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Abstract

In the first part of this paper fLeontaritis and Billings (19841]
recursive input-output models for deterministic nonlinear multivariable
discrete~time systems were derived and sufficient conditions for their
existence were defined. In this the second part, the nonlinear model
is compared with other system representations, several examples are
introduced and the results are extended to create prediction error input-
output models for multivariable nonlinear stochastic systems. These
latter models are a generalisation of the ARMAX models for linear systems
and are referred to as NARMAX or Nonlinear Auto Regressive Moving Average

models with eXogenous inputs.




1. Introduction

In the first part of this paper [}eontaritis and Billings (1984)]
recursive input-output models for multivariable nonlinear discrete systems
were derived. To recapitulate, let the input set U of a system S be an
r-dimensional vector space and the output set Y on m-dimensional vector
space. For some specified ordered bases of U and Y the inputs and outputs

can be represented by the column vectors

a(®) = [u (00,000,000 (0] 1 (1.1)

i

y(8) = [y, (0,5 (6 5erny (0] | (1.2)

Let the vector of all inputs from time 1 to time t be
t T T T
of = [aEen®, @eT,.. wany (1.3)
and the zero state response function f of the system be
t
y(t) = £{u’) (1.4)

If the response f satisfies two mild conditions the following recursive

model descibes the system (1.4) in a region around the zero equilibrium point

y, (e+p) = q, Bi(t+ﬁ1—l),----y1(t),

yz(t+n2—1),....y2(t),

ym(t-mm’]-) 3e o e -Ym(t) )
ul(t+p)""""ul(t)

uz(t+p),.......u2(t)

U _(E4p)yeeenns U (8)] (1.5}
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where i = 1,2,...m and p = max (n_,n seeel )

L1~ 2
The integers n .0, ...M are the observability indices defined in part I
of the paper. The order of the model is n=nl+n2...+n . Every index n,

corresponds to the specific output ¥y and the model (1.5) can be regarded

as m interconnected single—output models each of order n.. A multivariable
system can have more than one set of dbservability indices and each set
corresponds to a different input-output model (1.5). The sum of all the
observability indices is however an invariant of the system equal to the
order of the system n.

If the system is single-input single-output the model becomes
y(em) = q[y(t+n-1);...y(t) ,u(tm),. . .u(t)] (1.6)

which is nothing more than the generalisation to the nonlineatr case of the
difference equation which is satisfied by a linear system of order n where
q[+] is some noniinear function.

In this second parc of the paper a comparison between the globally valid
input—output models developed by Sontag[}976,i979a,é] and the model in equ.(1.6)
is mdde. Several examples which illustrate the two models are introduced and
their usefulness in identification studies is considered. A rigorous definition
of stochastic nonlinear discrete-time systems is then presented. The innovation
form of the stochastic nonlinear system is also derived and necessary and
sufficient conditions which must be satisfied by the innovations are found.
Considering a different interpretation of the meaning of input and output
for stochastic systems, the deterministic model in eqn. (1.5) is transformed
into a stochastic input-output model. Such models are essentially the general-
ization to the nonlinear case of the widely used ARMAX models of linear systems.
[éoodw1n ‘and “ayne (197721 The stochastic nonlinear models are given the name
multistructural innovation input-output models, since their special structure
is inherited from the multlstructural forms of linear multivariable systems.
[}ertz, Grevers and Hannon (1982i1 For single-input single-output systems
the nonlinear innovation models are called NARMAX or gpnlinearléutogegressive

Moving Average models with eXogenous inputs

2 Comparison with other nonlinear models

The realization of the special case of discrete-time polynomial response
function has been studied in great detail in [SOntag (1976),(1979a)1 using
mainly algebraic methods. In [Sontag (1979b)] a similar type of response
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function is introduced where an arbitrary set of linearly independent non-
linear functions is used to generate the response function in the same way

the monomials x,xz,XB,...; are used to generate a polynomial response function.
The theory and the results for such response functions correspond exactly to
the theory and the results for the polynomial response funcitons and thus they
will not be reviewed here. A summary of the basic results in tSontag (1976),
(1979)] now follows so that a comparison with the present work can be made.

A polynomial input-output map or response function is a function f:U%,;Y
such that ewvery individual function ft:Ut+Y where y(t)=ft(u(t),u(t—l),...,u(l))
is a polynomial of finite degree on all variables. However, the power of the
variables of the polynomial ft are raised to can tend to was t#®, The assumpt~
ion that the input—output map is polynomial is not a severe restriction since
any system restricted to operate in any region around the zero state has a
response function that can be approximated as closely as desired by a polynomial
input~output map. However, if the accuracy of the required approximation
increases, the degree of the polynomials ft must also increase.

