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1 Introduction

Although plant models are invariably nonlinear in structure, it
is common practice to represent these models by linearized versions
for the purposes of control systems design in the vicinity of a known
operating condition. In such circumstances it is possible to use
well-established linear design techniques described, for example, in
Raven (1978), Rosenbrock (1974), Owens (1978) and MacFarlane (1980)
to ensure desired stability and performance characteristics from the
linear model. The success of the design procedure relies heavily on
the accuracy of the linearized model and on the assumptions of linear
actuator and transducer dynamics. If one or more of these require-
ments is violated, then the confidence that can be invested in the
design is severely limited. Unfortunately, many linear models are
highly inaccurate, being only representative of plant dynamics due to
difficulties in plant modelling or deliberate use of simplified plant
models. It is also true that many actuators and transducers have
severe nonlinear characteristics even within the range of signal
levels where the plant is reasonably linear. Consider, for example,
the existence of measurement deadzones, quantization or transducers
with static nonlinear characteristics. In such cases, it is clearly
important to be able to assess, in a quantitative manner, the effect
of_modelling errors and nonlinearities on the stability and performance

predictions obtained from linear techniques.

i . : ; ; .
Department of Control Engineering, the University of Sheffield,
Mappin Street, Sheffield S1 3JD.



or
(b) G is stable and known but is regarded as being too complex for
the design exercize to be undertaken but simulations are
undertaken to record Y(t), t>0.
In both situations, design must proceed based on the use of the
data Y(t), t>0. Suppose therefore that visual or computer-aided

analysis of Y(t) suggests that a stable approximate model with

transfer function GA(S) is representative of plant dynamics. Note
that it is not assumed that GA is an accurate representation of G!
The complexity of GA is left to the designer who is free to choose
either a simple form of GA to ease analysis (recognizing that
modelling errors may be large) or a more complex model GA with

smaller modelling errors and a consequent increase in analytical
complexity. Whatever his choice, the model GA canﬁbe used as the
basis of control system design to choose a controller K to produce
the required stability and performance characteristics from the
approximate feedback scheme illustrated in Fig.1(b). The aim of
this exercize is, of course, to implement the controller on the real
plant but the presence of modelling errors throws some doubt over
the success of this operation. More precisely, the implementation
of K on the plant G will only be successful if
(a) the stability of the approximate feedback scheme of Fig.1(b)
guarantees the stability of the implemented scheme of
Fig.1l(a) in the presence of the modelling error, and
(b) the performance deterioration y(t)-yA(t) due to the modelling
.errors 1is acceptable,

For the design exercize to guarantee these properties, information

on the modelling error must be explicitly used. IE': YA(t), t>0, is



the unit step response of the model GA (obtained by direct simulation),

then the 'step response error'

E(t) = Y(t) - YA(t) . t>0 eawi(1)

contains, in principle, all the information on the modelling error
and hence should be usable in stability and performance studies.
There is no unique way of using E(t). For example, Owens and Chotai
(1983) use E(t) as the basis of frequency response stability studies
to guarantee property (a) above. Here, however, we concentrate on
time—domain simulation based methods similar to those described in
that paper.

Although E(t) is used directly, it is also necessary to construct
other forms of 'error measure' deduced from this data. Consider a
continuous signal £(t), t>0, with local minima and maxima at times
t <t <t,<... with t = 0, then the total variation of f on DJ,t]

o 1 2 o
(Owens and Chotai, 1983) is defined to be the function

k
|f(t0+)[ + jzl |f(tj) - f(tj-l)l

A
N.(f) =

+ [£(e) - £(t) | ; t>0 ves (2)

where k is the largest index such that t <t. Nt(f) can easily be

k

deduced from graphical analysis of f(t) as illustrated in Fig.2.

