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Abstract

Recursive input—output models for nonlinear multivariable discrete-time
systems are derived and sufficient conditions for their existence are
defined. The paper is divided into two parts. The first part introduces
and defines concepts such as Nerode realization, multistructural forms and!
results from differential geometry which are then used to derive a recursive
input—-output model for multivariable deterministic nonlinear systems. The
second part introduces several examples, compares the derived model with
other represeptations and extends the results to create prediction error
or innovation input-output models for nonlinear stochastic systems. These
latter models are the generalization of the multivariable ARMAX models for
linear systems and are referred to as NARMAX or Nonlinear AutoRegressive

Moving Average models with eXogenous inputs.



Introduction

The identifications and digital control of linear systems is largely
based on the linear difference equation model which relates sampled
output signals to sampled inputs. Numerous parameter estimation
routines and controller synthesis procedures [boodwin and Payne

(1977), Astrom and Eykhoff (1970%] have been developed based on

this description which provides a concise representation of both the
process and the feedback controller. When the system is nonlinear
however the traditional system descriptions are based on functional
series such as the Volterra EVolterra (19305] or Wiener [Fiener(lQBZ)]
series [Billings (1980).] Whilst these provide an adequate represen—
tation for a wide class of nonlinear systems several hundred parameters
are often required to characterise even simple nonlinear systems.

The excessive computational effort required to estimate the unknown
parameters, the difficulty of interpreting the results and the
necessity tc use special input signals are further disadvantages of
functional series methods. . The usefulness of these system descriptions
for identification and control purposes is therefore limited and

alternative representations are required.

Recently several authors [Brockett (1976) , Herman and Kremer (1977)
Sussman (1977), Crouch (1979), (1981), Jakubeczyki  (1980), Sontag
(1979a) ,Fliess and Normand-Cyrot (1972)] have studied the realization
problem for nonlinear systems and numerous interesting results have
been obtained. However little work has been directed towards deriving
input-output models for nonlinear discrete systems. The wide appli-
cation of linear difference equations makes it natural to search for
nonlinear difference equation models that can be ﬁsed to represent
general nonlinear systems. The development of such models could
provide a class of models which could form the basis for the develop-
ment of identification and digital controller design techniques for

nonlinear systems. With the exception of Sontag's work [Sontag (1970),

(1979a), (1979bi]in this field little has been achieved.

In the present study recursive input-output models for both deter-
ministic and stechastic nonlinear multivariable discrete time systems
are derived. Conditions for their existeme are provided which can be
given a simple physical interpretation. The recursive input-output
models are valid only in a restricted region of operation around the
equilibrium point. The determination of such a region of operation is

also given. The single-input single-output recursive nonlinear input-



output models were first derived heuristically and recursive
estimation methods were developed for them in Billings and Leontaritis
[1981, 1982]. Alternative least squares algorithms based on these
models are derived in Billings and Voon[1984] and structure detection
and model validation techniques have been developed in Billings and
Voon[1983]. Several examples which illustrate the derivation of the
models are included and a comparison is made with other models for
nonlinear systems especially with the globally wvalid input—-output

models developed by Sontag.

The deterministic models are used to create prediction error or
innovation input=-output models for nonlinear stochastic systems.

These models are the generalisation of the multivariable ARMAX or
controlled ARMA models of linear stockastic systems [ﬁoodwin and Payne
(1977)]. Consequently the nonlinear models are referred to as the
NARMAX or Nonlinear AutoRegressive Moving Average model with eXogenous

inputs,

The paper is split into two parts. The first part introduces results
from system theory such as Nerode realization, multistructural forms

and concepts from differential geometry which are used to derive linear
multivariable input=output models which are then generalized to provide
a recursive input-output model for multivariable deterministic nonlinear
systems, The second part ELeontaritis and Billings, 19841 introduces
several examples, compares the derived model with other representations
and extends the results to create prediction error models for nonlinear

stochastic systems.



2. Basic Concepts

Consider the discrete—time, time invariant system §

x(t+1) =g [x(t) ,u(t)]

y (£)=h[x(t),u(t)]
(2«1

where t €Z is the set of integers,
x(t+1),x(t)€ X 1s the state set,
u(t)€ U is the input set, of dimension T,

y(t)€ Y is the output set of dimension m
?

g: #xXxU + X is the one step ahead state-transition function and

h: 2xXxU = Y is the output function

The many step ahead state-transition function ¢ can be found by

repeated applications of the function g.

x(t+2)=g[x(t+1) ,ue+1)] =g[g[x(t), u(t)],u(t+1)]
=0 [x(t) ,u(t+1) ,u(t))

x(t+3) =g [x(t+2) ,u(e+2) ] =g [g[g [x(t) ,u(t)] ;u(t+1)] ,u(t+2)]
=0 [x(t) ,u(t+2) ,u(t+1) ,u(t)]

x(t+4)= . 2 i = : Z i : ; (2.2)

Let U* be the set of all sequences of members of the set U

* .
U = {ukwl...u1u0|k10 and uje U, j5050,3,:: ,k} (2.3)

The empty sequence denoted by e is included in U* and corresponds to
k=0. The input sequences will be allowed to be concatenated one after

the other so that if w € U%, their concatenation will then be

w
1°°2
denoted W1W2€ U*. The set of all sequences minus the empty sequence e

is the set U+ = U%- {e}

The length of a sequence w will be denoted by |w]|.
The state-transfer function can now be defined as

d: XxU* X (2.4)



so that if u(t+3)=uj, ji=0,1,2,... ,k-1 and w=uk_1...u1uO then

x(t+k)= @[x(t);ya for k>0 and x(t)=®[x(t),e] for k=0

Note that an input sequence WEW el U, is written contrary to the
usual way from right to left, so that the input latest in time. w oo
appears first in the sequence and the most remote in the past, uys
appears last in the sequence. This symbolism is preferred because it

is more convenient for later use.

The function of primary importance in system theory is the function that
describes the input-output behaviour of the system since this is all an
external observer can see. When the system is at the state X the
behaviour of the system from that state can be described by a function

fX called the input—output map or the response function of the system
o
and it is defined as

+
fX : U =Y (2.5)
0
where
fXO(W)=h[¢[%D,uk_1...uluo_,ukJ ‘ (2.6)
and w=ukuk_1...u1uoe U+

A state X is an equilibrium state if there exists an input u such

that g[xb,u5]=x0. A constant input sequence w such that w=%)%f..u6 will
leave the state X unchanged i.e. @[xo,w]=x0. When a system is at its
equilibrium state X and the constant input sequence w is applied, the
output takes the constant value Y where y0=h[x0,u;]. The equilibrium
state X is a state where the system is at rest for an input sequence
that has a constant value of u . It is assumed that every system has

at least one equilibrium state. When the sets U and Y have the structure
of a vector space, a change of the origin of the co-ordinate system in U
and Y can transfer the input u0 to the origin of U and the output yo to
the origin of Y. It will henceforth be assumed that such a transformation
has been done and the origin of U will be called a zero input and the
origin of Y will be called a zero output. A sequence W that consists of

k zero inputs will be called a zero input sequence and it will be denoted

o<,

A state x 1s called reachable from another state x if there exists an
. o
input sequence w € U* such that x=@[xo,wl. A system S is called reach-

able from a state X if every state x € X 1s reachable from the state x
o



Two states x. and x, are called indistinguishable if for any input

1 2
sequence w € U+ it holds f_ (w)=f (w)
o ! *)

Thus when the system is at state x_, the output from the system when an

1!
input sequence w is applied, is the same as the output when the system is
at state X, and the same input sequence is applied. Consequently no

input-output experiment can determine which of the two states the system

is at.

