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Systematic design techniques for Smith control schemes are
presented that enable off-line designs based on approximate plant
models to be achieved that take explicit account of plant/model
mismatch as observed in the open-loop plant and model unit step

responses.

1. Introduction

Consider an %~-input/m-output linear, convolution plant expressed
in the separable form TG where the m-input/m-output element T
represents (notionally) output delays or similar dynamic effects
and the f-input/m-output element G represents (notionally) strictly
proper delay-free dynamics. The destabilizing effect of the delay T
can be offset with a considerable improvement in performance by the
use of the Smith Predictor control scheme illustrated in Fig.1l(a)
(Marshall 1979, Owens and Raya 1982, ) where K represents
a proper m—input/f-output delay free, convolution, control element and
GA and TA represent convolution models of G and T respectively, It
is well-known that this scheme can be represented in the standard
feedback form of Fig.l(b) where the forward path controller

=1
(I£+K(I-TA)GA) K cea (1)

>

%
K
and that the mismatch TG—TAGA between the plant and model can be a

serious source of stability and performance problems on implemenetation

unless it is adequately analysed at the design stage.



This paper presents a systematic analysis of the effect of
mismatch on stability and closed-loop performance deterioration in
the situation when mismatch is characterized by errors in modelling
of the plant open-loop unit step response. This situation represents
both the case when the plant TG is structurally and parametrically
uncertain and the case when the plant TG is of such complexity that

the use of an approximate model T is required to simplify computation

AGA

and reduce storage requirements. The concepts and techniques used

in the analysis are similar in structure to those of the recent work

of Owens and Chotai (1983) on approximation and process control.

Several useful results of that paper will be used here and, for

clarity of exposition, the same notation will be used where possible.
As in zstrom (1980) and Owens and Chotai (1983) a basic assumption

made in the analysis is that, for each pair of indices (i,j), the

response Yij(t) from zero initial conditions of the ith plant output

to a unit step in the jth input has been reliably estimated from

plant trials or simulations of an available complex model. The step

data is then assumed to be represented by the 'step-response matrix'

() o o ¥ 0B

Y11 1§

e

Y(t) swlC2)

Yo ... Y (0

ml mh

Let YA(t) be the step response matrix of the model TAGA and define the

error

BE(t) 2 y(t) - ¥, () e (3)

The problems considered below are how the error E can be used to

guarantee the stability of the implemented scheme of Fig.l1(a) if the



predictor is designed off-line based on the assumption that the
plant TG is equal to the model TAGA and how the same information

can be used to bound the deterioration in predicted transient

performance due to the mismatch.

2, Mismatch and Frequency Domain Stability Criteria

The following basic result relates the stability of the Smith
scheme of Fig.1(a) to the off-line scheme of Fig.l(c) obtained by

replacing T by TA and G by GA' The elements G,GA,T,TA,K are assumed

to be represented in transfer function matrix form in this development.

Theorem 1: The Smith scheme of Fig.1l(a) is input/output stable in

b

the L2 sense 1if
(a) the Smith scheme of Fig.l(c) is stable,
(b) both G and GA are stable, and

(c) the 'spectral bound' A g sup ¥ ([[(I +K(s)G (s))_lK(s)gf A(s))
o] <€D L A P

< 1 cea(8)
where A(s) is any available real-valued mx X matrix function of the

complex variable satisfying

A(s) > [[T(s)G(s) - TA(S)GA(S)H 5 ... (5)

for all s on D.
(Remarks: (i) (M) denotes the spectral radius of M,
(ii) D is the usual Nyquist contour in the right-half
complex plane,
(1i1) Ilerp denotes the matrix obtained by replacing Mij
by IMij[, and

(iv) A < B denotes the inequalities Aij < Bij for all 1;3:)



Proof: Following Owens and Raya (1982) write the i/o equations in

the Laplace transformed form

(I£+KGA)—1K(I - (16-T,G,)u)

]
I

]

=
u, (IR+KGA) K(TG“TAGA)u ... (6)

where uy is the input response transform when TG is replaced by TAGA'
Note that the assumptions ensure that (I +KGA)u1K(TG—TAGA) is bounded
and analytic in the closed right-half complex plane and that uA(s)

has the same property whenever r é.Lzm(O,m). Let s be arbitrary

and Re s > O and write (6) in the form

(I£+(I£+KGA)_lK(TG—TAGA))u = vie (7))

It is clear that u(s) is well-defined iff the coefficient matrix in
the left-hand-side is nonsingular ie u(s) is bounded and analytic in

the right-half-plane if

inf  |det(I,+(I,+KG ) ‘K(TG-T.G))| > 0 e
4 2 A ATA
Res>0
The principle of the maximum enables us to replace the infimum over

Res>0 by an infimum over D whence (8) is satisfied if

- +KGA)"1K(TG—TAGA)) <1 e (9)

s&D g

The arguments in Owens and Chotai (1983) can now be used to show that

condition (4) implies (9) and the proof is complete.

