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Abstract

The linear representation of nonlinear systems is considered and applied
to obtain a bilinear representation of a nonlinear control system.
Finally we consider the bilinear—quadratic regulator problem using a

certain class of suboptimal controls.
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1. Introduction

Nonlinear systems have been studied extensively for many years by a
large number of authors and although our understanding of many specific
types of nonlinearities is now considerable we are still a longbay from a
unified theory of such systems. Because of the existence of a unified theory
of linear systems many attempts have been made to find good linearisations or
linear representations of nonlinear systems. The best known engineering
technique is the describing function which has been verified rigorously in
certain cases (see Mees and Bergen, 1975 and Bergen and Franks, 1971).
Linearisations from a differential geometric approach have also recently
been proposed (see Hunt et al, 1983, Sandberg 1981, Krener, 1973, Brockett,
1978). An elementary method using linearly independent or orthogonal functions
has been considered for finite dimensional systems by Takata, 1979 and for
infinite dimensional systems by Banks, 1984. The main drawback with the
latter methods is that for systems 9f dimension greater than 1 obtaining a
linear infinite dimensional system with state vector consisting of the linearly
independent functions in a linear order is not easy and 1eadé to a system
matrix which has little recognisable structure. This leads to difficulties
in the inductive generation of the system matrix. In this paper we propose
a tensor operator representation which leads to a system operator in a completely
transparent form for polynomial systems.,

The second main objective of this paper is to apply the above ideas to
show that any nonlinear system which has an analytic vector field can be
replaced by an infinite dimensional bilinear system. We shall then apply some

recent results on suboptimal controls for such systems obtained by Banks and

Yew (1984).



2,  Notation and Terminology

Much of the notation used in this paper is standard or will be introduced
as we proceed, However, note that we use CE(R) to denote the space of real
analytic functions of n variables which have a convergent Taylor series in
the ball of radius R. Later in the paper we shall use some tensor theory
on a Hilbert soace H. Recall that if E and F are vector spaces and G is any
vector space, then the tensor product (denoted E®F) of E and F is the pair
(E@F,®), where @ is a bilinear mapping, with the following universal property:
if ¢ is a bilinear mapping from ExF into G then there exists a unique linear
mapping f: E®F>G such that the diagram

EXF-—‘E--P G

g

EgF

commutes. By induction we can define the tensor product of i copies of H: i,e.

H&...@HQ?H .Q;LH is a Hilbert space with inner product defined by

i
< ® a0 . ® o o . = H < * ->
e e B%;57,8. 87 %y . RSy
1 j=1
and extended by linearity.
Finally, if {ei} is a basis of H then
{ek@...Qek.} (lé_kj«o, 1<j<i)
1 i
is a basis of @H and any tensor & in @iH may be written
1
h
o= ] .. ¥ e ®...Be .
bt k1=1 ki=1 gkl"'ki kl ki 2

see also Greub, 1978,
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3. General Nonlinear Systems - Without Control

Consider the general autonomous nonlinear (finite-dimensional)
differential equation
x = f£(x) (3.1)

where f is (real) analytic. Then f has a Taylor series which converges to

f in some ball {xel : || x|| <R}.  Hence, for such a function we may write

n n no, o,
f(x) = £f(o) + z Ef_(o)x, + z E 7 3°f (o) x.x.
i=1 Bx. Lo i=1 j=1 °* 3%, ex. ]
1 1 ]
i E E E 1 83f (o) x.x.xk Fuars (3.2)
(21§51 wop 3 Pxgex ox 1
i=1 j=1 k=1 173
We define the functions
il in
9, ; ) = X eeaa X (3.3)
1...n

i ] < i i = . :
for 1jgp, 1<j<n. If 1l+...+1nﬂn, then ¢i1"'ln(x) gppears in the GmslYen

term of the series in (3.2). Hence we may write (3.2) in the form

o T !
1 1
£(x) = £(o) + ) ) =,J 3 g (0) . . (%)
i ; mey ———————r i, aaad
m=l 1_+...+1 =m i 1 1 n
1 n leees nis
ox 9x
n
(3.4)
where
il+...+i il+...+i
n _ 7 3 n )
] i ] £ = N(ll,-..,ln) P} i : ( £ )
11 i s 11 ln
ax_ T,..0x " 85, g DR
X n 1 n

and N(il""’in) is the number of distinct sequences of length m=i1+...+in

containing ij xj‘s (1<j<n) .
Note that (3.4) merely states that f£(x) can be written in terms of the