A system S is called observable when there are no indistinguishable

states in the state set X of the system.
The theoretical basis of identification theory is realization theory.

The function that summarizes all the future input-output behaviour of

a system in state X is the response function fx . This is the maximum
information an observer can get from measurementS on the system. The
realization problem then is the following:

Given a function F: U+sY find a system S such that it has a particular
state x_ for which the response function of the system fx is equal to

the funection F. D

This system S is a model that from an input—output point of view behaves
identically to the function F. There might be many model systems S but
out of all of these one must be simpler than the others or minimal in

some particular way. The sense in which a system is considered minimal

is quite important in the theory.

The most general solution of the realization problem is a method called
Nerode realization [Arbib (1968)], [Padulo and Arbib (1974)]. The
criterion for minimality is that the model system should be reachable

from x and observable.
o

The basic idea behind Nerode realization is that all input sequences that
bring a system S from the state X to the same state x can be considered
to belong to an equivalence class and any one of them can represent the
state x. If the system S is observable the way to check that two input
and w. are equivalent in the above way is to make sure that

1 2
the behaviour of the system after the two sequences have been applied is

sequences W

identical since this proves that the system has been driven to the same

state. The sequences v, and w, are thus equivalent if

fxo(wwl)=fx0(WW2) for all w & U+



Since the aim of Nerode realization is to construct a reachable and

observable system, this idea can work backwards.

A set equivalence relationship E can be defined on the set U* according

1 and v, will be symbolized

as WlEWZ' Two sequences vy and w, are then equivalent if and only if

to the function F. Two equivalent sequences W

leW2 > F(wwl)=F(ww2) for all w € U+

The equivalence class a sequence w belongs to will be symbolized as [@],-

thus

Bﬂ = {w'e v* |w'Ew}
The state space of the Nerode realized system S is the quotient set
x=U*[E
The one step ahead state—tramsition function g and the output function h

are given as g: XxU =X h: XxU>Y

where

g([w] ,u)=[u]

h([w] ,u)=F (uw) (2.7)
where w can be any sequence of the class [ﬁ]e X. It can easily be seen
that these two functions are properly defined, that is, their definition

is independent of the choice of the sequence w in [W]- The state-

transition function is
q’[[‘}lliwz-l'zllwzwlj (2'8)

The state[é] which is the equivalence class of the empty sequence e will
be the state X The Nerode realized system S has as an input-output
map from the state X the given function F. In fact let w be any non-

empty sequence that belongs to U+. The sequence w can be written as

w=uwl where u € U, wl € U*

Then
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fX (W)=fX (uwl)
o o
=h(d(x ,w,),u) from the definition of the
o’ 1 .
response function (2.6)
=h(@([é],w1),u) since xo=[é]
=h([w1e:] ,11) from (2.8)
=h([§1],u) since e is the empty sequence
=F(uw1) from (2.7)
=F (w) (2.9)

The system S has therefore response function from the state X, equal

_to the given function F. It is completely reachable from X because

any state x is an equivalence class of input sequences and any member
of this class drives the system from X to the state x. It is observable
because any two distinct states always have different responses from

these states. In fact let two distinct states X, and %, be x =Lwi] and

2 1
32=Lwé]. Assume that they are indistinguishable, that is
f (w)=f (w) for all w € U+. Then
X X
1 2
f wW=f (w) > f (ww)=f (ww,) = F(ww )=F(ww,) -~
X X, X 1 £ 2 1 2

[w£]'=[ﬁé] > oxx (2.10)

0 ! 3 . - 3
a contradiction which proves that the states X, and x2 are distinguishable.

Realization and input=-output models of linear systems

In this section several results from the theory of linear systems will
be reviewed. These results will be needed as background for generalisation

purposes in the field of non-linear system theory.

A discrete-time, time-invariant linear system can be defined as
x(t+1)=g [x(t) ,u(t)]=Ax(t)+Bu(t) 550
y(£)=h[x(t) ,u(t)]=Cx(t)+Du(t)
Where U.,"Y and X. are vector spaces and A: X-X, B: U~ C: X»¥, D: U~Y.
Tet x.=x(t+i) ui=u(t+i) and yi=y(t+i) for i=0,1,2,.... The many step
i
ahead state-transition function then is

] . k-1

2= X, m ey S

=Akx * B Bu for k>0 (3..2)
° 4.0 2

and the response function is



k-1
...u1u0)=CAkx0 + I 'CAk 4 1Bu +Du for k>0

= ! 2 M

= u u
Tk kel e
(3.3)

The origin of the state space is an obvious equilibrium state of a linear
system. The zero input sequence leaves the system at the zero state with

output the zeroc of the output space.
Only finite-dimensional systems will be considered where
dim(U)=r dim(Y)=m dim(X)=n

The specialization of Nerode realization to linear systems will be
discussed next [Arbib (1968j], [?adulo and Arbib (1974i}. The realization
of response functions from the zero state only will be studied since it
can be assumed that the system was at the zero state at some point in
time., However, the realization from a non-zero state can be done using
similar arguments. The zero state response function will be denoted by f

for notational convenience.

The zero state response function of a linear system is given by
{3.3) for XO:O

k.
- veeuu )= oty = E
i G e R N I A U3 o

where I%=D and H2=CA£le for 2>1

The linear functions H characterize the zero state response function and
are called impulse functions since for an impulse input sequence 0...OuO
the output of the system is yk=HkQ0. For some ordered basis of the vector
spaces U and Y the impulse functions Hglare represented by matrices of

dimension mxr called impulse matrices.
Pl

The specific problem of realization of a linear zero state response function

is the following:

Given the impulse functions H,: U% 2> 0 where U and Y~ are finite dimen-
sional vector spaces and H, are linear functions, find a vector space X
and four 1inéér functions A, B, C, D where A: XX B: U2X C: X°Y

{3 ) U3¥ /

\ /

- .
such that HO=D and H2=CA lB for 271.