The result expresses in the form of (4) a relationship between

the model GA’ its controller K and the mismatch TG—TAGA that ensures

stability. Noting that (4) is trivially satisfied in the absence of



mismatch (ie TG = TAGA)’ it can be interpreted as providing lower
estimates of the largest permissible mismatch that retains stability.
The evaluation of‘lo is a straightforward computational task that
can be simplified in a number of obvious ways and situations:
(a) If,lo' 4 sup yo(s) < 1 where yo(s) is a conveniently
seD
computable upper bound for r(lf(IQ+KGA)"lKIfPA) then (4)
is automatically satisfied. Any vector-induced matrix
norm (Owens and Chotai, 1983) is a candidate for ¥y including,
for example, the maximum singular value.
(b) If m = f(which includes the scalar case of m = § = 1) and
K and GA are taken to be diagonal due to a belief that
interaction is small enough to be neglected and a desire to
simplify the off-line design then the following graphical

result can be obtained, and has the flavour of the well-known

inverse Nyquist array (Rosenbrock, 1974).

Theorem 2: If m = & and GA and K are diagonal of the form

GA(S) = diag {gj(s)}lfjfm , K(s) = dlag{kj(s)}lfjfm
... (10)
then the conclusions of theorem 1 remain valid with condition (c)

replaced by

(1) the inequalities

m
lim sup |k.(s)’ 2 A.k(s) < 1 L R
Res > 0 4 k=1
|s |+ 1<j<m

and (ii) the requirement that the (-1,0) point does not lie in or

touch the 'confidence bands' generated by plotting the
g



inverse Nyquist loci of gj(s)kj(s) with superimposed

'confidence circles' at each point of radius
m

; A il o ,
T, (iw) g G| kzl by (o) W ..

Proof: Replace (4) by the sufficient condition

kj(S) ?
sup max A, (s) <1 ... (13)
sed 1<j<m 1+gj(s)kj(s) oy Jk
as in theorem 3 of Owens and Chotai (1983). Condition (11) follows

from the strict properness of G, and properness of K and consideration

A
of the semi-circular part of D, whilst (ii) follows by considering

the imaginary axis and writing (13) in the form

11+ (gj(iw)kj(im))‘1| > (W), u20,1<ism C. . (14)

The result has an identical graphical interpretation to theorem 3
of Owens and Chotai (1983). The choice of A(s) is open to the
designer and the above results do not prejudge his choice. For
the purposes of this paper however we will follow Astrom (1980) and
Owens and Chotai (1983) by concentrating on error bounds A that can
be easily deduced from graphical inspection of the transient data E(t).
The relevant quantity here is the 'matrix total variation' of E,

Nm(Ell) . v . . . N (F‘u)

N " (E) .. (15)

Nw(Eml) e e e Nm(EmR)



 where (Owens and Chotai, 1983) Nw(Eij) is the norm of Eij regarded as
a function of bounded variation on [0,»). The relevant result is an

elementary extension of lemma 2 in that paper:

Lemma 1:

IT()6(s) = 1,()6, () ||, < N.F(B) , Res >0 ...(16)

NmP(E) is hence a constant candidate for A(s) with the advantages
that it can be evaluted graphically from step data and that the
detailed structure and parameters of the plant TG need not be known
(Owens and Chotai, 1983). To illustrate the application of the ideas
consider the problem analysed in Owens and Chotai (1983) in a Smith
predictor context. More precisely consider the scalar system with

transfer function

ki =571
T(s)G(s) = - g TBEQ o (17)

(s2+25+4) (s+1)

A commonly fitted simple model would have the delay-lag structure

TST,
e
SRS e = 1+0. o
T, (86, (s) T3s~ » Ty = T*0.6 (18)
-5
where we identify TA(S) with e : The step responses of plant and
model are shown in Fig.2 for T = 0. The use of the approximate model

(18) to represent the plant (17) in unity feedback control has been
discussed in detail in the case of T = 0 by Owens and Chotai (1983).
We concentrate here on the general use of v > 0 and the use of a Smith
control scheme to illustrate the preceding theory, to demonstrate that

the permissible errors in the predictor scheme can be larger than

i P s

the errors allowed under normal feedback conditions and to indicate ' ' " i) Uiy

the improvement in input/output performance.