basis {¢. . (x)} of CN(R—E), if R<o , for any ¢>0.
llvlcln n
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We can ‘count' the basis functions in many different ways; however, the two
most useful methods may be described as follows. Firstly, we can count the
¢'s antilexicographically within each fixed total order m; i.e. terms of the

form x, x, ...x, , i >i >...>i are counted by allowing i, to vary first, then

1 i, i 1— 2 m 1

1y, etc. Secondly, we can count the ¢'s antilexicographically without regard

to order; i.e. in (3.3) we let i, vary from O to «, then i2’ etc. We denote

1
the sequence of ¢'s, when totally ordered in either of these ways by {wi}.
For example, when n=2 the first method corresponds to counting the ¢'s

as in the matrix

¢o=¢on ¢2= ol ¢5=¢02 ¢9=¢03
V=0 p,= Yo=0 g ’

17 %10 4% g %12 . P (3.5)

. - Y l

_ _ // // I

V3700 YTt - P /
/

Y6™%30 ’

Similarly the second method corresponds to counting down the columns, i.e,

_ ¥ _ T 7 7 T
lIJ - (‘J’O:‘pl’q)zs"-) = (¢09¢13¢23'°') 9 (3-6)

where

g T -
b5 T (gprbuyrdpyoees) s Osie

Now, using (3.1) it follows that for i>1l,

d¢i = grad y, . dx = grad ¥..f =
dt ST L

(cf, Takata, 1979). Since f is analytic in {x:]| x|| <R} , so is grad v, :f
i

and so we may write



gradwi I = Z a..P. .

Hence we obtain the equation

Yy = Ay
where

A= (

a.. . .
1J)of}<w,053<w.

(3.7)

Hence we can replace the nonlinear equation (3.1) by an infinite dimensional

linear equation.

It is natural to consider the conditions under which these

equations are equivalent in the sense of generating the same solutions.

Before making some observations on the semigroup properties of the equation

(3.7) we consider the following simple example which illustrates some of the

problems which can arise,

Consider the scalar equation

X2, x(o) = xo

Example 3.1

S
The solution of this equation is, of course,
for

5 <
x(t) X . o_p<1/xo

1-tx
o

In the scalar case we have the functions

v (x) =

l) wl(x):‘xl""wn(x) = Xn,ooo,

Hence,

b =0 % =y,

and equation (3.7) takes the form

Po-

ceecvesscssnnsas P

0 e e e 00w e

1
(2T S © | ——
0 0 3 O...

L) e o @ . e e e © o @

o oo

Consider this equation to be defined on 22, and suppose that

(3.8)

(3.9)

o<x <1,
o)



o
The initial condition for § is then
2 2
V(o) = (]—axosxoa'--)s LA
From (3.8) the solution remains less than unity until t = (l—xo)/xo, and
so the solution of (3.9) must belong to 22 on the interval [é,(l—xo)/xo).

Moreover, although the 'A' matrix of (3.9) is an unbounded operator on £

we can calculate the solution of the equation by evaluating

eAt AT + At + Azt2 AR (3.10)
o 27
]- t t2 t3 L] * L L L] Ll L]
ofo 1 2t 200%? 2.3u4d ... ..
3' 3
0 0o 1 3t 3.4 ¢ 3 BE T . e o o
|

Note, however, that the series in (3.10) does not converge uniformly for any
positive t. In fact it only converges strongly on sets of the form
22(x6)§j¢ £ 22 : ¢ =(1,x,x2,x3,...) for some x with |x|§JxDI}

for |x0]<1 and t<(1—ixol)/|x0[. (A sequence of linear operators {Si} is strongly
convergent on a set X if Six converges for any xeX.) Ez(xo) is not a linear
space but we may consider the linear operator T(t)égAt defined on the linear
span of Rz(xo), which we denote by sp {Ez(xo)}. T(t) is not a semigroup
(of bounded operators) on sp{gzcxo)} since it is defined only for teE),(l—}xU[)/
[x0|) é=Ix 5 However, T(t) can be extended to a semigroup of unbounded
operators gn.[},w) in the sense of Hughes (1977), with T(t) bounded on the
interval IXO.