In other words find a linear system that has as impulse functions the
given functions HR' The Nerode realization gives a general solution to

the problem but the special form of the response function has to be taken



into account to prove that the Nerode realized system is a linear system.

The zero state response function of a linear system can be intuitively
seen to be a linear function but to be precise the space U%* must first
be given the structure of a vector space. In order to do so addition
between members of U* and multiplication with scalars have to be defined
first. Component-wise multiplication is the obvious choice for the
multiplication. For addition sequence w can be post-loaded with zeros
without altering the imate it has through the response function i.e. it

holds that f(w)=f(w0k) for k>0

This obviously happens just because the response function is a zero-state
response function and any zero input sequence leaves it at the zero state.
An equivalence relationship P can thus be defined in U* such that two

sequences w, and w, are equivElent if and only if there exist two integers

1 2 k
k. and k., such that w O T=w 0'2. Cbviously all the members of one such

eéuivaleit class of séquencis have the same image through the response
function f and thus the quotient space U°=U%/P can be substituted as the
domain of the response function. Addition in U° can be easily defined

since two sequences W, and W, can be made to have the same length by post-
loading the shorter one with zeros and can thus be added together component-
wise. It can be readily proved that the space U° is then a vector space

and that f is a linear function.

The first step of Nerode realization is to group together in equivalent
sets all the sequences with the same response and define the quotient space
as the state-space. The equivalence relationship E among the members of

U° is thus defined as

WlEWZ > f(wwl)=f(ww2) for all WEU+ (3.5)

where the juxtapositions Wy and W, for'wl,wze U0, w €U+ are also members
of U°. As a consequence of the linearity of £

fcwwl)=f<w)+f<o|"’|w )

1 (3.6)
f(ww2)=f(w)+F(OlW|w2)
and thus
£y )= Gary) = £0hapy=£ 07l (3.7)

Two sequences are then equivalent when



lew2 < f(ww1)=f(ww2) for all WeU+
<> f(OIW|W1)=f(OlWlw2) for all [Wl > 1
<> f(Okw1)=f(0kw2) for all k > 1

Thus in order to check that two sequences are equivalent an infinite zero
sequence should be applied after the applications of the two sequences
and the response of the system should be checked to be identical. Any
arbitrary sequence of infinite length can actually be used as a test

sequence but the zero sequence is a common and obvious choice.
A series of equivalence relationships that require only finite length

test sequences can now be introduced. Two sequences vy and v, are k-

equivalent if and only if

, NP
wlﬁsz > £(0 wl)—f(O WZ) for all 1 <2 <k (3.9)

It is obvious that the Nerode equivalence relationship E is actually

The quotient spaces Qk=U0/Ek, k=1,2,...

can be seen to be linear spaces. In fact let the veator<w>k be defined
as

£(0w)
£ (009

<w>, = 4 =Lk(w) for k=1,2, ... (3.10)

f(Okw%
The vector <W>k is a member of the vector space Yk. The function
Lk: U0->'Yk that takes the sequence W to > is obviously a linear
function since the function f is linear. The equivalence relationship Ek

can be alternatively defined as

WlEkWZ e Lk(w1)=Lk£w2) k=1,2, e (3.11)
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The quotient space Qk=U°/Ek is then nothing else but the factor space

UO/Ker(Lk) which is a vector space in its own right. Thus

Q =U°/Ker (L, ) o W (3.12)

The state-space X of the Nerode realization is then the vector space Q

that is X=U°/Ker(L¥)

The one step ahead state—transition function and the output function or
equivalently the functions A, B, C, D can now be found. Let a member of
the state space X be x=[ﬁ], where w is some sequence of the equivalence
class E{]. The one step ahead state-transition function of the Nerode

realized system is

g(x,u)=g( l__Wj ,u)=[ut€|= [Ow+u]=[0w:|+[u] (3.13)
The functions A and B are defined as

A EX Eﬂ F*Ebﬂ
: (3.14)
B: U»X :  ub[ul
It can be seen that the functions are linear and well defined (independent

of the choice of the sequence w that represents the state x). The output

function of the Nerode realization is
h(x,u)=h([w],u) = f(uw) = £(Ow+u) = £(Ow) + £(u) (3.15)

The functions C and D are defined as

C 2 X+Y [W:IH-f(Ow)
(3.16)

D: U=Y : u B (u)
The realization of the zero state linear response function has thus

been theoretically solved but a more numerical interpretation will be

given so that the realization can also be done in practice.

The set U9 can be given a different interpretation as the set of all
right-infinite sequences with only a finite number of non-zero elements.
All sequences can be made right-infinite by post-loading them with zeros.

A sequence WU U ;... € U9 will be written as an infinite vector
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The response function can then be written as

y(t)=HOu(t)+H1u(t~1)+H2u(t“2)+ — zio Hlu(t—z)=
='[HO H, H, o] ul® (3.17)
ult=1)
u(t=2)

where the sum is well defined since only a finite number of terms are

non—zero.

The elements £(Ow), £(00W), ..., f(Okw) of the vector <w>k are actually
the output of the system after the application of the input sequence w,
followed by the application of a number of zero inputs. For the sequence

w=u(t~1)u(t-2)u(t-3)...

the output f(Ow) will be denoted by y(t|t-1) and it 1is

y(t|t—1)=ulu(t-1)+ vee = I Hu(t-2) (3.18)
g=1 *

In general

=]

y(t|t~1)=nku(t—k)+Hk+1u(t—k—1)+ gy Rik Hou(t=g) k>0 (3.19)

When the realization problem is interpreted as the realization of a
stochastic system, the vector y(t|t-k) can be considered to be the best
prediction of y(t) given all the inputs up to time t-k [Akaike (1974&)].
This is the reason for the present symbolism. The stochastic interpretation
of the realization problem seems to be more natural to people not familiar
with automata theory and the Nerode realization. Such a view of the
realization problem does not actually lead to any new results and it has

no other advantage apart from providing a familiar mental picture for

people with a statistical background.

. 4 :
The functions Lk : U9+Y" are given by



y(tit—l) i Hl H2 H3 u(t-1) —[
y(t+1] t=1) | By By Hoee u(t-2)
L, (W)= . = . . . : u(t-3) (3.20)
y(t+kwl|t—1) Hk Hk+1Hk+2"'

Given ordered bases for the input and output vector spaces, the impulse
functions H, are represented by the impulse matrices and the linear

functions Lk are represented by semi-infinite matrices, the Hankel matrices

hal

k,»
o . 1
H
Hl H2 3
H2 H3 H4
bp . ® . . o2 '
Moo (3.21)

Hk Hk+l Hk+2

Finite Hankel matrices ){k , can be defined similarly as
L]

|
HoOH H
Hy Hy ..o By
o 1= . L i (3.22)

| Hk Hk+1"° Hk+1—1

The Hankel matrix, because of its special structure, has several useful

properties

If for some k

rank (}{k,m)=rank (}{k+1,m)

then

(1) rank ()--(k Do)=rank()--(k. ) for all k'>k
5 b

(2) rank O o) =rank (}{k,m)



&L =

Thus for such a k the matrix }{k E has the highest possible rank any

?
Hankel matrix . ,, , can have.
'k,

A response function that is realized by a linear system with finite
dimensional state-space is called finitely realizable. The dimension
of the state-space is called the order of the linear system. The
properties of the Hankel matrix can be exploited in the realization of

the finitely realizable response functions.