If the functions ft are analytic functions then the response function can

be represented exactly by an infinite series, the Volterra series [Billings (1980)].

Then
t=-1
y(t) = E hy (T )u(e-T )+
T, =0
1
t=1 Ty
E {“ hy (Ty> Ty Yu(t=T Ju(t-T,)+
T.=0 T.=0
1 2
pe Tsil
h (T,,T,,...,T Ju(t=T )...u(t+T )+
T1=0 T 20 s+ 1’72 s 1 s

e w w e wm e w (2.1)

The functions hl(Tl)’hZ(Tl’TZ)"" are called Volterra kernels. An infinite
Volterra series 1s not a polynomial response function since the degree every
varaible in (2.1) is raised to is not finite. If the series (2.1) terminates
with the term involving the sth kernel, it is ealled finite Volterra series of
length s. A finite Volterra series is a polynomial response function since the

maximum degree any input is raised to is s.

e
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A polynomial response function ft is called bounded if the power any
input is raised to is always less than some comstant integer independent of t.
The maximum power any input is raised to is called the degree of the polynomial
function. A finite Volterra series of length s is obviously a bounded poly-
nomial response function of degree s but the inverse islnot true. A bounded
polynomial response function is a much more general response function. For

instance the response function
y(t)=u(t-1)+u(t-1)u(t-2)+u(t-1)u(t-2)u(t-3) +... (2.2)

is bounded of degree 1 since no input is raised to a power higher than 1,
but it is obviously not a finite Volterra series.

A polynomial response map is called finitely realizable if Assumption 1
of section 4.1 Part I [Leontaritis and Billings (198421 is satisfied. The
finite rank condition of Assumption 1 is thus as vital for the realization of
any differentiable response function.

The realization of polynomial response functions is done in great detail
in [Sontag (1976),(1979&)]. In that realization a system is considered minimal
(it is called canonical in references [Sontag(1976),(1979a)]), when it is quasi-
reachable and algebraically observable, in contrast to the Nerode realization
where minimality is equivalent to reachability and observability. The state-
space is an abstract topological construction that has finite dimension if the
response function is finite realizable. The one step ahead state—transition
function and the output functions are polynomial functions. The more striking

result is that a finitely realizable response function also satisfies a rational

difference equation
aly(t+p=1),...,y(t) ;ult+p),... ,u(t)]y(t+p)=
b[y(tp=1),...y(t) ,ult+p),... u(t)] (2.3)

where a and b are polynomials @f finite degree. The reverse is also true, if

a response function satisfies a rational difference equation (2.3), it is

finite realizable. The rational difference equation (2.3) is actually an
input-output model valid everywhere in contrast to the recursive input-oufput
model (1.5). The difference between the two models and their potential useful-

ness in the identification of non-linear systems will be examined later.
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Some more results for bounded polynomial response functions and finite Volterra
series are given first.

If the response function is bounded as well as finitely realizable, the
input-output difference equation (2.3) takes the special form of an output-

affine difference equation.

P
L a [u(t+p), .. u(e)]y(e+i)=bulesp) ... su(t)] (2.4)
i=0
where a, for i = 1,2,...,p are polynomials of finite degree.
The bounded finitely realizable polynomial response functions can be
realized by state-affine state—space mdoels. In such realizations a system
is considered minimal if &t is span-reachable and observable. A state-affine

state-space model is given by the equations
x(t+1)=A(u(t))x(t)+B(u(t))
y(t)=C(u(t))x(t)+D(u(t)) ' (2.5)

where A(u(t)) and C(u(t)) are linear maps for every u(t)eU and B(u(t)) and
D(u(t)) are vectors for every u(t)eU. The state-space X is a finite dimensional
vector space. Furthermore, fixing an ordered basis for the state—space, the
linear maps A(u(t)) and C(u(t)) are represented by matrices and every element

of these matrices is a polynomial of the wvariable u(t). The vectors B(u(t))

and D(u(t)) are also column vectors with every element a polynomial of the
varaable u(t). The state—affine realization of a bounded polynomial response
function can be done in a manner analogus to the realization of linear systems

by finding a row basis of a generalization of the Hankel matrix called behaviour

matrix B(f) ISontag(1979b)]. The state—-affine systems are very easy to use
because the state—space is a vector space. They suffer however, the disadvant-
age that they are only span-reachable. The state—space is the span of all the

reachable states and thus the reachable states may be a very thin set in the
state—space. Also the dimension of the vector space can change if the non-
linearities of the system change slightly. These prbblems will be clarified

with examples iater.



The finite Volterra series is a bounded polynomial response function
and thus, if it is finitely realizable, it satisfies an output-affine difference
equation (2.4). It can also be realized by a state-affine state-space model
(2.5). The state-space model, in this case, takes a special form that actually
corresponds to the structure of a cascade of linear multivariable systems with
polynomial interconnections.