We can associate a semigroup of bounded operators with the equation (3.1)

when the origin is asymptotically stable in a region f . In fact we have
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Lemma 3,2 The matrix A in (3.7) defined as above generates a semigroup
of bounded operators on sp{zz(ﬂ)} where £l is an invariant set for (3.1), and

22(9) = {¢e£2 ) =(1,x,x2,...) o

provided Qe{x :|| x|| <1},
Proof. If Q is an invariant set for the system (3.1) the solution

of (3.7) exists for all t>o with initial condition_w(o)eﬁz(ﬂ). Writing the
solution as T(t)y(o), it is clear that T(t) has the semigroup property and the
strong continuity of T(t) at t=0 follows from the continuity of solutions of
(3:1) s It is easy to see that T(t) can be extended to a semigroup of
bounded operator on sp{lz(ﬂ)} . 0

4.  Polynomial Systems

The main problem with the theory of section 3 is that the A matrix
in (3.7) will have little er no structural pattern in general and will there-
fore be difficult even to write down. In this section we shall develop a
general method for polynomial systems which will make the A operator have a
simple form, We use the term 'operator' here rather than 'matrix' since
we shall be using tensor representations of the A operator. In order to
clarify the development we shall consider first one dimensional systems,
then two-dimensional systems and finally the general case.

Let p(x) = anxn+an_1xn-1+...+a0 be a polynomial in the single variable
x and consider the equation

x = p(x).

Define the functions ¢i(x) = x » i>o0. Then,

. n .
dp; (x) = d¢, , dx = o y aij
It &= 4t =0

I g

=i ) axi*l
j=o J
n

= 1 X aj d)j 51 (X) .
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Hence we obtain the linear system

b = Ad

where ¢=(¢o,¢1,¢2,---)T and

A = 0 0 O ¢ ¢ o ¢ o o o o o o o o @
ao al 32..0--1000-13.“ O--- 0- e e @
0 2a 2d, sseswmwweessas 24 0'e o o o
o 1 n
O 0 3& 3& o.o--o--o.-oo.-Ba O. i @ f
o 1 n /

e ° ® s @& & o @ e o e L] e @ /

Now let a = (ao,a ,...an) and let Ei = (¢i,¢i+l,...,¢i+n) be regarded as

1

Cartesian tensors of rank 1. Then with the matrix A we can assoclate a

linear operator L such that

(L¢)a=a{c(§_s$a_1} , @0 (4.1)
where C is the contraction operator on n+l dimensional tensors of rank 1
defined by

n+l

Cixey) = ] x.7, .
i=1

Consider next the two-dimensional gystem

n
. 1 I 4 §
X = Py (xpoxy) = z E 3;1%1%2
i=o  j=o
m n . (4.2)
8 2 2 e
o mprp s 1T b
iso  j=o Y
where Py and p, are polynomials, Then, instead of ordering the functions
i i
$. . (¥} = 1 .72
i,i, X%,

as a linear array as in section 3, we consider the ¢'s as a two dimensional

array, i1.e. as a tensor of rank 2. Then ,



dx dx
a¢ 1 3¢ 2
d¢ (x) = 0B —— + —wf =
1 ofB . Bxl dt X, dt
m n m n
a-1 g ™ ™M . 2 "2 .2 i
= ax X 1 i a_B-1 a..X.x
] ) a, J L B ,
1 2 .z, j80 %45 ¥ % ¥ Bx X, .2, jmg 1 172
m, n m, 1 2 . Y
1 1 1 i+4g-1 j+ i+ j4B-1
=0 L z a‘l'¢x1 4 X% B +R 22 );2 a..xl %
5 - 2o T
i=o j=o 1 i=o j=o
moon; ¢ X ﬁm% n% ;
= I Byjhi4x-1,] ,
aigo j=o Bijbise-1,3+p i=o j=o ~ij 1i+®, j+B-1
1 1 2 1
= c(a + C
1 % i {2 (“2®_§’, c1_1,3)} g{C(& ®¢ a,B—l)}’
where g~ = (aij), §_=(aij) are tensors of rank 2, and
< ) , k=1,2

¢ = (¢‘+£ 1 <q < <1<
tp,m i+, j4m’olitm, , ofjin
is also a tensor of rank 2 formed from a submatrix of (¢ij).

