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ABSTRACT

The suboptimal control of a bilinear system is considered
with respect to a quadratic cost criterion. The feedback control is

in the space of formal power series on a Hilbert space.
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T Introduction

Bilinear systems have been considered very extensively by many authors;
see, for example, Brockett (1976), Gutman (1981), Banks (1984). The main
reason for this is that they form the most simple generalization of linear
systems., However it can also be shown that any system which is analytic has
a bilinear approximation and so bilinear systems do not comprise too restrictive
a class of nonlinearities.

Although a great deal of attention has been given to controllability and
observability and stabilization of bilinear systems (see for example, Murthy,
1979, Ball and Slemrod, 1979 and Grasselli and Isidori, 1981) there does not
seem to have been much published work on the optimal control of bilinear systems
subject to a quadratic cost functional, In this paper we shall comnsider the
bilinear system

X = Ax + uBx
for a scalar control u, where A and B are bounded operator§ on a separable

Hilbert space H, together with the quadratic cost

e

J = < x,6x>+ [ {<x,Mx>+ ruz} dt
o
We shall determine the optimal control in a certain class of controls by extend-
ing the linear-quadratic dynamic programming argument. This will require the
notion of tensors and tensor operators on H and so in the next section we shall
give a brief introduction to these ideas.
The control will turn out to be given by a power series whose tensor coeff-

icients can be determined recursively. When the series is truncated, we obtain

a control which is suLoFtimai i tle class of admissible controls.
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2. Tensor Theory in Hilbert Space

In this section we shall give a brief introduction to the theory of tensors
on a Hilbert space H. For more details see Greub, 1978. First recall that
if E and F are vector spaces and G is any vector space then the tensor product
of E and F is defined as the pair (E@F,®) (® a bilinear mapping) with the
following universal property: if ¢ is a bilinear mapping then there exists a

unique linear mapping f:E®F+G such that the diagram

¢
Exf ——> G

®|
pi
EQ®F
commutes. By wd uction we can define the tensor product of i copies of H;

i.e. H®...®H which we shall denote by ®H. We can make @ H into a Hilbert
e A prnid L 1

1

space by defining

1
<xl TR I ARTEE yi}%H j£l<xj’yj>H s

and extending by linearity.

I

[+0]
It is convenient to consider the space H igl (?H) as a graded Hilbert space.

Let {ek}k>1 be an orthonormal basis of H which will be fixed throughout

the discussion. Then {e @....@ek } (1_<_kj<°°, 1<j<i) is an orthonormal basis
1 i

k
of @iH and so any tensor E?H can be written in the form

e @...0e )
1 g;1(1....ki( kl ki/

Since @iH is a Hilbert space we can consider linear operators defined on @iﬂ.
The space of all bounded linear operators on a space X will be denoted by Z(X).

Let Pgi(?ﬂ). Then the matrix representation of P with:irespect to the above
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L L.
basis of @H will be writtem p Lewas T 5 s,
1 kl....k.
; by b
Ple, @ «+..®e, ) = P ottt (e, ®--- B, ).
e e e e, R' ﬂ:.
ky ky L=l kpasesky "y i
(j‘_'l’i-)

(Since G&H is a "flat' space writing indices contra- or co-variantly makes

no difference)

The dual or adjoint P* of Pejﬁ(GEH) is defined in the usual way:

<P*(_xl®. . .Gxi) , (y1®. . .®yi)> = <(x10. . .@xi) ,P(y1®. 5 .@yi) >

for all xj,yjeH. Clearly, P is self-adjoint if

R‘i...ﬂli kl..'ki

P P ,
kpoook, Bieeely

and such an operator P will be said to be symmetric (This should not be
confused with the usual definition of symmetric tensor.)

3. Optimal Control of Bilinear Systems

We shall consider the bilinear system
% = Ax + uBx (3.1)
where xeH (a separable Hilbert space) and u is a scalar control (the latter
assumption being purely for notational convenience - the general case presents
no further difficulties). However, we shall assume here, for simplicity, that
A and B are bounded operators., The generalisation to unbounded operators will
be considered in a future paper. We shall determine the control u which mini-

mises the quadratic cost functional

te

J = x,6x> + Sz, Mx> + ru2} dt (3.2)
0
for controls which beleng to a certain class, to be introduced shortly., In

(3.2), G and M are nonnegative definite bounded linear operators on H and r>o.