The realization of a finite Volterra series can be done alternatively by
a state-space model that is state-affine in the one step ahead state-transition
function while the output function is a general polynomial function. The
state-transition function can still keep the special structure of the cascade
of linear systems with polynomial interconnections. The big advantage of such
a realization is that the dimension of the state-space does not have to be
artificially large as in the state—affine realizationms. Such realizations
have been carried out in detail only in the continuous-time case in [Crouch
(1981)] . An example will try to clarify the concepts and the results presented
so far.
Example 2.1

Consider a system described by the equations

x(t+1)=x(t) +u(t)
y(£)=x(£) +x” (£) (2.6)

where u(t) is the scalar input and y(t) the scalar output. The zero state
response function is

y(t) f(u(t),u(t-1), ... ,u(l))
A(E-1)Hu(E=2)+ +rn Hu(l)+(u(ESD) Ra(E=2)+ oo ,u(1))?
ﬁ(t—1)+u(t-2)+ +u(l)+u2(t—1)+u2(t—2)+ +u2(l)+
2u(t-1u(t=-2) +2u(t-1)u(t=3)+ ... +2u(2)u(l) (2.7)

This is obviously a polynomial response functionm. It is also bounded of

]

]

degree 2 since the highest power amy input is raised to is 2. It is also

a finite Volterra series of length 2 since it can be put in the form (2.1)
with only the first two terms non-zero. The response function is finitely
realizable since it is derived from a state-space description (2.6) that has

a state-space of dimension 1 and thus Assumption 1 in Part I is satisfied with
maximum rank less or equal to 1. 1f the response function (2.7) is not known
to be derived from the state description (2.6), the functions Fk’t(z,x) must

be constructed first. Let for example k=2 and t=2. Then

u(t—1)+u(t—2)+[u(t—1) +u(t—2)]2 (2.8)
Fy 2(20= | ey su(e-1)+u(e-2) +[u(t) +ult=1) +u(e-2)] >

where z= u(t) and x = [ﬁ(t-l),u(t—Z)]T



142 [u(t-1) +u(t-2)] 1+2[u(t-1) +u(t-2)]
2(BX= | pru()wule-D) +u(e-2)]  142[u(®) wu(e-L)+u(e-2)] | (2.9)
and thus
rank D F (z x)=1 (2.10)

when u(t—1)+u(tﬂ2)¥—0.5 or u(t)+u(t-1)+u(t=2)#-0.5

and
rank D_ F2 5 (2,%)=0 (2.1D)
when u(t 1)+u(t-2)=—0.5 and u(t)=0

Similarly D F z,x) for any k>0 and t>0 has a maximum rank equal to 1.

8 t(
The response functlon is bounded and finite realizable and thus it must satisfy
an output-affine finite difference equation (2.4). In fact

y(t)=X(t)+x2(t) (2.12)

y (t+1) =x(t) +u(e) +[x (0) +u(t)]
—x () +x2 (t) +u () +u (t) +2x(t) u(t)
=y (t)yealt)su” (e)+2x () ult) (2.13)

y(t+2)=x(t)+u(t)+u(t+1)+[x(t)+u(t)+u(t+1)]2
=x(t)+u(t)+[x(t)+u(t)]2+
u(t+1)+u2(t+1}ﬁqk(t)+u(t)]u(t+1)
=y(t+1)+u(t+l)+u2(t+1)+2x(t)u(t+l)+2u(t)u(t+1) (2.14)
Solving x(t) from (2.13) and substituting in (2.14)
[u(t)Wy(t+2) Iu(t)+u(t+1)Jy(t+l) [u(t+l)]y(t) @
u (t+1)u(t)+u(t+1)u (t) (2.15)
The difference equation (2.15) is affine in the output and it is an input-output
model valid everywhere.
The response function is bounded and finite realizable and thus it must

be realizable by a span-reachable and observable state-affine state-space model.

Let
xl(t) = x(t)
" (2.16)
x,(£) = x(t)
then from (2.6)
be (t+l)=x (t)+u(t) (2.17)
x, (£+1)=[x () +u(t)]2=x (t)+2u(t)x (t)+u (t) ‘ (2.18)

=X (t)+2u(t)x (t)+u (t)