The factor spaces Qk in (3.12) have dimension equal to rank (Lk) ;

dim(Qk)=rank(Lk)=rank(}(k m) E=142,:45 (3.24)

If a response function is finitely realizable the state-space X=Q_ has

finite dimension equal to n. Then from (3.24) it holds
dim(Qw)=rank(}{w m)=n
3

The condition then for a response function to be finitely realizable is

)=n for any k=1,2,...

max (rank }(k,l
1=1,2,...

Property (1) of (3.23) can be exploited to prove that for a finitely

realizable response function of order n the state—space is also given by

X=Qn=U°/(Ln) (3.25)

From (3.25) and (3.24)

dim()«_ _)=n (3.26)
n,®
Property (2) of (3.23) can be used so that (3.26) also gives dim(){n n)=n

- The state-—space of the Nerode real%zatinn is given by the factor space
Ub/Kér(Lé). A basis for this space haé fo be found sc that the state can
be represented by a column vector. If a rule is provided for choosing

a unique basis for the state-space, the realization is called canonical,
since for such a basis, the matrices A,B,C,D of the linear system of the
Nerode realization are unique. A method that can be used to determine

a basis for a vector space is to find another vector space, isomorphic to
the original ome, that has a naturally occuring basis. The basis chosen
for the original space is the basis of the isomorphic space mapped by the

isomorphism back to the original space. The advantage of this choice is



_15.-

that two isomorphic vectors have exactly the same column vector
representation for the isomorphic bases. In essence, the original
gpace can be forgotten and everything can be done in relation to the

isomorphic space.

The factor space U?/Ker(Ln) is isomorphic to the space image (Ln)

Eﬂonham (1974)]. This space can thus be thought os as the state-space

of the Nerode realization. There are two types of bases that can be
easily defined for the space image (Ln); The first is any set of
independent column vectors of the matrix representation of the linear
function Lﬁ’ }{n,m' The state-space models in the controllable canonical
form can be created by this type of bases. The description of such
realization is given in {Padulo and Arbib (1974ﬂ. Another type of bases
will be considered here. The state-space models in the observable
canonical form can be created by this type of bases. The reason for such

a choice is that they also lead to input-output models that can be easily

used in identification.

The rank of the linear function Ln or equivalentnly the rank of the

Hankel matrix }{n’mis equal to n. Thus n independent rows of this matrix
can be selected and the rest of them will be linearly dependent on them.

If the linearly dependent rows are deleted, the linear function represented
by the matrix that consists of the linearly independent rows only is called
Lg“. The space Image (Lg) is obviously isomorphic to Image (Ln), so the
state—space can be identified with Image (Lg), Choosing the standard

basis for this space, a colum state vector consists of the elements of

the column vector.

[ y(e|t-1)
y(t+1]e=1)
} (3.27)

_y(t+n-1|t-1) |

that correspond to the independent rows of M . The state vector x(t)
nm

3

is thus given by
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x(t)=R i u(t-1) |
(3.28)

u(t—=2)

.

Where R is the nx«matrix of the funection L:, i.e. the matrix that

consists of the chosen independent rows of X _ _. The vector x(t+l) is
n,

then equal to

x(t+1)=R | u(t) | = [B R'] M u(e) |
u(t-1) u(t=1)
=R' [u(t-1) |  + Bu(t) (3.29)
u(t-2)

Where B is an nxr dimensional matrix that consists of the first r columns

of the matrix R.

Every row of the matrix R' is a row of the matrix R with the first r
elements removed, Every row of the matrix R is actually some row of the
matrix )} _- . Every row of the matrix R' is thus some row of the matrix
X, . with the first r elements removed. Let the ith row of X_ _ have
the’first r elements removed. This derived row is, because of tﬂe structure
of the Hankel matrix, the (i+m)th row of the matrix »_ _. Consequently
every row of R' is a row of the matrix »{_ _. Since evéry row of H_ _ is

s ’

linearly dependent on the rows of matrix R, every row of R'" is a linear

combination of the rows of the matrix R. It then holds that

R'" = AR (3.30)

where A is an nxn matrix. From (3.29) and (3.30)

x(t+l) = AR u(t-1) + B u(t) (3.31)
u{t-2)

°

and using (3.28)
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x(t+1)= A x(t£)+ B u(t) 3,49}
From (3.17) it holds

yit) = ['HO Hy .- J r u(t) | = [_Hl H, ---] wle-1)| + HOU(t)

u(t-1) u(t-2)

4 (3.33)
But the matrix [ﬁl H2 ...J consists of the first r rows of the Hankel

matrix H_ _ which are some linear combination of the rows of matrix R.
>

Thus

l:l—ll Hz...:l =CR (3.34)

and (3.33) becomes

y(t) = CR u(t=1) ] + HO u(t) (3.35)
u(t=2)

and using the definition of x(t) in (3.28)

y(t) = € x(t) + D u(t) (3.36)

where D=HO

The state—space representation is thus complete.

The independent rows of the matrix }{n . Which constitute a row basis

5
were chosen in an arbitrary way. If however a particular rule is followed
in the selection of the row basis, the realized state-space model has some

nice properties. The rule is the following:

.th 5 . .
If the i~ row of the matrix }{n . 18 chosen tobelong to the row basis, the
3

(i'-m)th row must also belong to the row basis provided that i-m is positive.

This rule is easy to understand if the rows of the matrix }{n . are grouped
2
together in groups of m rows starting from the first row. The selection

rule then becomes:

If the ith row of some m—group of rows belongs to the basis, then all the

ith rows of the above m—-groups must also belong to the basis.

The selection of a basis when such a rule is followed produces a state-

space with a smaller number of parameters than when the rule is not
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followed., In addition, all the parameters are independent so that

different sets of different parameters correspond to different systems.

