicted output. The algorithm will yield
unbiased estimates whenever the noise is additive at the output. The

properties of the noise required by the latter two algorithms are quite
restrictive but can be verified {Billings & Voon 1984}- by suitable
application of the model validity tests in egns. (2) and (3).

The direct application of a maximum likelihood algorithm is not
possible unless the distribution of the prediction errors, which in

general will not be gaussian, is knowmn. However, by considering the

loss function

2 (13)

T
J(e = -%N 10g det E E(t % e) S(t;e )
% t=1

(12)
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it can be shown that the prediction error estimates obtained by minimising
eqn (13) have very similar asymptotic properties to the maximum likelihood
estimate even when e(t) is non-gaussian {Goodwin & Payne 1977:Ljung &
Soderstrom, 1984} A prediction error algorithm for the NARMAX model eqn (9)
has been developed based on this result.

Before any of these algorithms can be applied to the NARMAX model a
method of determining which terms to include in the model must be developed.
Direct estimation based on a polynomial expansion of eqn (9) will involve an
excessive number of terms. Simply increasing the order of the dynamic
terms (ny,nu) and theorder of the polynomial expansion to achieve the desired
prediction accuracy will in general result in an excessively complex model and
possibly numerical ill-conditioning. Several procedures have therefore been
developed based on the NARMAX model and the algorithms mentioned above to detect
the structure of the model. These are based on a new liklihood ratio test,

Akaike tests and forward, backward and stepwise regression algorithms.

2.5.2 Estimation of a nonlinear model of the heat exchanger

A prediction error estimation algorithm coupled with a stepwise regression
procedure was used to estimate the coefficients in the non-linear model of
the heat exchanger. The data set was exactly the same as for the linear model
estimation (500 data pairs in the estimation set from the 0.5Hz bandwidth
experiment and 500 data pairs in the prediction set from the 0.05Hz bandwidth

experiment) and the initial specification for the NARMAX model was:=

order of lagged inputs ny = 2

order of lagged outputs ny = 2

order of lagged prediction errors n_ = 2

delay of input d=1

degree of nonlinearity of the input and output = 3

degree of nonlinearity of the prediction errors = 2



_ll_
With this initial specificiaiton the total number of possible terms in the
model was eighty three. Allowing the stepwise regression algorithm linked
with a prediciton error routine to sort through all the possible terms using
a Fisher F-ratio test operating with 957 confidence bounds produced the

follwoing model

z(£) 2.072 + 0.9158z{t-1)+ 0.4788u(t-1)

0.0157222(t—1) = 0.01133u2(t—1) - 0.00224422(t"1)u(t-l)

0.002239u3(t—l) + e(t) (14)

A constant term ot dec level is included in the estimated model eqn (14)
to accommodate any mean levels that are present in the raw data u(s), Z2(e).
The nonlinear model must be estimated using the raw data. Estimation based
on normalisedwdata z{(*): z(*) -z, u’(-) = u(-) - U as in the linear case
eqn (4) will in general result in a model which is input sensitive {Billings
and Voon, 1984} . This means that the model parameters become a function
of the variance and higher order statistics of the input signal. A model
estimated for one particular input would therefore be invalid for prediction
based on any other input with different statistics. This problem can be
avoided by operating on the raw data. Differencing the data should also be
avoided gince this will often induce a large number of nonlinear terms into
the model.

The nonlinear model eqn(l4) includes first order lags in the input and
output together with four nonlinear terms including even order terms as
previously suggested. From all the possible linear/nonlinear combination
of terms within the original specification therefore only those in eqn (14)
were found to be significant using the specified confidence levels. In
practice we have found that these results provide an excellent basis for
experimentation . on the structure of the model. Experimentation is performed
by analysing the prediction accuracy and validity tests and adding or deleting