The state—affine model then is
xl(t+1)=x1(t)+u(t) (2.19)
x2(t+1)=x2(t)+2u(t)xl(t)+u2(t)
y(£)=x, () +x, (t)

where the state-space is the vector space R?. The reachable states of this

model are the points (xl,xz) of the vector space R? such that

X2=X1 (2.20)
i.e. the points of the plane given in figure 2.1

8 %

v

Figure 2.1

The reachable states span the whole state-space and thus the system is span-—
reachable. If the output function is not restricted to be state-affine the
realization of the response function (2.7) is the model (2.6) with state-space
the vector space Rl. These realizations are the ones considered in ICrouch
(1981i] for . continuous—time systems. The input-output model (1.5)
developed in Part I can also be derived for this system; The linearised function
around the origin has response function

y(t)=u(t-1)+u(t-2)+ ... +u(l) (2.21)
which has Hankel matrix‘of rank equal to 1, the maximum possible rank of the
derivatives Dxe,t(z’x)' According to Theorem 2 Part I, a recursive input-

output model can be found valid in a region around the origin. In fact if

x(t)>-0.5, from (2.6)

2x(t)=—1+/1+4y(t) for x(t)>-0.5 (2.22)
but
y (t+1)=x(t) +ut) +[x (1) +u(t)]?
=x(t) +x2 (£) +u(t) +u (t) +2x (t)u(t)
=y (£) +u(t) +u” (£) +2x(£)u(t)
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=y(t)+u(t)[¥1+/1+4y(t)]+u(t)+u2(t)
=y (£)+u(t) VI+4y (D) +u” (t) (2.23)

Thus the recursive input—output model is

y(e+1) =y () +u(t) VI+hy (0) +u’ () =q [y (£) ,u(t)] (2.24)
for
x(t)=(u(t-1)+u(t=2)+ ... +u(l))>-0.5 (2.25)

Now a comparison between the two input-output models, Sontag's model
(2.15) and the recursive model (2.24), can be made. Sontag's input-output
model is valid globally. However, given the values of the inputs and outputs
before the time t+2, u(t+l),u(t)... and y(t+l),y(t),... , the output at time
t+2,y(t+2), can only be calculated if u(t)#0. Even if u(t) is different from
zero but of small magnitude, Sontag's model requires very high accuracy in
the execution of the algebraic operations. The biggest disadvantage is that
when the system is operating around zero, where the linear approximation should
be valid, Sontag's model fails completely to degemerate to the linear difference
equation that is satisfied by the linearized system. The recursive input-
output model (2.24) may be valid in a restricted region around the equilibrium
point but for small u(t) and y(t) it becomes

y(t+1)=y(t)+u(t) (2.26)

the input-output model of the linearized system. The approximation

1/1+z=1+% z  for |z|<<l (2.27)

was used to derive (2.26).

Sontag's input-output model has another disadvantage. If the non-
linearity of the system changes even slightly, the non-linear difference
equation (2.15) changes completely. For instance if the output equation of

the system (2.6) becomes

y(£)=x(£) +x% (£) 4o (&) (2.28)
Sontag's input-output model becomes

al[t(t+2), u(t+1), u(t)]y(c+3)+

az[u(t+2), u(t+1), u(t)]y(c+2)+

a3[u(t+2), u(t+l), u(t)]y(t+l)+

a, [u(t+2), u(c+l), u(t)]y(t)=blu(t+2), u(t+l), u(t)] (2.29)
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128928358, and b are polynomials with coefficients that depend on the
parameter O. If o is put equal to zero in (2.29), the model does not reduce

where a

the model in (2.15). The recursive input—output model in this case is still

the model
y(t+1)=q" (y(t),u(t)) (2.30)

where q' is a non-linear function that depends on a but for o=0 it reduces
to the function q of (2.24). The region of validity also depends on o but
again for a=0 it becomes the region (2.25).

The two types of input-output models compared here are sometimes identical.

For instance the system

x(t+1)=x(£) +u’ (£) (2.31)
y(t)=x(t)

has input—output model
y (£+1) =y (£) +u” (£) (2.32)

which is both a model (1.5) and (2.3). TIii such a case the recursive input-
output model is obviously wvalid globally. A globally valid recursive input-
output model is not necessarily identical to Sontag's model. For instance
the system
x(t+1)=x(t)+u(t) (2.33)
y(£)=x(£) +x° (¢)
has recursive input-output model (1.5)
y(t+1)=y(t)+3x2u(t)+3xu2(t)+u3(t) (2.34)
where
x=[y(6) /2452 () 1441 /27y 2 30 Ty () 12- (52 (o) pawn oy PR3 (2239)
and it is globally valid. Sontag's model is a model like (2.29) which is
a completely different model.

3. Some Special Model Structures

There are some models of very special form which have been used, because
of their simplicity, in the identification of non-linear systems. One such
group of models is the one that consists of a cascade of single-input single-
output linear systems and static non-linearities [Billings and Fakhouri (19825].
If the static non-linearities are polynomial functions these models can be
represented by a finite Volterra series and all the results mentioned before
are valid for such models. Two very well known models belong to this group,
the Weiner and the Hammerstein models.