Considering initially the case of proportional control K(s) = kl’
it is trivially verified that condition (a) of theorem 1 is satisfied
if

k. » -1 saw (L9
Condition (b) is clearly satisfied so it remains to check condition
(c). This can be done analytically in this case by noting that,

independent of t > O,

k1(5+l)

k1+1+s

vus C20)

A = sup
© s€D

(if attention is restricted to positive gains kl>0) and that

NmP(E) = 0.45 independent of the value of 120. The maximum permitted

gain predicted by theorem 1 is hence described by the relation

~

AONWP(E) <1 ie

k, < = 2.22 ce. (21)

independent of the value of 120. This should be compared with the

lower maximum gains of k1 < 1.32 allowed (Owens and Chotai, 1983) in

the standard feedback configuration in the case of t = 0 and kl < 0.78
when 1T = 3.

Turning our attention now to the case of proportional plus
integral control K(s) = k1+s~1k2 we again check condition (c) of
theorem 1 in the form of the conditions of theorem 2. Requirement
(1) with A(s) = NwP(E) again reduces to (21). Choosing therefore
kl = 1.5 within this range to obtain closed-loop time-constants of 0.4

from the approximating predictor of Fig.l(c) and integral gain



k2 = 1.0 to obtain reset times of the order of 1.0, the corresponding
inverse Nyquist plot is given in Fig.3 and indicates stability as

the (-1,0) point does not lie in or on the confidence band at any
frequency. This prediction is verified by the closed-loop unit step
‘;responses given in Fig.4 for the cases of T = 0 and T = 3 and
illustrates that the approximate model is an adequate representation
of the plant for predictive control purposes ensuring stability and
providing reasonable estimates of closed-loop transient behaviour.
The problem of prediction of the error Y using E(t) is considered
in later sections.

Finally, it is known (Marshall and Salehi, 1982) that over-—
estimation of the plant delay can benefit performance of Smith schemes.
The above example also indicates that overestimation of the plant
delay can have benefits in stabilizability. To demonstrate this
let 1t and T, Dow vary independently and let &1 = T,TT Suppose
initially that the plant delay t is zero and note that 8t = Ta and that
any positive delay then represents an overestimation. Consider the
delay-lag model

e*STA

TA(S)GA(S) ol " B L 5

-sT
with TA(s) identified with e A. The choice of §t has no effect on

conditions (a) and (b) of theorem 1 but it does affect the validity
of condition (c). More precisely, taking A = NmP(E), it is clear

that AO is proporticnal to NmP(E) and that, for a fixed gain K(s),

AO will be minimized by choosing 6T to minimize NWP(E). The plot

of NwP(E) against 81 is given in Fig.5(a) and indicates that the

stability predictions are least conservative by the choice of
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%
§dt = &t = 0.7 > 0. That is overestimation of the plant delay leads

to improved stability characteristics and consequent robustness!
This result still holds for all t>0 as NWP(E) is unchanged by this
transformation and hence is minimized by §t = GT* > 0 as above

ie overestimation of the delay improves stability characteristics
independent of the length of the plant delay. The corresponding
plot with 7 = 3 is given in Fig.5(b) to underline the validity of

this statement.

3. Mismatch and Time Domain Stability Criteria

It has been demonstrated in Owens and Chotai (1983) that the use
of time-domain mismatch data E(t) can be used as the basis of a
time~domain simulation-based stability criterion. The potential
advantages of such an approach are described in that'paper. The
following result is a direct parallel of theorem 4 in that paper and

is interpreted in an identical manner:

Theorem 3: Suppose that
(a) The Smith scheme of Fig.l(c) is stable,

(b) both G and G, are stable

_ A
and that E(J)(t) is the jth columm of E(t). Suppose also that the
matrix
AR (1) (L
W,(t) = LwA (£)5eeesWy (t)] el

has been computed where WA(J)(t) is the response of the 'delay-free'
system (IQ+KGA}_1K from zero initial conditions to the input vector
E(J)(t). Then the Smith scheme is input/output stable in the L_

sense if the 'contraction constant'
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A P /
Al = ol (WA)) <1 see (24)

Proof: Regarding equation (6) as an equation in Lmz(o,m), stability

is equivalent to the existence of a solutimn!JeLbﬂ(O,m). This is
guaranteed (Owens and Chotai, 1983) by the contraction mapping

theorem if r([[(I+KGA)_1K(TG—TAGA)H P) < 1 where [|L]| p denotes the
matrix of L_ induced-operator norms of elements of L. The result
follows in a similar way to theorem 4 of Owens and Chotai (1983) by
identifying HL}]P with the matrix total variation of its step response

matrix.