terms from the model.
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The prediction accuracy of the estimated model eqn (14) was good but
the model validity tests illustrated in Fig 6 show that the model is deficient
in some way. Note that ¢u2}g(r) which was very large for the linear model,
eqn (4) Fig 5, is now acceptable but ¢u2’€2(r) is still just outside the
confidence bands for lags 11 and 12, This probably indicates that the
nonlinearities are correctly  modelled since the deviatioms in ¢u2/gZ(T)
could be caused by unmodelled linear terms. Note that ¢u2’£(f) would not
detect linear terms in the residuals. This hypothesis is supported by
¢g€(r) and ¢u€(T) which are now unacceptable. A comparison of Fig 6 with
Fig 3 shows that ¢EE(T)’ ¢u£(T§ are. very Ssimilar in both diagrams and suggests
that the addition of a higher order noise model to eqn (14) may improve
the situation.

Because a fourth order noise model wés found to alleviate the problem.

in Fig 3 this was added to the mcdel of eqn (14) to yield

2.381 + 0.83452(t-1) + 0.4828u(t-1) - 0.010622 (t~1)

z'(t)

0.00867u>(t-1) - 0.002235z° (t-1)u(t-1)

0.002293u>(t-1) + e(t) - 0.05194e(t-1)

+ 0.008461e(t-2) + 0.2159e(t-3) + 0.08243e(t-4) (15)
Computation of the model validity tests for this model revealec that ¢EE(T)
and all other tests were now acceptable except ¢u£(r) which was still just
outside the confidence limits. This will almost certainly be caused by the
omission of a linear term from the model. The conclusion follows from the
knowledge that ¢UE(T) detects deficienciesin linear and/or odd nonlinear terms
in the model. If there were odd nonlinear terms missing from the model
¢u2152(T) should also be unacceptable, and it is not. These conjectures are
further supported by the knowledge that a second order model was found to be

appropriate in the linear analysis.
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In addition to the fourth order noise model therefore a term in u(k-2)

was added to the model in eqn (14) nad the coefficients re—estimated to yield

z(t) 2.301 + 0.9173z(t-1) + 0.449u(t-1) + 0.04577u(t-2)

I

0.0188922(t—1) - 0.00999u2(t—1)

0.0020992% (t-1)u(t-1) - 0.002434u°(t-1)

&(t) - 0.004e(t-1) + 0.0380e(t-2)

e

0.2745¢(t=3) + 0.1037e(t-4) (16)

+

The model validity tests for this model which are illustrated in Fig 7
are now all within the confidence bands. Adding a z(t-2) term to the model
was investigated but was found to be un-necessary. The predicted output
of the final model eqn (16) is illustrated in Fig 8. A comparison with the
linear model predictions Fig 4 shows the significant improvement achieved
when using the nonlinear model. Notice that this is only evident over the
prediction set emphasising the need to split the data to provide a rigorous
test of its goodness—of-fit.

3. Conclusions

Several practical and theoretical problems associated with the ident-
ification of nonlinear systems have been discussed. The identificaticr cf
the heat exchanger as a case study has illustrated the significant improve-
ment in prediction accuracy which can be achieved by the addition of just
a few nonlinear terms to the model. The simplicity of the final estimated
nonlinear model can however only be achieved by combining several realization,
structure detection, estimation and model validity tests and using these in
an interactive feedback manner. Almost all of these algorithms have been
designed to be simple to implement and interpret and their practical application
has been demonstrated on the heat exchanger. Other processes including a
liquid level system and a 6996 bhp industrial diesel engine have also been

successfully identified using this approach. It is important to emphasise
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however, that direct application of linear methods of data analysis can
severely mislead the experimenter to the extent that the erroneous results
remain undetected by linear validity tests.

Even if the process to be studied is controlled to operate in a linear
region it will often be advantageous to identify a nonlinear model which is
valid over the total allowable operating regime. Such & model would provide
valuable information to the designer regarding the errors associated with a
linear analysis and would allow him to simulate and design for the effects of
significant deviations from the chosen operating point. In some instances
it will be appropriate to design a ncrlirear controller based on the NARMAX
description of the process. Providing the amount of work involved in ident-
ifying the nonlinear model is not excessively more than would be the case for
a linear model, as demonstrated in the present study, then this becomes an
attractive proposition.
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