Let the chosen row basis have n1 rows from the set of rows which are

first in every m—group of rows, n, rows from the set of rows which are
second in every m—group of rows, etc., n rows from the set of rows

. th . .
which are m in every m—group. Obviously

n, . +t... ¥n =n
m

1.2

The integers L L will be called observability indices. For
every specific choice of observability indices, the state-space model
takes a specific form which is called an observable multi-structural form.
The state—vector can be arranged to be equal to the column vector

-

yl(tlt—l)

§1(t+nl—1]t—1)
z(t)= P (3.37)

ym(t\t-l)

..-l e
ym(t+nm | t=1)

e —

It can easily be seen that for such a choice of a row basis, the state
transition matrix A takes a very specialized form. For the state vector

(3.37), the matrix A has the multi-companion form. For instance, for m=3

and n1=3, n2=2, n3=4, it has the form
010000000
001000000 +nl rows (=3)
X XXX XXX XX
000010000 -
XX XXX XXXX +n2 toa 1=2) (3.38)
000000100
000000010 ~
000000001 *ng rows (=4)
X XXXXXX XX
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where x signifies a free parameter. Let the row basis have m, Tows from

the first : m~group of rows of )
0 pe

of non-zero ohservability indices. Very often it is m, =m since the outputs

or equivalently let m be the number

are usually linearly independent and thus all the first m rows can be taken

into the basis. The matrix A then has n—ml rows with all elements zero

except one element equal to 1. The rest of the ml rows have elements that

depend on the system, i.e. on the impulse matrices. The matrix B has all
its elements dependent on the system. The matrix C also has a special form.

For instance for m=3 and n1=3, n, =2, n3=4, it is

2

-

100000000
000100000 {3:39)
000001000

The matrix C has ml rows with all elements zero except one element equal
to 1 and (mfml) rows with all elements dependent on the system. The matris
D has all its elements dependent on the system. The total number of non-
constant parameters of matrix A is nm, , of matrix B is nr. of matrix C 1is

n(m—ml) and of matrix D, mr. The total number of parameters then is

n  =nmenr-me ' (3.40)

Thus whatever the choice of the observability indices, or equivalently,
whatever observable multi-structural form is used for the state-space
model, the total number of parameters is always equal to n- A system that
can be represented in two different observable multi-structural forms has
two sets of ny parameters that can describe the system. The one set of
parameters can be uniquely derived from the other and the functions that
give the one set of parameters with respect to the other are rational

functions, as described in the appendix of IEMrtz, Gevers and Hannan (1982)].

The observable multi-structural forms are generalizations of the observable
canonical forms described in [Guidorzi (1975),(1981)]. The observable
canonical forms can be derived in exactly the same way the observable multi-
structural forms were derived with the extra condition that the rows of the
row basis must be independent from all the rows above them. This extra rule
makes the chosen row basis unique and thus the state-space models are
canonical. The multi-structural forms are obviously not canonical since a
given system can have several different sets of observability indices and
can thus be represented by several different state-space models. The

observable multi-structural forms were proposed in ELjung and Rissanen(l976j1
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to overcome the difficulty of a possible almost linearly dependent row
basis of the observable canonical form. They were called overlapping
parametrizations and they were found superior since a change of state-space
model could be done to avoid numerical problems when the row basis was

found almost linearly dependent. The observability indices of observable
canonical forms are invariants of the system and they are also called
Kronecker indices. The observability indices of the multi-structural forms
are not invariants of the system and if they are to be distinguished from
the observability indices of the canonical form, they should be called
multi-structural observability indices, Imn [bevers and Wertz (19821],

they are called structural indices. This name is not very appropriate

since it cannot distinguish them from the multi-structural controllability
indices. Here canonical forms are not considered and thus the observability
indices refer only to the multi-structural forms and they are not invariants

of the system.

The one important consequence of the realization described above is that it

also leads to an input-output model.

Let the maximum of the observability indices be equal to p
p=max(n; ;0,50 ) (3.41)

The vector y(t+plt—1) is then linearly dependent on the state vector x(t)

in (3.37). It then holds
y(erp|e-1)=A v (t+p-l]e-1)+ay(trp=2|t-1)+ ... + A y(t|e-1) (3.42)

The matrices Ai i=1,... ,p are of dimension mxm. If the element
yi(t+p—j|t—l), i=1,... ,v j=l,... ,p, does not belong to the state vector,
then the 1B column of the matrixAj is zero. Since the vector has only

n elements, the matrices A AQ,... 4 AP have in total only n non-zero

13
columns. It holds in general that

y(t+k)=y(t+k|t—1)+Ho u(tH) +H utrk-1)+ ... +H u(t) (3.43)

for K=0,1,2,...
thus equation (3.42) becomes
y(t+p)—HOu(t+p)...Hpu(t)=Al[y(t+p*1)—Hou(t+p—1)— s -Hp_lu(t)]+

Az[y(t+p-2)—H0u(t+p—2)— e —Hp_zu(t)j+

e ° ® . (3 . - o

A [y(©)-Hju(e)] (3.44)
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and thus

y(t+p)=Aly(t+p-1)+ —_—_ +Apy(t)+BOu(t+p)+Blu(t+p—1)+ S +BPU(t)

(3.45)
where
Bo=Ho
B,=H,=AH,
(3.46)

B2=H2-A1H1—A2Ho

B=H-AH .-...-AH
p p lp-l p O

The model (3.45) can be put in a form that does not include the zero

colums present in the matrices Al’AZ""’Ap' Let the matrix A* consist

of all the non-zero columns of the matrices Al,AZ,...,AP. The matrix A%

has dimension mxn. Equation (3.45) then becomes

y(t+p)=A* d yl(t+n1-1) + Bou(t+p)+(t+p-1)+ ...+Bpu(t)

y,(®)
vy, (t+n =1)

ym(t)

—

L
Equation (3.47) written individually for every component of y(t+p) is

-

-
y4§+p)= [ ay 8y e aiﬂ-] y, (t+n -1) +

§l(t)

ym(t+nm—1)

Ym(t)
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T ;
[l)il bi2 g bis ] ul(F+p) (3.48)

ur(t+p)

u_(t)

b e

where [b, b., ««u b, ] is a row matrix that consists of the ith TOWS
il 12 is

of the matrices BO,Bl,J. .,BP and s=(p+l1)r. The model has in total ng

parameters where n§=mn+ms. Thus

n§=nm+mpr+mr (3.49)

The integer p=max(n1,n ,nm) obviously satisfies

gt

P>n0y, P20y oo 5, P20 (3.50)

and adding them together
mp > n (3.51)

with the equality valid only if n =n,=...on . Comparing the number of
coefficients of the canonical state-space model n, and the number of
coefficients of the input—output model ng and using inequality (3.51),
it holds

ng 3_nd (3.52)

with equality valid only when all the observability indices are equal.

The input-output models derived from the observable canonical forms have
the same number of parameters as the state-space model in contrast to the
input-output model (3.48). There are two reasons why canonical input-
output models are not comnsidered here. First, in the event of a badly
conditioned row basis, the identification based on the canonical input-

output models present numerical problems. The multi-structural input-
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output model avoids the problem by choosing a different, better
conditioned, row basis. Second and more important for this study,
the canonical input-output models are very difficult to extend to the
non-linear case. However, the generalization of the multi-structural
input-output model (3.48) to a non-linear model is presented in

section 4.