Moreover, C is the complete contraction operation on cartesian tensors

of rank 2, i.e.
™M
Cla@b) =1 L a.,.b..
(a4 ) i=o j=o 11 13’

where a = (a..), b = (b..).
Hence we can write the equations (4.2) in the form

$ -1

where ¢= (¢ij) and L is the linear operator defined by

= 2 '
(L@“ﬁ = C(la-l%ihl,s) } +g{ C(a Qq)za, B -1) }

Consider the Van der Pol oscillator

Example 4.1

. 3
= - +
By T Ey TE TR

xz = —Xl

In this case it is easy to see that

1
E =

OO
oNeNaR
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1 g = 1, m, = 1, n, = 0). The solution of the Van der

Pol oscillator is given by the elements (1,0) and (0,1) of the tenmsor

(since m, = 3, n

eLt ¢(0), where
= i j 3 S
(¢(0))ij xl(O)xz(O) ? 1 - J____o‘
If Q denotes the union of the limit cycle of the system and its interior
then eLt is a semigroup of bounded operators oh Sp{ﬂ,z(ﬂ)} by lemma 3.2
(if © is scaled so that Qe{x:||x||<1} .)

Finally we consider the general case of the polynomial system

j j 9 . ‘
X. = (x X ) = ! 2 mn aj X llxlz---xlh
SR e R T i I owen I Cipdgeeeii T1072 n
i,=o i2=0 in=0
<2<
(1—Jin)' Fonl. we e ¢il....in(x) be the functions defined by (3.3),
and so
d ¢ ' (X) _ ; 0 ot ot o+t dxk
G M ey = I g faTT TR g
k=1 “%k
n a (69 Q, o
i k-1 "k+l n
= T o x e e e sses X p (x ‘-007){)
bl k1 -1 k+l k1 n
mk S mk
n 1 2 noo
= _ L (11( z L eses L @ . i
— . . . 8 . . + 1 +a ,..,1k1’°("'
k=1 =0 \zo LFEO 14lge.el ] 1;
As before, let Ek='(a1.< ; i ) be a tensor of rank n and let
idpeeel
. )
¢ g = (¢. . < <K . ok
,2.12.2 ces X 11+Q1,....,1n+ln 0.\11___1111, v 0:_€;1n.._tnpL (1gksn) .
Then we have
¢ = L¢
where ¢= (dai i ) and L is the linear operator defined by
1°" " n n Kk
(L) a a T ak{C(E ®¢ & 1 5 )} (4.4)

1---- n k=1 ],-..-,ak_.l,uk" )ak"}'l’..-’ n
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Example 4,2 An interesting example in three dimensions is the so-

called Lorenz or strange attractor, defined by the equations

Xl = —10xl +10x2
x2 = -xlx3 + 28x1—x2
X, = X -2
*3 1%2 73 %3

(See Marsden and McCracken , 1976). In this case we have

3} = ( 0 ~-10
10 0

where we have indicated pictorially that gz and g3 are tensors of
rank 3 (of orders 2x2x2).
In order to proceed with the theory we can write (4.4) in a

different form. Let { ei} denote the standard basis of 22; i.e.

i.:‘ place
&, = 0,05 svary 05150, =)

Then the space of tensors of rank n defined on 2? is spanned by the

vectors
e.®e.® -.... Ve, , i,<®,
12 n 1
k : .
Let P " denote the projection on the subspace spanned by the
l,ono-, n
vectors

. k
eilg eiz® . ein > Op¥l<i < o +l4m, for 1<0<n.
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Then we can write (4.4) in the form
* k ok
(L$) = I o {Cla B _waiis B _ns 8, 70@ . pewe,
al....dn k=1 k (115 k-1 k k+1 n

(again interpreting Pk = 0 if any a.<0 ). Writing
Gyseessd i

k
N CLkPoc o o, =1
1’1 ® o9 L] k_—l, k

lav)
e =

S PEEE LN

we can express L simply as the operator

n
k
L= 3 {c@“e?)
K k=1
where a~ @ P is the tensor operator given by

k . k ko .k
(a &P)al,....,an—a ®ch

P
1
Now let @n(ﬂ 2) denote the tensor product of n copies of 52,2. This is,

of course, a vector space. We can make it into a Hilbert space by

defining the inner product

o] [ee]

<a. ’b>= Z a0 e E a. .c-o-b- ® e e ¢ =C(a@b)
il=1 in=1 e | a1 'n -
where
a=a, : ei®... A e
1 2 % e @ 1 n
b=b, ¢.o.. e. ®..0e.
— i i o7 i
(using the summation convention).
For any tensor ¢ of the form
il-l ln_l
¢=¢>i e il (x) ei®...®ei=xl cee X e.l®...®.ei
1 n 1 n 1 n

we have ¢E®n(£2) if |xif <1, 1<i<n. For,

SR ST S
i1= o in=o
= I;I 1 .
i=1  1-x 4

k k
o, a &Pa seeesly 15 uk_l’akﬂ’ ceeest

%9
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As we saw earlier, therefore, we can see that if ﬂsﬁﬁ;]xi|<1,1jﬁih} is an
invariant set for the flow of the equation (4.3), then the operator L generates
a semigroup on Sp{QZ(Q)}, given by
T(t) = eLt
where His vertes Bor o converges stror\s(ﬂ te T(.{'-) oh SP{‘al(ﬂ)}-