To illustrate the application of the result consider the example

of section 2 with K(s) = 1.5 + s—ll.O and hence (1+K(S)GA(S))—1

2
K(s) = Ligs 4B Sptl . Elementary simulation leads to the form for

S *2..58+] P
WA(t) in the case of T = 0 given in Fig.6 and hence Al =N_ (WA) = 0.595 < 1.

Note that Al is independent of 1 as increasing T simply delays E and
hence WA and has no effect on the total variation. This verifies
the stability predictions of section 2. It also indicates that the
time-domain approach is less conservative than the frequency domain
approach and that the Smith scheme permits higher gains than the
standard feedback scheme. These observations can be substantiated

in a quantitative way by considering the case of proportional control

K(s) = k, and plotting the contraction constants for the feedback

1

control and Smith scheme as a function of kl as illustrated in Fig.7.
The feedback scheme permits a maximum gain of kl* = 1.55 in the case

of 1 = 0 and kl* = 1.02 when 1t = 3 whilst the Smith scheme permits a

maximum gain of kl* = 3.35 independent of the value of 1>0.



- 12 -

Another advantage of the use of time-domain methods of analysis
is that it leads to estimates of performance degradation due to
mismatch (Owens and Chotai, 1983). This is discussed in the next

section.

4, Mismatch and Performance

We now consider the problem of estimation of u(t) and y(t) given
the data uA(t) and yA(t) deduced from off-line design and the plant

mismatch data E(t).

4.1. Input Degradation due to Mismatch

The following result is a direct parallel to theorem 5 of Owens
and Chotai (1983) and is based on the extended contraction principle
outlined in that paper. For simplicity of exposition, the result is
stated for step inputs only and with the initial guess u(o>(t) 2 uA(t)

in the successive approximation scheme.

Theorem 4: Suppose that the conditions of theorem 3 hold and that
(a) uA(t) is the input response of the Smith scheme of Fig.1l(c)
to a step input demand r(t) = B, t>0,

(b) E(t) is the &xl vector computed by the convolution

t
g(t) = -(f W, (t-t')H(t")de")B ox L5
o]
where H(t) is the impulse response matrix of (I£+KGA)-1K,
and
ey (t)
" A =1 i
(e) e(t) = | = (I-P) P, oswp flee) ], ... 26)
. O<t'<t
e, ()

where Pt = NtP(WA) is the matrix total variation of WA on the

interval [O,t] (Owens and Chotai, 1983).
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Then, the real input response u(t) of the Smith scheme of Fig.l(a)

to the step demand r(t) from zero initial conditions satisfies the

bound

luj(t) - uj(l)(t)l < gj(t) » Ll<j<t , t>0 W T

where u(l)(t) = uA(t)+g(t) is the first order correction to the

approximate response uA(t}.

Proof: The proof is identical to the proof of theorem 5 of Owens

and Chotai (1983) with G—GA replaced by TG--TAGA and u(o)

ke . _
= (I+KGA) Kr = uy

and is omitted for brevity.

The graphical interpretation of (27) is simply that uj(t) lies
(1) (1)

in the region between the curves uj (t)iej(t). Both u and = are
easily evaluated (see Owens and Chotai, 1983) by simulation of low

g The details of the

order feedback systems generated by K and GA

procedure are illustrated in section 4.3 by an example.

4,2. Qutput Degradation due to Mismatch

The following result is proved in a similar manner to Corollary 3

of Owens and Chotai (1983):

Theorem 5: With the conditions of theorem 4, we have

lye) - vy 5 < NtP(Y)e(t) " NtP(E) sup |[e' ety | ;
Ogt'ft

... (28)
(1)

where y is the response of TAGA from zero initial conditions to

u(l)(t).

A better bound is however available in the case of scalar systems

(m = & = 1) when the contraction principle can be used to prove the
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following result:

Theorem 6: Suppose that m = & = 1, and that the conditions of
theorem 3 hold, Then the controller K will stabilize the Smith
scheme of Fig.l(a) and the response y(t) from zero initial conditions

to a unit step demand r(t) satisfies the bound

ly(t) - y(l)(t)| o efb) £>0 v GG
where
N_(W,)
A £t A
e(t) & ———=— 9max [n(t")] , t>0, ... (30)
l—Nt(WA) 0<t'<t .
P 2y menm L 6o BEL

and n(t) is the response from zero initial conditions of the system

-1 .
I (I+GAK) GAKTA to the input WA(t).