The input-output model model (3.48) is different from the input-output
model presented in [ﬁevers and Wertz (1982)] and [Guidorzi (1982)]..

The model in these references can be anticipating and certain relation-
ships between the parameters of the model must be valid for the model to
be non-anticipating. It is thus much more difficult to use for identifi-
cation purposes. Its only advantage is that it can be more easily

related to the multi-structural state-space model.

The input-output model (3.48) may have more parameters than the state-
space model but it is still an identifiable parametrization [Severs and
Wertz (1982)]. This means that there are no two different sets of
parameters that can represent the same response function and thus the
parameters of the input-output model can be found by performing input-

output experiments.

. Nonlinear Theory

A few results and notions from modern analysis and differential geometry
will be needed for the development of the recursive non-linear input-

output model. The key theorems that will be used later are summarised next.

An important theorem in modern analysis is the Rank Theorem [Dieudonne
(1969)] [Brocker and Lander (1975}]. It is the generalization of the
Inverse Function Theorem that provides the conditions under which a
differentiable map can be locally transformed into a linear map by some

coordinate change in the domain and co-domain of the differentiable map.

The Rank Theorem

et FE and F be finite dimensional vector spaces and let W be an open

subset of E that contains the point X . Let f be a continuously different-
iable map from W to F i.e. f: W»F, Let the derivative of f at a point

x € W be DE(x).

If

the derivative Df(x) has constant rank for all x € W

then
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(a) There exists a set V, an open subset of E, such that VeW and another
set V¥, an opeﬁ subset of F, such that £(V)<V#*. There also exist two
diffeomorphisms d1 and d2 where dL: V-E and d2: V#E-+F .

(b) The restriction of £|V of the mapping f to the set V is equal to

f[V'—*d;lo DE(x_Jo d; (4.1)

The essence of the Rank Theorem is that if the rank of the derivative of a
function is constant around a point, local changes of coordinates (created
by the diffeomorphisms dl and d2) transform the function into its own
derivative at that point. Actually any linear function from E to F that

has rank equal to the rank of the derivative of f could be used in the

place of the derivative of f in (4.1).

A function that has constant rank in the whole domain of its definmition,
behaves locally like a linear function of the same rank. Globally however,
the image of the function in some region of the domain may interfere with
the image in another region of the domain and create problems like in the

function £ from R2 to R2 illustrated in figure 1.

Figure 1
In order to prevent such problems an extra condition has to be imposed.

Let the derivative of the function f: W+F have constant rank in all the

open sets WeE where E and F are finite dimensional vector spaces. The set

of points of W that map to the same point in the co-domain F have the
structure of a submanifold in the vector space E and they are called level
submanifolds [Chillingworth (1975)]. The extra condition imposed on the
funetion f is that level submanifolds should be connected. If this condition

is imposed, functions like the one shown in figure 1 are not allowed.

The linear functions always have connected level submanifolds. Thus if a
function has derivative with constant rank but fails to have connected
level submanifolds, it can be restricted to an open set V such that (4.1)
holds. Consequently, since it is diffeomorphically equivalent to a linear

function in the set V it has connected level submanifolds.
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The rank of a matrix A is equal to the dimension of a square minor matrix
with non-zero determinant. The determinant is a continuous function and
thus if the matrix A is changed slightly, the determinant of the minor
matrix will remain non-zero, The rank of the matrix A will thus either
increase or stay the same. This fact can be used if the derivative of a
function f at the point X s Df(xo), is known to have the maximum possible
rank that the derivative Df(x) can achieve for any x. Since the rank of
Df(x) cannot increase for an x different from X there will be an open
set W containing X such that the derivative Df(x) has constant rank equal
to the maximum rank for every x € W. The Rank Theorem can then be used

for the function f|W.

Another concept needed later is the concept of a fund¢ion dependent on

another function.

Let the functions f: V»F and g: V»G. The function g is dependent on the

function f if there exists another function h: Image(£)-G such that
g=hof (4.2)

or equivalently if the diagram Fig.2 commutes

Figure 2
Equation (4.2) can alternatively be written as
g(x)=h(£(x)) for any x € V (4.3)

The image of a point in V through the function g is thus determined when

its image through the function f is known.

1f the function £ has constant rank and it also has connected level sub-
manifolds, it is very easy to check that another function g is dependent

on f. The result is given in the following theorem.

Theorem 1

lLet the continuously differentiabel functions f: WF and g: V*G, where V
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is an open subset of a finite dimensional vector space E and the sets F

and G are finite dimensional vector spaces.
Assume

(a) rank Df(x)=n for every x € V

(b) the level submanifolds of the function f are connected
Let the function f=(£f,g): V-FxG.

If also

(¢) rank Df(x)=n for all x € V

then

the function g is dependent on the function f.

The proof of this theorem is given as Lemma 1 in [jakubczyk (1980}]. In
essence it says that if the rank of the derivative of the function f is
not increased when the function f is extended to the function (£f,g) the

function g is dependent on f.

In matrix form the derivative of f i§

_ " Df(x)
DE(x)= Dg(x)

A slightly different version of Theorem 1 will be needed later. It is the

following Corollary.

Corollary 1

Let E*, E, F and G be finite dimensional vector spaces. Let V be an open
set of the space E*xE and let the continuously differentiable functions f
and g be f: V»F, g: V»G. The function f(z,x) where z € E* and x € E has
derivative with respect to the variable x Dxf(z,x) at every point (z,x) € V.

The function g(z,x) also has derivative with respect to x ng(z,x).
Assume

(a) rank Dxf(z,x)=n for every (z,x) € V

(b) for any fixed z, the submanifold that consists of all the points
(z,x) € V that map to the same point of F through the function £, is
connected.

(¢) the derivative of the function-;=(f,g) with respect to x Dgf(z,x)
also has rank equal to n for every (z,x).

In matrix form
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D f(z,x)
D f(z,x)= & (4.5)
- DXg(,z,X)

Let the funection f*: V=E*xF: (z,x)w(z,f(z,x)) have Image (f*)=W
Then
there exists a function h: W»G such that

g=hef* (4.6)
or equivalently

g(z,x)=h(z,f(z,x)) for every (z,x) € V (4.7)

In other words if the variable z is known and the image of the point
(z,x) through f is also known, the function h provides the image of the

point (z,x) through the function g.

The proof is quite trivial and consists of showing that the conditions for
the function g to be dependent on the function f* required by Theorem 1

are the same conditions required by Corollary 1.

1f the function f has rank Dxf(z,x)=constant around a point (zo,xo), then
the Rank Theorem assures that a set V, an open subset of E*xE containing
(zo,xo), can be found so that the level submanifolds of Corollary 1 are

connected.