Hence,
T(e) = ) L't (4.5)
i=0 il
where . 3
k
L - ) {C(E@Pk)}]
=1 )
J
i i i . n .. ke
= ) ( X ) I {calep) ).
kl-o k2—o kn—o klkz"'kn j=1
]L<1+1-:2+...+kn =i
Recall that
( i \ i!
= k !k!oo.kl
b n
e o o k
k1 k2 n

is the multinomial coefficient and we have used the multinomial theorem.
It is interesting to note the amount of numerical computation and storage
requirements necessary to evaluate (4.5) to a given power of t,

If (xl "an)T is the initial condition of the equation (3.1), then that

0°%20°""

of the equation & = Lo is ¢ (o) = (xlsl c..X )

0" dogi_,i i< N e
) 0 8
n 0< 1°+2° i

solution of (3.1) is given by

xi(t) =¢ (t) 3 15_1.5_1:1 ’

0,0300e351305000,0
.th
i place

For 2 given, let

_ 1 2 3
21 = max{ (% 1)m1,£m1 +1,£m1+1,...,2m?
1 2 3 n
22 = max{2m2+1,(l—l)m2,2m2+1,...,lmz}

° L] e = e @

o
]

1 2
i max{imh+1,ﬁmﬂ+1,...,(£-l)m2}
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Then it is easy to see that, in order to calculate x(t)to order £ in t we must

evaluate the subtensor of ¢(o) withf¢°oo (0) in the "top left hand corner'

of size lezzx...xnn.

5. Nonlinear Control Systems

Consider now the general nonlinear control system
x(t) = £(x(t), u(t)) - (5.1)
where x(t)eRP, u(t)eﬁ? for each t. Suppose that we réstrict attention to
differentiable controllers u(t) so that we may write
a(t) = v(t) (5:2)

for some function v, Then we can consider the augmented system

x(t) £(x(t),u(t)) 0
= + (5.3)
u(t) 0 v(t)
where the control v now appears linearly. Introduce the sequence of Taylor
i i ], ]
polynomials X, ...xnn ull...umm arranged in some order, say ¢0(x,u),¢1(x,u)...,

as before. Then

dn . b Sk, gy du
dt X% 2u
= EEE E(x,u) +.Efk.v
Ix du
©o m o j
= Z Akg¢2(x,u)+ z ( E Bkﬁ, Cpt(x,u)) Vj
=0 j=1\ =0

for some infinite matrices A = (Ak£>’ Bd = (Bii) » 1<j<m. Hence we obtain the
infinite dimensional bilinear system

X m 5
o= A0 + ) (BI4)-v,
j=1 ]

For simplicity of exposition assume that m=1 ( i.e. a scalar control).

Then we have the system

$= A + Bbv. (5.4)
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We can now apply various results on the control of infinite-dimensional
bilinear systems which have already been developed. Here we shall comnsider
the application of optimal control of bilinear systems to general nonlinear
systems,

Suppose we consider the optimal control problem of minimising the

quadratic cost functional

t
f

=0T Ire) + 1 IO QD)+ vP) ae (5.5)

t
o

subject to the dynamics (5.4). Note that this is a reasonable functional

to minimise with respect to system (5.3) since the ¢ vector contains all the
i i .
1 IluJ

monomials X "...X

1 s 3 il,...,in,jzp and so we are weighting all the states,

the control and its derivative v simultaneously in (5.5). The 'bilinear-
quadratic' regulator problem for infinite dimensional systems has recently
been considered (Banks and Yew, 1984) and we may state the result as follows.
Suppose we regard the system (5.4) and the cost (5.5) as being defined on a
Hilbert space H, Then it can be shown that the optimal control v is given

formally by
=
v = - ¥ <®i¢,(PiB)?;L¢>@ (5.6)

{1 ®H

where ?H= HQ.‘.”@H is the tensor product of i copies of H, ®i¢ = ¢@...80€QH ,
i

Piei(?l-l) and PiB is defined by

1 ] "
" L “K4
Bl = ) I P, B
5 j':l (kj =1 l,kl-.... kj DR Y uki kal

(1_<_R,1<oo, 1ikl<°°’ coes 1iki<°°,1i a<°°)



s i} o
x‘ O'..xn
where P. -1k B zlare the components of the tensors Pi‘B

l?kl,“' , i 4 kj
with respect to Some (fixed) basis of H. Moreover, the tensor operators