The Weiner model consists of a cascade of a linear system followed by

a static non-linearity as in figure (3.1).
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Linear

u(t) z(t)

—— 1 System

e y(t)

Figure 3.1

The static non-linearity is given by the function g, thus

y(t)=g(z(t)) (3.1}
The linear system has response function
z(t)=bou(t)+h1u(t—l)+ ik +ht_1u(1) (3.2)

and it is supposed to be finitely realizable so that it satisfies the input-
output model

z(t+n)=alz(t+n~l)+...+anz(t)+b0u(t+n)+...+bnu(t) (3.3)
where n is the order of the linear system. The overall response function
of the Wiener model is

y(t)=g(hou(t)+hlg(t—1)+...+ht_1Q(})) (3.4)
The input—output model of such a response function can be found using (3.3)
without the use of Theorem2 Part I. Suppose that the function g is an

invertible function, then

2(t)=g (v (t)) (3.5)
substituting in (3.3)

g [(y(tm))=a g (y(tm=1))+...+a g (y(£))+
b u(t+n)+...+b u(t) (3.6)
0 n

or
y(em)=glaye  (y(tm=1))+...+a g (y(£))+

b u(t+n)+...+b u(t)] (3.7)
0 - n
Suppose that the function g is invertible only in the interval (a,b) where

zero belongs to that interval. Then the input-output model (3.7) is valid

in the restricted region of operation
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a<h0u(t)+...+ht‘lu(1)<b

a<h0u(t+1)+...+htu(1)<b

a<hou(t+n-1)+...+ht+n_2u(1)<b (3.8)

The function g is invertible in the interval (a,b) if it has non-zero
derivative in that interval. It is interesting to see how Theorem 2 Part I

could be applied in this particular case. Assumption 1 Part I is satisfied

with n the order of the linear sub—system. This can be proved easily by
writing the Wiener model in the state-—space form. Assumption 2 Part I is
satisfied if the function g has non-zero derivative at the origin. Let
Dg(0) = k (3.9)
The response function of the linearized system then is
y(t)=kh0u(t) +khlu(t—l) . +kht4.l -u(l) (3.10)

which has order n if k # O and order 0 if k = O. Consequently Theorem 2
Part I applies if g has a non-zero derivative at the origin. The region of
validity derived by requiring the level submanifolds to be connected is given
by (3.8). Thus the validity region provided by the condition of connected
level submanifolds is the largest possible in this situation.

The Hammerstein model consists of a cascade of a static non-linearity

followed by a linear system as in figure 3.2.

Linear
t (£) e
n - s() zL)
System
Figure 3.2

The static non-linearity is given by the function g, thus
z(t) = g(u(t)) (3.11)
The linear system has response function

y(t)=hoz(t)+hlz(t*1)+...+ht_lz(l) (3.12)
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and it is supposed to be finitely realizable so that it satisfies the input-

output model

y(t+n)+aly(t+n—1)+...+any(t)+b0u(t+n)+...+bnu(t) (3.13)

where n is the order of the linear sub-system. The overall response function

of the Hammerstein model is
y(£)=h g(u(t))+h g(u(t=1))+. .. +h _ e(u(1)) (3.14)

The input-output model of such a response function can be found trivially using

(3.13) without the use of Theorem 2 Part I. It is given by

y(t+n)=a1y(t+n—1)+...+any(t)+b0g(u(t+n))+...+bng(u(t)) (3.15)

.and it is valid globally. It is very interesting however to investigate what
Theorem 2 would require in this particular case. First of all Assumption 1
is satisfied with n the order of the linear sub-system. This is easy to see
by writing the Hammerstein model in the state-space form. Assumption 2 is
satisfied only if the function g has a non-zero derivative at the point zero.
If the function g has

Dg(0) = k : (3.16)

then the response function of the linearized system is
y(t)=kh0u(t)+khlu(t—l)+...+kht_lu(1) (3.17)

which has order n if k # 0 and order O if k = O. Consequently Theorem 2
applies only if g has a non-zero derivative at the origin. The region of
validity of the recursive input-output model given by the connected level

submanifold requirement can be seen to be
a<u(t-1)<b a<u(t=2)<b . . . a<u(l)<b (3.18)

where the function g is invertible in the interval (a,b).. Consequently
Theorem 2 and the validity region given by the condition of connected level
submanifolds is quite restrictive since the input-output model (3.15) is
actually valid globally. The reason for this is that the requirements imposed
basically insure that the response function behaves similarly to a linear
function so that function dependency can be checked using rank conditions and
connected level submanifolds. More general conditions for function dependency
would result in more relaxed conditions but these conditions would be very

much more difficult to check.
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Another model which is the combination of the Wiener and the Hammerstein
models is the one with a static non-—linearity followed by a linear system
which is followed by another static non-linearity. Such a model has an input-
output model globablly valid only if the output non-linearity is an invertible
function similar to the Wiener model. The Wiener model, the Hammerstein
model and the model with both input and output static non-linearities have
input—output models globally valid in the case of invertible non-linearities.:
It is reasonable to hope that this may be true for any system which is a
cascade of invertible static non-linearities and single—input single-output
linear systems. Unfortunately this is not true. The following example
demonstrates this fact.