4.1 Recursive input—output models

The results of section 4 can be used for the creation of a non-linear
input—output model. First of all it is necessary to assume that the input
and the output spaces U and Y are normed vector spaces so that derivatives
can be defined. It is also assumed that they are finite dimensional vector
spaces of dimension r and m respectively and that ordered bases have been
specified for them. The zero state response function can be written
individually for input sequences of length 1,2,... . Assuming that the
system is at the zero equilibrium point at time t=1, the zero state

response for an input sequence of length t is given by
y(£)=f (u(t),u(t-1),... su(1)) (4.8)

t
where ft: U =Y

The function ft is a different function for every t=1,2,... , since the

y w o ow g E . A ;
domain of definition U 1is a different one. It is assumed that the response
functions ft are continuously differentiable functions so that the Rank

Theorem and Corollary 1 can be used. The functions that correspond to the
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function Lk used in the realization of linear systems can be found for

the non-linear systems. Let the vector

u(t)
u(t-1)
u'= . (4.9)
u(l)
then
y(e)=£, (u() 0
y(erny=£,,, (u(erD) u(e) ,u ) (4.10)
y(t+k—1)=ft+k_1(u(t+k—1),... ,u(t),ut-l)
let
y(t)
y(t+l)
yi= : (4.11)
y(t+k=1)
and
u(t+k —1) 1
u(ttk=2)
u§= : (4.12)
u(t)

Then equations (4.10) can be written as

yk= F (u

e |
t “k,t-1 u ) (4.13)

ot "

where y

The function
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k

Foofauty® (4.14)

Kt
can thus be defined from (4.11) for any k=1,2,..4, t=1,2,... when the response
function ft is known for t=1,2,... . The function Fk " is continuously

differentiable since it is the Cartesian product of k response functions

which are continuously differentiable. For notational simplicity let

z=uk & Uk

t+1
(4.15) i
x=ut € Ut
The first assumption about the function Fk & is the following
Assumption 1
max(rank D_F,_  (z xj;n for any z € Uk (4.16)
' x k,t 7’ ; ’
X € Ut

and for any t=1,2,...
k=1,2500s

Assumption 1 is exactly equivalent to the requirement in the linear case
that a finitely realizable system have Hankel matrix }{k,t of maximum

rank equal to n for any k or t. In fact for a linear system, the function
Fk,t is a linear function and also

; k t
DXFk,t(z,x)—}{k’t for any z 6 U and x € U (4.17)

Assumption 1 in essence guarantees that the state-space of the Nerode
realization does not have infinite 'dimensions', whatever interpretation

the term dimension can be given in the particular structure the state-

space may have.

Assumﬁtion 1 can be checked directly by construding the function Fk,t
from the response function, calculating the derivative and finding the
rank of the derivative for any k and t. Anbther way of checking

Assumption 1 is also possible if the response function is known to be

derived from a state—space description

y(£)=h(x(t),u(t))

where the state-space X is a vector space of finite dimension n.
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The state—transition function can be written individually as

x(t+k)=0, (,ul:, x(t)) ' (4.19)
where
@k: kaX+X (4.20)

Equations (4.10) can be written as

y(t)=h[e (x(£)) u(e)]

y(e+1)=h[e, (u(e) ,x(£)),u(t+D)]

y(trk-1)=h[8, _ (u(t+k=2),... ,u(t) ,x(£)) ,u(t+k-1)] (4.21)

Assuming as usual that the system is at the zero state at t=1, the state

at time t, x(t), is given by

t t-1 % -l

i
x(t)= ®t_1(u , x(l))—@t_l(u s O)—@t_l(u ) {4:22)
where the function @ﬁ is
t
o%: U-X (4.23)

The functions (4.21) can be written as

k k

Yt_Gk(ut’ x(t)) (4.24)
where the function Gk is

Gk: kaX+Yk (4.25)
The function Fk ¢ can now be decomposed using (4.24) and (4.22) as

1 = *

it (z,x)=G, (z, ¥%(x)) (4.26)

Using the chain rule of differentiation

Dka,t(z’X)sz Gk(z, @?(X))O DX @é(x) (4.27)

If the state-space X has finite dimension equal to n, the co-domain of
the function @? in (4.23) is of finite dimension n and thus the derivative

has rank less than er equal to m. Thus
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rank (D #%(x)) <n (4.28)
and consequently from (4.27)

rank (Dk F t(z,x)) <n for any z,x and any k,t (4.29)

k,
Thus

max(rank(DX Fk t(z,x))=£inite for any z,x and k,t (4.30)

1f also for a particular z,x and k,t it holds that rank (Dx Fk,t(z,x))=n
then the maximum value of the rank of the derivative is equal to the
dimension of the state—space n. Otherwise the maximum value of the rank

of the derivative has to be found directly. The particular values of

z,x and k,t that may give the rank of the derivative the value of the
dimension of the state—space is not knownbeforehand and such values might
not even exist. The value of z and x that should be tried first is zero
since this is the value needed for Assumption 2 discussed next. A state-
space description of a physical system is sometimes known and thus this way
of checking Assumption 1 is possible. It also provides a physical

explanation for Assumption 1 as it will be discussed later.

The second assumption about the function Fk ¢ is that there exist a k and
3
a t such that the derivative Dka t(0,0) at the origin of Uk and Ut has

rank n, 1.e.

Assumption 2

rank Dka t(O,O)=n for some t and some k (4.31)

¥

Assumption 2 can be given a simple interpretation. Let the derivative of

i - t
the function ft at the origin of U be

DE_(0)= [HO H) H, ... Ht_l] (4.32)

The linearized system around the zero state and the zero input has impulse
matrices the matrices Hg’ 2=0,1,2,... , given by the derivative of the
response function ft' It can be seen from the definition of the function

(z,x) that the linear function DXF t(O,O) is equal to the Hankel

F
k,t k,
matrix }{k of the linearized system around the origin, i.e.
3
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DXFk’t{O,O)=}{k,t (4.33)

Assumption 2 then just requires that the linearized system around the
origin have some Hankel matrix of rank the maximum possible ome (=n), or
equivalently that the state-space of the linearized system have dimension
equal to n. Because of the properties of the Hankel matrix, the k and the

t in condition (4.31) need only be equal to n.

The realization of the linearized system can be carried out in the way

described in section 3. Let the observability indices of the linearized

system be nl,nz,... S and let p=max(n1,n2,... ,nm). Let the vector

y*E be
yl(t+n1-1)
yl(t)

* =
¥E (4.34)

ym(t+nm—l)
v, (£)

Theptem 2

Let a non-linear system satisfy Assumption 1 and Assumption 2. Then there

exists a non-linear function q such that

y(t+p)=q(y§,UCt+p),uE) (4.35)

for a restricted region of operation around the zero equilibrium point.