Pi are given by

T T
;Pcl(tf—t) »"’Cl (tf—t) . £t ea’cl(tf—t—s) ?%1 (tf—t—s)dS

Pl(t) = e Ge [ Me
and ©
-1 . tf_t *m(tf-t—s) *{Tn(tf-t-—s)
Pm(t) = -r iy i + e Pi(tf—s)Ban(tf—s)Be ds
i;321

mz? where d&Pi = PiA' Hence the control u of the nonlinear system (5.1)

is given by
t -1
u(t) = u + g v(t)dt = u -r .

N a8

t

S ¢@d, (P.B) @o>
;('1¢ g ‘%H

i i .

1
where the ¢ vector is formed from elements of the form x
Equation (5.6) may therefore be written in the form

U= g(u,x,t) (5.7)
for some function g. (The explicit t dependence comes from Pi)

The control system (5.1),(5.7) can be implemented as in fig. 1.

l uw©)=0
o) &, . w .
> d=glux) > X=fxt) *
computer plant
frg,. 1,

We have taken u(o) = o since we are trying to minimise u, However any
other value for u could be chosen. Note that in a real implementation

we must consider only a finite number of the ¢ functions in which case (5.4)
will be only a finite dimensional approximation to (5.1). In addition we

can truncate the power series in (5.6) for v.



- 17 -

6. Example
Consider the simple scalar bilinear system
X = ax +ubx

Let the ¢i's be ordered as in (3.5), 1.e.

3= W ¢4 = Xz, ¢5 = xu, ¢6 = uz,...

To evaluate a general expression for ¢i note that there exists % such

¢ =1, ¢2 =x, ¢

that $(2+1)<i<j(2+1)(2+2). Put q =i - 3% (2+41).

Then ¢i = éﬁq uq, i>2 and ¢l=1. To illustrate the application of the

control (5.7) we shall truncate the ¢ vector to the first six terms; i.e.

¢ = (l,x,u,xz,xu,uz)T g It is easy to see that (5.4) becomes

¢ = Ab + vB¢

where
A=10 0 0 0 0 0\, B = 0 0 0 0 0
0 a 0] 0 b 0 0] 0 0 0 0
0 0 0] 0 0 0 1 0 0 0 0
0 0 0 2a O 0 0 0 0 0 0
0] 0 0 0 a 0 0 1 0 0 0
0 0 0 0 0 0 0 0 2 0 0

For simplicity let G =I, M = L. Then

LT 1 o o0 0 0 0
o 2t 4 0 bea(tf?t) o
0 0 1 0 0 0
0 0 o 220 4 0
0 0 0 o 2D g
0 0 0 0 0 1

Hence

(6.1)
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Pl(t) = 1+tf-—t 0 0 0 0 0
0 e2 0 0 be2 0
0 0 1+tf~t 0 0 0
0 0
0 0 e4 0
0 be2 0 0 e2 0
0] 0 0 0 0 l+tf~t
where

_ Jkale ~t) i kalr.~£) =
e e f + T (e f 1) , k 2 or 4,

Pz(t) can now be found in a similar way by using Pl(t).

Note that, instead of counting the ¢'s linearly as above

we could have defined ¢ij= x'u) as in section 4. TIn this case the

Hilbert space H is itself a space of tensors (for the example above,
they are just matrices). H has a basis consisting of tensors eij
. th kg, . .
with k& element § P and any tensor in H can be represented in terms
of this basis. If ; ¢ H is given by ¢ = Zgijeij’ then the norm on
2 1
is j 55 g7y ¥
z is just ( : JClj) .

7. Conclusions

In this paper we have considered the representation of
nonlinear systems by linear infinife dimensional systems and we have
obtained a particularly simple tensor operator representation for
polynomial systems, It appears that for finite dimensional systems
with finite escape times the infinite dimensional representation defines
a bounded semigroup of operators on an appropriate Hilbert space until
the escape time, when the simigroup becomes unbounded.

We have applied the representation theory to show that any
nonlinear control system can be replaced by an equivalent infinite dimensional
bilinear system and applied some recent results on suboptimal control to
the resulting system, Note that it has also been shown recently (Banks,1984)

that we may even apply these ideas to infinite dimensional nonlinear systems.,
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