Let the system be the one represented in figure 3.3.

Li Linear
u(e) | e z(t). ) | LY()
System 1 gt System 2
Figure 3.3

The linear system 1 is given by

z(t+l) = z(t) + u(t) (3.19)

The static non-linearity g is the hyperbolic tangent function

) 2 _ =20
w(t) = g(z(t)) = tanh(z(t)) = ez(t) 5 e_z(t)

(3.20)

The hyperbolic tangent function is an invertible function which is shown

in figure 3.4

/\ tanh(x)

A4

Figure 3.4
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The linear system 2 is given by

y(t) = w(t) - 0.25w(t-1) (3.21)
The response function of this system is
y(£) = glu(e-1)+u(t+2)+ ... +u(1) —0.25g[u(t-—2)+u(t-3)+ veu * u(l)]
(3.22)
If the function Fk,t is constructed it can be readily seen that Assumption 1
is satisfied with n=1. The linearized system is the cascade of the two
linear stb-systems since the derivative of tanh at zero is equal to 1. The

linearized system has order equal to 1. An input-output model

y(t+1) = q[y(t),ut)] (3.23)

is thus valid in some region. The exact region of validity of the input-
output model (3.23) will now be found. The output at time t and t+l are
given by
y(t) = glu(t-1)+z(t-1)] -0.25g [z(t-1)] (3.24)
y(t+l) = g[u(t)+u(t—1)+z(t—1)]—0.25g B.l(t-l)-l-z(t—l)j (3.25)

If the model (3.23) is to be valid, equation (3.24) should be solved for
z(t—l) so that it can be substituted in equation (3.25). The region of
validity of the model (3.23) is thus the region in which equation (3.24)

can be solved for z(t-1). Let for notational simplicity

u = u(t-1)

x = z(t-1) (3.26)
so that from (3.24)

y(t) = tanh(u+x)-0.25tanh(x) = f(u,x) (3.27)

The problem then is to find the region of (u,x) in which the function

f(u,x) can be solved for x. In this simple case, this region is any region

in which the derivative of f(u,x) with respect to x is different from zero.

Thus the points (u,x) where the derivative of f£(u,x) with respect to x is

equal to zero must be found first
D f(u,x) _ 1 _ 0.25

= = )
ax coshz(u+x) coshz(x)

]

=%y 4cosh2(x) coshz(u+x)=# 2cosh(x)=cosh(u+x)
X -X _ ,, utx -u-x
= e +e = (e THe )

s =% X u -xX -u
= 2e" +2e =e e +e e
= eZX(Z eu) = e U-2
—-
_:DEZ:{:e ZA _ (3.28)
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The points (u,x) that satisfy equation (3.28) are given in figure 3.4

—————— ~0.693

Figure 3.4

These points separate the plane into three regioms. Let the region that
contains ¢ne origin be cailed W. The input—output model is valid only
if u=u(t-1) and x=z(t-1)=u(t-2)+u(t-3)+ ... +u(l) belong to wt-l’ i.e,
when

(u(t-1), (u(t-2)+u(t-3)+ ... + u(l)))é’.Wt_ (3.29)

1

4, Stochastic systems and input—output models

The input set U of a general stochastic system is, similar to that of
a general deterministic system, an r-dimensional vector space and the
output set Y is an m-dimensional vector space. The output set Y is
however a set of vector random variables. The response function of a
stochastic system is inevitably a probability distribution function or
the corresponding probability density function. Only probability density
functions will be used, but in the case where the density functions do
not exist, the corresponding distribution functions can be used instead.
Assuming that ordered bases for the vector spaces U and Y are specified,
the input u(t) is an r-dimensional column vector and the output y(t) is
an m—dimensional column vector. Let the vector of all outputs from time 1

to time t be

t T T 1.l
yo= [N, (re-1)7, .0, (r (1) (4.1)
The response function of a stochastic system is the conditional probability

i 5 t 3 . t . .
density function of the vector y for a given input vector u , this is

p(yt] u®) (4.2)
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This conditional density function for t = 1,2,... specifies completely a causal
stochastic system. This happens because, for a causal stochastic system, the
outputs from time 1 to time t, i.e. yt, can be influenced only by inputs in that
stretch of time, i.e. by ut, and not by any inputs after time t. Thus all the
information about the vector yt, given the inputs at all times, is provided by
the conditional density function (4.2).