Proof: The proof has a similar structure to that of theorem 6 in
Owens and Chotai (1983). Consider the output equation obtained from
Fig.1(b)
P %
y = TGK r - TGK y o ol )
*
AGAK y to both sides of the equation leads, after a little

manipulation using (1) and the commutation of scalar convolution

Adding T

operators, to

c k)t * 6K
— + — e
y (1 TA " ) (IGK r (TG TA A v)
-1 -1
= (I+KGA) KTGr - (I+KGA) K(TG—TAGA)y ... (33)
or
-1
y = ¥, (I+KGA) K(TG TAGA)(r—y) ... (34)
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where T = (I+GAK)-1GAKTA is the response of the Smith scheme of
Fig.1(c). This equation has the form y = Wt(y) where Wt maps

L,(0,t) into itself for all t>0. Following the argument in the
proof of theorem 6 in Owens and Chotai (1983), stability is guaranteed

if, taking t = +e, we have the contraction condition

-1
, = |l(xe,)

[ee]

KI8T, B ) |l o < 1 i a5 035

which is valid by the conditions of theorem 3 and the identification
’ <], ; G :
f + - A V
o ]](I KGA) K(TG TAGA)“ p with the total variation Vm(hA) of its
step response WA(t) on Bﬁ,w).
Condition (35) also guarantees that wt is a contraction for all
t>0 with contraction constant At 8 Nt(WA) and that y can be obtained

successfully by the successive approximation scheme y(k+1) = wt(y(k)}

with y(o) arbitrary. Letting y(o) =y, e obtain, using commutation
and the definition of WA,
y(l) =y, + (I4KG ) TK(TG-T.G,) (I-(I4G K) ' KT )r
A A AA A A TA
=y, + (I - (I46,K) "¢ KT )W
A A ATTAT A
—¢ + 55
Yyt (36)

and the result follows from the standard contraction mapping error

estimate

Iy -y« = Iy - 5@ e

in L_(0,t).
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4.3. Illustrative Example

Considering the example plant (17) with model (18) and controller

K(s) 1.5 + s_ll.O used in previous discussions and consider the
system input and output responses u and y to a unit step demand r(t)
at £ = 0 from zero initial conditions. The responses uy and Y of
the ideal Smith scheme of Fig.l(c) are shown in Fig.8 for the case of

T = 0. The corresponding responses for 1>0 are obtained by shifting

the output response only to the right by 1 time units.

The deterioration in input characteristics predicted by UA(t) are
obtained by evaluation of £(t) using (25) or, equivalently in the
scalar case, evaluating £(t) as the response from zero initial conditions
of (I+KGA)—1K to the input WA. The resultant £ for the case of
T =0 is given in Fig.9(a) (the £ for 1 = 3 is obtained as a delayed
version). This is used in (26) to obtain the error bound (27)

These are represented graphically in Fig.9(b),(c) in the cases of
T =0 and 1t = 3 respectively.

The deterioration in output characteristics is obtained by the
use of theorem 6. Given the data E(t) the response WA can be computed
and used to obtain n by simulation of (I+GAK)—1GAK from zero initial
conditions to obtain the response Y(t) to the input WA(t). The
signal n is then obtained from n(t) = WA(t)-w(t—T—O.ﬁ) and is given
in Fig.10 for the cases of T =0 and 1 = 3, These can be used
directly to evaluate y(l) and e. The resultant error bounds are
illustrated in Fig.ll for the cases of T = 0 and T = 3. Note that

the performance predicted by the ideal scheme was a reasonable

indicator of the performance to be expected of the implemented scheme.
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Ju Conclusions

The paper has demonstrated that the approximation ideas
introduced by Owens and Chotai (1983) for the design of multivariable
feedback systems based on approximate plant models carry over to
the design of Smith control schemes in the presence of mismatch.
The approaches are very similar in structure, being based upon
systematic use of plant step data obtained from plant tests or model
simulations and producing both graphical frequency domain and
simulation-based time-domain methods of off-line computer-aided
design. Both stability and performance degradation can be analysed
and it is not necessary, in principle, to obtain a detailed plant
model to apply the results provided that plant step data can be

obtained or synthesized.
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