The function can also be defined for most stable, well-defined signals

in the case of t = +=o, Formally, we need only write

>

N_(£) sup Nt(f) ees(3)

t>0

but, in practice (Owens and Chotai, 1983), Nm(f) can be regarded as
being NT(f) where T is long compared with the time constants of the

signal f,



2.1. Stability Assessment using Error Data

With the above definitions, the following result provides a
technique for assessing the stability of the implemented control

scheme.

Theorem 1 (Owens and Chotai, 1983)
If the controller K stabilizes the model GA in the configuration

of Fig.1(b) and both G and G, are stable, then K stabilizes the plant

A
G in the configuration of Fig.l(a) if
(i) GKF is controllable and observable, and

(i1) N (W) <1 e (4)

where (Fig.3) WA(t)’ t>0, is the response of the system (1+KFGA)_1KF

from zero initial conditions to the error signal E(t), t>0.

The application of the result is straightforward. Condition

(ii) is checked by undertaking a simple simulation to obtain the

1

response W, of the known (normally low order system) (1+KFGA)_ KF

A
to the known data E(t), t>0, and verifying that its total variation
satisfies equation (4). If (4) is satisfied then condition. (1)
must be checked. If however (4) is violated then stability cannot
be guaranteed as the modelling error is too large. All is not
lost however as (4) can be satisfied by either

(l) increasing the accuracy of the model GA to reduce the

modelling error E and hence Nm(WA),

or

(2) reducing control gains to reduce the magnitude of WA.



Choice of the first option essentially admits that the modelling
error must be reduced to achieve the required performance, whilst
choicé of the second option is an acceptance that the loop must be
detuned to cope with the modelling error. Both options are open
to the design engineer.

The checking of condition (i) of the theorem is straightforward

if the model G is known as it is equivalent to requiring no pole-zero
cancellations in the transfer function GKF. If G is not known this
is not possible and the designer must check the condition by indirect
means or rely on the fact that it is almost always valid. The
choice of indirect means depends primarily on the structure of K!
For example, if K is a standard proportional plus integral control,
it is easily verified that it is only necessary that the plant d.c.
gain is non-zero or, equivalently, that the steady state value Y (=)
of the step data is nonzero.

To illustrate the application of the ideas consider a process

with transfer function

1
G(s) = — woene ()
(s + 1)
with step response Y shown in Fig.4(a). Following the common

practice of using delay-lag process models, visual inspection of

the response suggests the approximate model

-s0.7

_ e
6, (8} = Y373 —_—

leading to the step response YA illustrated in Fig.4(a) and the

error E = Y-YA given in Fig.4(b). Standard techniques applied to

GA’ assuming unit feedback F = 1, suggest the use of the PI controller



k

Bt} = J #=2

1 __S__ . k = 1.0 N k =0-5 ..-(6)

leading to the predicted, closed-loop step response ¥y shown in Fig.5.
To check that the controller will also stabilize G, WA is computed as
shown in Fig.6 and its total variation deduced to be NW(WA) = 0.5 < 1.
Stability is hence guaranteed provided that the controllability and
observability condition is satisfied. Given G and K it is easily
seen that this is so. If however G was not known, note that this
has no real practical impact as GK is controllable and observable for
almost all k. and k, (more precisely, for all kl # kz).

1 2

2.2. Performance Assessment using Error Data

The analysis of section 2.1 can be extended (Owens and Chotai,
1983) to bound the performance deterioration due to the modelling

error E(t).

Thoerem 2 (Owens and Chotai, 1983)

Suppose that the conditions of theorem 1 are satisfied and define

a "corrected response prediction' by

4

yPwo &y enm 6o ee D)

where

(a) yi(t) is the response of the approximating feedback system
from zero initial conditions to a unit step input, and
(b) n(t) is the response of the system.(1+KFGA)_1K(1+KFGA)_1

from zero initial conditions to the error data E(t).