The equation (4.35) can be written in expanded form as
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yi(t+p)=qi[§l(t+nl—l), v, =2) 5 .en v, (),
Y'z(.t+n2-l) ’ Yz(t"'nz'_z) seee 3 yz (t) ’
ym(,t+nm-1) 3 ym(_t+nm—2) A ,Ym(_t) s
ul(t+P) ) u]. (,t"'P"]-) geve sul(t) 5
u2(t+p), uz(t+p—l),... 5 u2(t),

u_(£4p), u (£4p-1),... ur(t)] (4.36)
for i=1,2,... ,m

The model (4.36) is a recursive input—output model completely equivalent

to the linear multi-structural input-output derived in section 3.

The proof of Theorem 2 is based on the Rank Theorem and Corollary 1

i ‘ n , . .
presented in section 4. The vector th R is given by a function Ft—l

such that
P t=1
*=F%
TR (s 87 ) (4.37)
where
P4 tPxutsR"” (4.38)

The function Fi is constructed in the same way the function Fk ¢ Vas
- 3

constructed. Let again

E t
x=u €T (4.39)
i P
z——ut+l €U

The function F¥ (z,x) has partial derivative Dth(O;O), the matrix that
consists of the rows of the Hankel matrix }(n c of the linearized system
3

that belong to the row basis determined by the observability indices

L A L This matrix has rank n for t>n. Thus the function Fi(z,x)

has derivative with respect to x at the origin of rank equal to the
maximum possible rank (=n) for any t>n. From the Rank Theorem there

. t
exists, for every t>n, an open set Wt, a subset of vPxu , such that the

fdilbwing requirements of Corollary 1 are satisfied.
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(a) rank Dx F?(z,x)=n for every (z,x) € Wt-
and where t>n (4.40)

(b) The restriction Fg(z,x)|wt has connected level

submanifolds for every fixed z (4.41)

The determination of the sets Wt for t=n,n+l,... will be discussed

later. The response function that gives the output y(t+p) is

t
y(er)=£,, WPy =f,(uCesp) ol ut) (4.42)

Tt is now necessary to prove that the function ft+p is dependent on the
function Fi_l for given u(t+p) and uE. Corollary 1 provides sufficient
conditions that need to be satisfied for this to be true. The conditions

about the function Ft are provided by (4.40) and (4.41) for

-1
t- o . . '
(uz,u l) e Wt—l' The other condition required is that the rank of the

. ; : ; t=-1 .
partial derivative with respect to u of the function

=1 -
(Fr_ e ), ft+p(U(t+p),uE,ut Ly (4.43)

t-1 i . .
have rank equal to n for (ui,u ) EW This 1s quite simple to see

t-1"

since function (4.43) can be extended to the function FP+1 £-1’ which has
s

partial derivative of maximum rank equal to n from Assumption 1. Thus

function (4.43) must have partial derivative of rank n. Since all the

requirements of Corollary 1 are satisfied, there exists a function ¢ such

that

t-1

y(t+p)=q (y¥,u(t+p) ,u; ) for (uE,u e W (4 . 44)

=1

The set Wt_ is the set of points (u 5 1) € prUt_1 such that the function

E-1.
(u ) has derivative with respect to u of constant rank n and the

1eve1 submanifolds for a given uE are connected. The set Wt is a set of

points
@R,y us hu) = (@luph,u) e P Tha (4ues)

Using the fact that the response function is a zero response function it
t-1

holds that the restriction of the function Fz in the space prU is
equal to the function Ft 1 Thus the level submanifolds of Ft intersect
the space UPXU -1 at the level submanifolds of Fi—l and, since F? and

F* have derivatives of the same rank, they also intersect it transversely
[J;kubczyk (1980)]. The set Wt can thus be chosen such that its inter-

. . =1
section with the space UPXU is equal to the set wt—l' Consequently
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the sets Wn,wn+l... can be chosen so that each one contains the one that
precedes it. For t=<n each one of the sets Wl’w2"" ,Wn in (4.44) can be
trivially chosen as the restriction of the one that follows it. The
restricted region of operation of the system in which the recursive input-
output model (4.36) is valid is determined by the sets WI’WZ"" chosen

as described above.

Assumptions 1 and 2 that guarantee the existence of the recursive input-
output model (4.36) are actually only sufficient conditions and a system
that does not satisfy them may still satisfy a recursive input-—output model.
Such an example, discussed Part II-ELeontaritis and Billings (1984)], is a
non-linear system which is a cascade of a static non-linearity, with zero
derivative at the point zero, followed by a linear system. Assumptions 1
and 2 are however non-restrictive and it is quite natural to expect a
physical non-linear system to satisfj them. In fact Assumption 1, as
discussed earlier, is satisfied by a system that can be described by state-
space equations with a finite dimensional state-space. The physical laws
that describe real life systems can always be put into state-space form and,
for the majority of the physical systems, the state-space is finite
dimensional. Assumption 2 is somehow more restrictive. In essence it
requires that the system, when operated in a region very close to the
equilibrium point, can be successfully approximated by the linearized system
at that point of operation. The success of the method of linearizing non-
linear systems when operated near the equilibrium point indicates that many

physical non-linear systems will satisfy Assumption 2.
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Conclusions

The first part of this paper has introduced the theory of Nerode realization
and the numerical solution of the linear realization problem based on the
creation of the Hankel matrix. Multistructural observable forms for linear
multivariable systems were then derived by considering row bases of the
Hankel matrix with a special property. These results were then used to
develop input-output models that correspond to the observable multi-
structural forms. The multistructural input-output models are similar to
the models derived from observable canonical forms. The canonical input-
output models however, camnot be generalized for nonlinear systems and this
was the reason for developing multistructural observable forms. Although
multistructural input-output models may have more parameters than canonical
models they are still identifiable parameterizations and thus they can be

used for identification purposes.

The linear input—oﬁtput multi-structural models were then generalised to

the nonlinear case. The recursive nonlinear input-output models were derived
based on two assumptions about the response function of the nonlinear system.
The first assumption was that the system is finitely realizable which in
essence means that the state-space of the system cannot be infinite dimen-
sional. The second assumption was that the linearized system around the
equilibrium point has the maximum possible order. Such an assumption will
hold provided the system when operated near the equilibrium point can be
successfully represented by a linear model. The recursive nonlinear input-
output models are valid only in some restricted region of operation around
the equilibrium point. The mathematical results presented also provide a

specific region in which the models are valid.

In the second part of this paper [Leontaritis and Billings (1984i] the non-
1inear model derived above is compared with other representations, several
examples are given and the results are extended to create prediction error
input—output models for nonlinear stochastic systems. These latter models
are referred to as the NARMAX model. Details of the application of these
models in the identification of nonlinear systems are reported elsewhere

[ﬁilling and Leontaritis (1981), (1982), Billings and Voon (1983), (1984i1.
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