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LINEAR STRUCTURES IN BILINEAR SYSTEMS Bt

D. H. Owens P. E. Crouch -
Dept. of Control Engineering Dept. of Engineering
University of Sheffield University of Warwick

1. INTRODUCTION

In this paper we study the bilinear system in R"
m
%(t) = Ax(t) + ) u,(t) N x(t) (1.1)
= - ; i i=
i=1
with bounded, measurable controls and identify conditions on A'Nl'N2""'Nm and
the initial state X under which solutions x(t) lie in a proper cone in R with

vertex {O}. The results have a strong connection with the classical result that
the linear system x(t) = Ax(t), x(o) =x , in R™ has positive solutions x(t)>0,
t>0, (in the sense that x, (t)>0, t>0, l<i%n) if A = D+E where D is diagonal, and
E has zero diagonal entrigs and pogitivé off-diagonal entries. This is proved
by writing

il
x(t) = eDt§o+f eD(tHS} E x(s) ds , t>0 {1.2)

@]

and noting that the solution of any integral equation
t
X(£) =W_(t) + [ w
o

l(t,s) X(s)ds t>0 (1::3)

has a unique positive solution X(t)>0 if go(t)zo and Wl(t,s)zo for all t>0, s>0.

Lie algebraic techniques have been extensively used (see, for example, [l])
in the study of bilinear controllability problems, but it appears that more )
straightforward techniques have been neglected. In particular, little use has
been made of the natural relationship of the bilinear system (1.1) to the
induced linear system

x(t) = Ax(t) + By(t) . y(t) = Cx(t) (1.4)

where ‘ Cl
B = [Bl,Bz,...,an ; c=|c, (1.5)

C

m

are constructed by full-rank factorization of Ni of the form Ni = Bici with
Bi(nxki), c, (k,xn), 1l<i<m. Such a factorization has been shown by P d'Alessendro
et al [2] and Crouch [3] to relate strongly to realization theory for bilinear

systems.

No attempt is made to be exhaustive but the results obtained indicate the




possibilities inherent in the approach and will hopefully prompt further work in
the area of relating bilinear phenomena to properties of the underlying linear
system and its transfer function. ' ,

2. SUFFICIENT CONDITIONS FOR CCNE CONTAINMENT

Let the linear system (1.4) be induced by the bilinear system (L.1) by fac-
+orization of Ni in the manner indicated above, and introduce the matrices

A--
B (t,k) 2 cePKBOIE o (2.1)
o o
k) 2 ogRECIE 5 (2.2)
parameterized by the real scalar k. Let
A .
A{u,k) = block diag {ij(uj+k)}lfj§m (2.3)
and write (1.1) in the form
m m
%(t) = (A -k J B.C)x(t) + } (u (£)+k)B C x(t)
- < 1, = . i ii=
i=1 i=l
x(0) = % (2.4)
to obtain the fundamental identity
t
Cx(t) = H_(t/X) + [ H(t-s,k)A(u(s) k)Cx(s)ds (2.5)
o

Theorem 1: All solutions x(t) corresponding to the initial state x, of the bi-
linear system (1.1) lie in the cone % x ERY, Cx > 0} if there exists a real
number k* such that, for all kzk* and t>0,

B (k) >0 ' - H(t,k) >0 (2.6)

Proof: Fix a time T>0 and controls u(t) on .p,Tﬂ. There exists k'>0 such that
A(u(t),k") has only positive entries on [O,T . Now take k>max(k',k;) and note
that (2.5) is a special case of (1.3) indicating that Cg(t};o, t E[b,T]. Since
T and u(t) were arbitrary, we obtain the desired result. B

Corollary 1.1: The bilinear system is not point controllable on Rn-{o} if there
exists a real k* such that H(t,k)>0 for all k>k*, for all t>0.

Proof: Let ¢>0 and x, = Bg, then H (t,k) = H(t,k)gzo, kzk*, t>0 and the reachable
set is contained in the proper cone {x : Cx > O}.

Theorem 1 Has an asymptotic structure that, at first sight, is difficult to
confirm. In the remainder of the paper therefore we concentrate on the single~
input case (m = 1) with rank N =1 and N = BC where B and CT are elements of R".
In such a situation, the induced linear system is single-input/single-output with
transfer function

-1
g(s) = C(sI - A) "B = o b4 N C?\’ (2.7)
BUEFFIELD UNWY.
o

X
NS b

X

APPLIED SCiz

™ noSRT
IBRART

| 7

=20 Bl



and hence

_ _9(s) ;
Liaw,x)} = I ,(2.8)

This 'feedback interpretation' is used in the following section to investigate
conditions for the validity of (2.6).

3. TRANSFER FUNCTION ANALYSIS AND CONE CONTAINMENT

Elementary classical root-locus arguments and inspection of (2.8) indicates
that:

Proposition 1: A necessary condition for (2.6) to hold is that CB # 0.