If V(t,x) denotes the usual value function, then the dynamic programming



equation for V is
<x,Mx> + Vt * (?XV)AX + mtiln (ru2+(3;V)Bxu) =0 (3:3)
where ?XV is the Fréchet derivative of V (which we assume for the moment exists),

Now, as in the linear—quadratic regular problem, if c = (SCXV)BX, then

ru2 + cu = (u+%r_1c)2r - %czr_l

and so the minimum is attained when u = -—ér_lc. Then (3.3) becomes

v b, M + (3 V)Ax - %<(3'XV)BX, r“lcyxv)Bp i 1 (3.4)

Now let ¢ =|Re[[x:[] denote the ring of formal power series in the indeterminate

x (eH) which have only even order powers; i.e., we may write, for any ¢ed ,

) <®.X,¢.8%> (3.5)
i=1 1 ®u
i

=
n

where ¥ is the tensor product of i copies of H, ?x = X8X ...8x
i —

i
and ¢i ef,(g)H). (Recall that the inner product on ®H is given by
1 L
i
<X ®..0%.,7.8...8v > = i <X,,¥.>_ 5 X.,¥.cH.)
1 i*1 i @H je A H 1771
i

We shall need the following lemma, whose proof is trivial:
Lemma 3.1. Let PeX (®H), Qe Z(QW). Then,

i J :
[yvx <‘ix, P?x:-] X = Zi?x,Pﬁix> § (3.6)

(if P is symmetric) and

@x, PRodx@e> = < Dux, (PoQ) 8. x> (3.7)
Moreover, we have
P B . O 38
14) i 3
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It follows from this lemma that, for a bounded operator CEZ(H), we have

for any symmetric P,

2;x<ch,P?x>0x = 2<GEX,(PCFEX> (3.9)
where
i w0 X X:
R |
PC = jzl(kg; Pkl..kj-.ki' C‘Kjll)(ldl, <o, 1<k <®, .44 ,1<k, <0, 1<) <)
| =" S =1 —a
X.l li
— Pk ..-k Ck 1 are the components of the tensors P,C with respect to
I |

some (fixed) orthonormal basis of H. A similar definition can be given for CP.

Also, it is clear that

I (PC)@ixH&H=|| P(Cx® ...®%)+P(x®CK ... ®X)+. .. +P(x8 .. QCx) ||

% 1
i=1
112l gy 151 111
i

and so

<ifl® | ¢l

I Pc”:t(?u) gy 11 € Mgy - (3.10)
i

We can now substitute (3.5) into (3.4) (with ¢i=Pi), to obtain

QXj.&ﬁ # 2{®.%, (P,A)®x + <x,Mx>
i§1< 1 1 1X>@H izl <1 1 71 >@H H

i i
31 o ® x,(p.Bep.B) B, x =0 (3.11)
i+j
with the final conditions
Pl(tf) = G
Pi(tf) =0 , i*l

(Using (3.7),(3.9)). Equating like 'powers' in x in (3.11) we obtain the

equations
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. T ) )
Pl(t)+Pl(t)A+A Pl(t)+M =0 , Pl(tf) = g
(3.12)

o omont 1L el 1 -
Pm(t)+Pm(t)A+A Pm(t) r e PiB@PJ.B = 0, Pm(tf) =0
i+j=m
1,j%l
for m>1,
Note that the latter equation can also be written in the form
T

(BTPiQB P +PimP3.B)}= 0

i+j=m
1yfa2l

: T 1
P (t) +P (O)R+ AP (t) -5 {
. T T T o ) i
since, clearly (PiBerB) =B PfﬂB Pj , so that Pi is indeed symmetric.
Consider the operators'ﬁ&«:i defined on the Banach spaces Jf(@ﬂ) by
1
= ->
aDCiPi P.A PiEZ(?H) ¢ It .
where PiA is defined as in (3.9)., Theno‘ti is clearly a bounded operator anA
<1 .
1% || <ille [+ ]la |
by (3.10), whence
; <i|| A
I8 11 @y <t Allg
1