There is an alternative way of describing a causal stochastic system. The
conditional density function (4.2) is equal to

t-1, t-1
[u

sls® [o e ot [y T u ity )

t-1 t-1 t=2 t-2
p(y(t) |y “,u Dpyt-1)]y “,u

Yoeop(y (D) u())  (4.3)
The conditional probability density function
t=lL &
p(y(B) [y~ T,u’) (4.4)

for t = 1,2,... can thus equally well describe a causal stochastic system since the
density function (4.2) decomposes as a product of density functions (4.4).

The conditional probability density function of y(t), given all the past
inputs and outputs, is usually only needed to provide an estimate for the output
y(t) when all the past inputs and outputs are known. An estimate of a random
variable can be defines in several ways. The simplest and most important estimate
is the mean value of the random variable. The mean value is actually the estimate
that minimizes the mean square error and thus it is also known as mean square error
estimate. The estimate ;(t) of y(t), given all the past values of inputs and
outputs, is called the prediction of the output at time t. The prediction ;(t)

then is

F(=E[y(0) |y, ut]=£ ", 0" (4.5)

The difference y(t)-y(t) is another vector random variable called the prediction

error vector O% innovation vector e(t). Thus
e(t) = y(t)-y(t) (4.6)

The vector e(t) is the vector random variable that shows how much the actual out-
put at time t differs from the predicted one based on all the values of inputs
and outputs prior to time t.

The prediction error e(t) can be calculared when the vectors yt_l,ut and y(t)
are known as

e ()=y()-£¢y" 05 | (4.7)
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and also
y(0)=£(y" ", uS) re () (4.8)

This is the prediction error or innovation from of a stochastic system,

Let the vector et be
F ety T e e (LY (4.9)

The elements of the vector et L can be calculated from the vectors y and
- . t-
ut 1 using (4.7). Similarly the elements of the vector y 1 can be calculated
= o . i 3 t-1 =
from et 1 and ut 1 using (4.8) recursively. Thus the pair (y ,ut 1) and

t=1 t-1 . )
(e ,u ) can each be derived from the other and consequently the same is true

1

for the pair (yt_l,ug) and (et_ ,ut) by adding the vector u(t). The conditional

probability density function (4.4) is then equal to
t=1 E t-1 t
p(y(t) |y ,u)=p(y(t)]e” T,u) (4.10)

The prediction y(t) can thus alternatively be given by

y()=E[y(0) [, uT=ex e 7,05 (4.11)

The function f* in (4.11) can be considered as the response function of a
deterministic system where the input in this case is the vector I(e(t))T,(u(t))?]T
and the output is the vector y(t). Thus under the conditions given in Part I

of this paper, the following input—putput model describes the system

;(t+P)=Q§[§l(t+nl_l),---,;1(t),

~ -]- . ~
Ym(t+nm ) ,Ym(t),

u, (£4p) 5.0 ouy (8D,

° 0 [ . - . .

Ur(t+P)s---:Ur(t):

31(t+p"1)5---ael(t)’

em(t+p—1),...,em(t) (4.12)

where i = 1,2,...,m and ©p = max(nl,nz,...,nm)

The integers n,,n R are the observability indices of the stochastic non-linear

2
system. Substituting y(t)=y(t)-e(t) in the model (4.12), it becomes
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Yi(t+P)=quyl(t+n‘1)s---,Yl(t),

where 1

ym(t+ﬂm“1),---,ym(t),

ul(t+P)’-"sul(t)s

Ur(t+p)s"-sur(t):

el(t+p_1)"°':el(t)s

em(t-i-p—l),...,em(t)] +e, (t+p) (4.13)

=1,2,...,m and p = max(nl,nz,...,nm)

In this particular case of single-input, single-output systems, the model (4.13)

becomes

y(t+n)=q[y(t+n-1),...,y(t) ,u(t+n),...,u(t) ,e(t+n=-1),... ,e(t)]+e(t+n)

(4.14)
This is the generalization to the non-linear case of the model
y(tm)=a1y(t+n—1)+. . e +any(t)+
bou(t-i-n) E . +bnu(,t:) +
c e (t+n-1)+. .. +cne(t)+e(t+n) (4.15)

This linear model usally called ARMAX model (AutoRegressive Moving Average model

with eXogenous input) or controlled ARMA model is the standard model used in the

identification of single-input, single-output linear systems (Goodwin and Payne 1977)