*Proof': The positivity condition on H(t,k) requires that the pole-zero excess
of g(s) is unity to prevent oscillation of the dominant modes. This requirement
is equivalent to CB # O.

We will therefore assume for the remainder of the paper that CB # 0 and, without
loss of generality, that

CB = 1 : (3.1)
as the input can always be scaled to produce this condition.
The inverse system plays an important role in the analysis so we write
g (s) =s +a + h(s) (3.2)

where h(s) is strictly proper and uniquely defined with impulse response

ne) 2271 sy} (3.3)

Substitution into (2.8) yields

gk(S)
L{u(t,k)} = E:E;TETETET {3.4)

(after a little manipulation) where

1 ,
gk(s) o (3.5)

Before stating the main result of this section we need the following
technical lemma:

Lemma 1l: Let

241
n. (t,k) A i:BiEl%___. e oMt (3.6)
2 81
where p(k) is continuous and satisfies lim k-lu(k) = -1. Then

krtoo



/d 0 , T=0
lim [ n (t,K)E(0)at = ‘ (3.7)
k-++o o flo) , T >0 ; .
for any continuous function £(t) on [O,Tﬂ.

(Remark: n.(t,k) is, in effect, a representation of the unit delta function) .
Q p

Proof: It is clear that ny(t,k) > O, t > 0, k large and that it converges

tniformly to zero on any interval [§,+e[ with §>0. Also
§ Ll 8
= L
[ n,ek)at = i—H%T—— [ttt ae
o o
2+1 L §
=u) d t
b+ (] e at)
24 L
du o
241 L
- d -1 8
= L L@ -0 ) (3.8)
: au
Noting however that, for 0<j<f
3 =3
d ~1 d
(o G @ -
ay’ du
(03 3 a5, us )
= ( ) 8 (e Gjl) (3.9)
u
and that lim khlu(k) = -1 by assumption, we obtain
koo
§
lim [ n Gk, t)at =1 (3.10)
ko o
directly from (3.8). Now let T>0 be arbitrary (the case of T = O is trivial) and

denote the norm of f in LP(O,T) by ]If” 5 1<p<e. It is clear that

T
lim | nl(k,t)f(t)dtl < |l£]l_ (r-6) 1im sup [n (t,X)|
koo 4§ ko §<t<T
=0 (3.11)
and hence that we need only prove (3.7) for an arbitrary §>O. By the continuity
of £ choose § such that f(o)-e < £(t) < f(o)+e for t:E[b,B]with € arbitrarily
small. It is trivially shown that, for all large k,
8 8 8
(£(0)~e) [ n, (t,k)dt < [ ng (e RIE(E) < (£(0)+e) [ n,(t)at (3.12)
o o o
or, using (3.10) and (3.11),
T
f(o)-e < lim [ n (£, k) f(t)dt < fo)+e (3.13)

ke o
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which proves the lemma as € is arbitrary.
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Theorem 2: A necessary and sufficient condition for the existence of k* such
that H(t,k) >0 for k > k* and t > O is that

h(t) <O . Yt>o (3.14)
Moreover, under this condition, if lim e_gth(t) = 0 we can choose any
gt o
k* > |le "l - (a+B).

Proof: The proof makes use of the feedback structure (3.4) by defining an
operator Lk by the relation

é * *
ka =g h: * E (3.15)
- (k+
where * denotes convolution, and g, is interpreted as !rl{gk(s)} =e e a)t.

The domain of definition presents @ minor problem as we will be using boundedness
conditions to prove the result. If we concentrate on the case of k+a > O and
h(t) stable, is a mapping of C(0,») into itself. The first condition
presents no problem as we are interested in the case of k-+e but the stability
of h(t) requires the assumption that linear system (1.4) is minimum phase. We
will continue with this assumption as H(t,k) > O, t > O, k > k* iff

- %
e BtH(t,k) >0, t >0, k >k and standard shift theorems for Laplace Eransforms
indicate that this transformation is equivalent to replacing h(t) by e Bth(t).
It is clear that a suitable choice of B will ensure stability of e Sth (t) ¢

To estimate the norm HLk”°° of Lk in C(0,») note that

sup | (h*(g, *£)) (t) |

£l .,

t>o
t
< llnlly sue 1] & **  eeenar|
tzo o]
® (x+a)t
Inll, o e ® % e,
I,
h
_ 1
= e JIE (3.16)
whence
||T-k||,,, < ||h”l (kta) (3.17)
and I, is a contraction for k > th‘]-a. Under these conditions we can write
H(t,k) as a uniformly convergent power series in k of the form
2
H(t,k) = g (£) - (Lkgk)(t) + (L g ) (8) = ...
2 =3
= gk(t) = (Lkgk)(t) + (Lkgk) (£) + ok 7) (3.18)

O(k_j). A necessary condition for

as Ndg ll. < lg ll 2 lgll, = liegll 2