Hence we can define the operator

.t
e " e Lieh)
1

and the solution of (3.12(1)) is then

Fo. (t_~t) :’cT(t ~-t) t -t %K. (t_-t=$) s'cT(t —t=5)
pl(t)=elf Ge - I +\J‘f e L f Me I E ds (3.13)

o

Similarly, from (3.12(m)), we have

T
uﬂcm(tf—t—s)d (3.14)

~ t ~t & (t_-t-s)
P (t) =-r L ) g5 BE P,.(t_—s)B®P. (t_—s)Be s
m .. 1" i j-f
1+]=m @
i,j>1

The optimal control is then formally
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-1 -1
u(t) = -ir (3XV)BX = -1 < 8%, (P,B)®.x > (3.15)

i=1
However this series may not converge and so we propose the following sub-
optimal controls:

m G
u (6) = — I <oxenex (3.16)

i=1

These controls have been shown to be effective for finite dimensional systems
(see Banks and Yew, 1984), for example in stabilising unstable bilinear control
systems,
4, Example

As a simple example of the above theory we shall consider the system

X = Ax + ux . xezz (4,1)

where B = I and A is the left shift operator. This is not too restrictive
on the operator A since any bounded operator has the left shift as a model
on some Hilbert space. (see Rota (1960), Banks and Abbasi-Ghelmansarai, 1983).
Recall that the left shift operator has the matrix representation

0 1 0 0. ¢ o o &

0 0 1 0O 0. ..

on 22.

Before considering this particular system let us examine the operator

K t
e M in more detail, Recall that :’cm is defined on L (@H) by
™
& p=prr , pelieh),
m ™
where

3 h1cn, <o, 1k <oy,

1
1<k <ol <K <o0)



Write
3 o X
ﬁiP - Z P seessss 10 'A
Then

- k|
s’cmP = (zh) P .

Note that;ﬁi fki commute for all j,k and so

1 2 m
‘*mt ﬂ"l.'ﬂ.t ﬁm t e e o0 00 *mt
e = @ e e .
Also, 5
. Ay
(=] kj=1 klo.lokj----km kjﬂ.l
and it is easy to see that
jtmh At At)
e P=Ple B.... De (4.3)
e —————
m
From (3.14) with B = I we have
T T
At At t -t % (t -s) _ _oy Fem(Eg=s)
e U p (t) e e . . ; /f e £ Pi(tf ) @ Pj<tf 5) e ds
m i+j=m o
i,j>1
il
13 bt Ry (kg-s) *; (tgms)
= -1 . f {e P. (t.-s) e }®
1+j=m © i £ T
i,j>1 At ~5) K. (t.-s)
{edf Pj(tf-s) e J £ ‘}As

where the latter equality follows from (4.3), and the fact that

(AgB) - (P@Q) = (AP®BQ)
for any operators A,B. Hence, writing

At AT t

Qm =g Pm(t) g =

we have
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= t{r"' t
Q(t) = -r % J‘ Q; (t,~8)®Q, (t ~s)ds
i+j=m a5 J
1,j321 (4.4)
_S’(ltf ﬂ?tf ft§'t ﬁl(tf—s) sq (tf—s)
Q(t) =e Ge +J e Me ds
Now, if A is the left shift operator, then
e A T I E U
3
0 1 t 20 3 L.

|

0o 0 1 t t° /2! ......//

Equations (4.4) can be solved recursively for Qm . 0f course we must
terminate at some finite value of m and thus obtain a suboptimal control.

1f G=M-=1, we clearly have ) J(m‘ u““fb’"’
2n+i-jl+1

) - (t.-t)
h] . = 2n+li=jl L
Ql’i(t) HEO tf * I].EO
GF 1] Dal 2n+li-3]+1) (@+li-5] yn!

for the (i,j)th component of Ql when A is the left shift operator.
5. Conclusions

In this paper we have derived a class of suboptimal controls for a
belinear system subject to a quadratic cost criterion. The control
is a nonlinear feedback which is a power series in the state and can be
calculated recursively, We have considered the case of bounded
operators here - the unbounded case will be considered in a future paper.
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