The model (4.14)

can by extension be called the NARMAX model, for Non-linear

ARMAX model, The general multivariable model (4.13) can be called multivariable

NARMAX model but
(4.13) inherited
appropriately be
model. It is a

satisfy the weak

such a name does not describe the special structure of the model
from the state-space multi-structural forms. It should thus more
called multi-structural input-output prediction error or innovation
model that can describe a wide variety of non-linear systems that

requirements discussed in Part I of the paper. The innovation

vector e(t) is, from (4.5) and (4.6)

e(t)=y(0)-E[y(®) |y ,u"] (4.16)

or equivalently from (4.6) and (4.11)
e(t)=y(0)-E[y () e ,u"] (4.17)

Thus the conditional expected value of the innovations is zero
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E[et))y" Lut] = 0 (4.18)
or equivalently
E[e(t)] e ,u"] = o (4.19)

Condition (4.18), or equivalently (4.19), is the condition which the innovation
sequence e(t) must satisfy if the innovation form (4.8) is to be wvalid.
Conclusions

In this the second part of the paper the deterministic multivariable input-
output model for nonlinear discrete systems has been compared with Sontag's models,
and several examples have beca given. A stochastic model representation for
multivariable nonlinear discrete time systems has also been derived. These
latter models have been given the name multistructural innovation input-—output
models since their speci:ak structure is inherited from the multi-structural forms
of linear multivariable systems, If the system is single-input, single-output
the stochastic models are called NARMAX models.

The overall aim of the present study was to extend the parameter identification
methods which are available for linear systems to nonlinéar systems. In order
to accomplish this objective, two relatively different types of problems had to
be solved. The first was the construction of nonlinear parametric models which
can be used in nonlinear identification and the second was the extension to the
nonlinear case of the parameter estimation and model validity tests of linear
identification. One particulat solution to the first problem has been discussed
in the present study. Some solutions to the second problem are available in the
literature [ﬁillings and Leontaritis (1981)(1982), Billings and Voon (1983)(1984i]
and hopefully these can be extended and augmented to provide simple to implement
methods of identifying nonlinear systems.

Acknowledgements

The author gratefully acknowledges that this work is supported by the
SERC under grant GR/B/31163



_21_

References

BILLINGS S.A.,(1980) Identification of nonlinear systems - a survey.
Proc. IEE, Part D, 127, pp 272-285.

BILLINGS .S.A. and LEONTARITIS I.J., (1981) Identification of non-linear systems
using parameter estimation techniques, Proc. IEE Conference,
Control and Its Applications, Warwick Univ., pp 183-187.

BILLINGS S.A. and LEONTARITIS I.J., (1982) Parameter estimation techniques for
non-linear systems, 6th IFAC Symp. Identification and System
Parameter Estimation, WAshington DC. pp 427-433.

BILLINGS S.A. and VOON W.S.F., (1983) Structure detection and model validity tests
in the identification of nonlinear systems, Proc. IEE

, Part D, 130, pp 193-199.

BILLINGS S.A. and VOON W.S.P., (1984) Least squareé parameter estimation algorithms
for nonlinear systems. Int. J.Syst.Sci. (to appear).

BILLINGS S.A. and FAKHOURI S.Y.,(1982) Identification of systems containing linear
dynamic and static nonlinear elements, Automatica, 18,
pp 15-26.

CROUCH P.E. (1981) Dynamical realization of finite volterra series, Siam J.Control
and Optimization, vol. 19, pp 177-202.

GOODWIN G.€. and PAYNE R.L., (1977) Dynamic System Identification Experiment
Design and Data Analysis. Academic Press, New York.

LEONTARITUS I.J. and BILLINGS S.A., (1984) Input—output parameter models for
nonlinear systems, Part I Deterministic nonlinear systems.
Res. Report No. 251  University of Sheffield.

PADULO L. and ARBIB M.A., (1974) System theory; a state-space approach to continuous
and discrete-time systems. W.B. Sonders, Philadelphia.

PAPOULIS A., (1965) Probability, random variables and stochastic processes.
McGraw-Hill, Tokyo.

SONTAG E.D., (1976) On the internal realization of polynomial response maps.
Ph.D. dissertation, University of Florida.

SONTAG E.D., (1979a) Polynomial response maps. Lecture notes in Control and
Information Sciences No 13, Springer-Verlag.

SONTAG E.D., (1979b) Realization theory of discrete-time nonlinear systems - the
bounded case, IEEE Transactions on circuits and systems,
vol. CAS-26, pp. 342-356.

WERTZ V. GEVERS M. and HANNAN E.J., (1982) The discrete determination of optimum

FEIELD UNIV structures for the state space representation of multivariable
SHEFFIELD UNIV.

stochastic processes, IEEE Trans. on Automat. Control.

vol. AC-27, pp 1200-1211