Then the unit step response y(t) of the implemented scheme of

Fig.1(a) satisfies the inequality, t>0,

N (W)
(1) A Tt A
IY(t) -y (£} ] < olE) * oordeer max n(t')f e (8)
I L Nt(wA) o<t'<t I

(Remarks (i) This result follows from theorem 6 of Owens and Chotai

. _ -1 (o) _ ¢
(1983) choosing Hl (1+GAKF) GAK and hence y = ¥y
(ii) If F has a stable inverse, Y can be computed more simply

as the response of the configuration (1+GAKF)_1F_1 to

the input W, (t), t>0.
(iii) e(t) is monotonically increasing and hence the left-hand

side of (8) can be replaced by max |y(t')—y(1)(t')[ )5
o<t'<t

In graphical terms the result states that the worst performance
deterioration due to the known modelling error is such that the unit

M (tyse(r),

step response y(t).will lie between the two responses y
t>0. This is illustrated below.

The application of the result can be illustrated by considering
the example of section 2.1. Elementary simulations lead to the
'correction' n(t) given in Fig.7(a) and to the bound e(t) of Fig.7(b).

(1)

The resultant bounds y e and the actual response y are given in

Fig.8 verifying the validity of the prediction (8).



3. Modelling Errors and Nonlinear Design

Having completed the incorporation of the modelling errors into
the linear design it is now possible to assess the effect of
measurement nonlinearities on stability and performance. It is
assumed throughout the remainder of the chapter that F is a scalar
gain approximating a nonlinear measurement characteristic N and that
the implemented scheme has the structure shown in Fig.9. The non-
linearity is assumed to be static and memoryless and can be decomposed

into the form (Owens and Chotai, 1981)
N(y) = Fy +n;() +n,(y) ... (9)

where

(1) nl(y) is a nonlinearity of finite incremental gain v

ie for all Y12Yys

|ny Gry) = my )| < wlyyy, ¢ 5 (10)

(Remark: although this idea includes some nondifferentiable non-
linearities, for differentiable nonlinearities v is just the maximum

modulus of the derivative of nl).

(ii)‘nz(y) is a bounded output nonlinearity of the form, for all y,
[, (M| < a/2 ... (11)
where q>0 is a real scalar.

(iii) n (0) = 0 (and hence ]nl(y)| < vy cee (12)

(Remark: the nonlinearity N is linear if, and only if, we can choose

F such that v = g = 0).
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This separation of the nonlinearity is slightly nonstandard as
most authors take n, = 0. The inclusion of n, however allows the
analysis of nonlinearities with bounded discontinuities or phenomena
such as deadzones. The following results indicate that stability is
independent of n, and hence separating it out tends to reduce the
conservation of the predictions by decreasing the 'effective' gain v
and, in some circumstances, permits the application of the theory to

discontinuous nonlinearities that do not have finite incremental gain.

To illustrate how the decomposition could be applied consider the

nonlinearity
0 ; Iyl <1
N(y) = y-sgn y ; 1< |yl <2
3y-5sgn y " 2 < l&l ew 5 [ 1:3)

illustrated in Fig.l1l0(a). Choosing F = 2, then it is easily wverified

that N has the decomposition (9) with (Fig.10(b))

1A
S

-y , v
nl(y) =

v
bo

y-hsgn 'y Iyl o (14)

with incremental gain v = 1, and nz(y) has the form (Fig.10(c))

A
—

-y ’ [yl
n, (y)
eee (15)

v
—

-sgn y , [v]

with q = 2.
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3.1. Stability Assessment

With the above definitions, the following result provides a
technique for assessing the stability of the nonlinear feedback scheme
(the proof is outlined in appendix 7.1). The notation of theorems 1

and 2 is assumed throughout.

Theorem 3 (Owens and Chotai, 1981)

Suppose that the conditions of theorem 1 are satisfied and define
the monotonically increasing function

Nt(WA)Nt(n)

e ... (16)
1 Nt(WA)

1
o) = n oY)
Then the feedback system of Fig.9 is input/output stable (in the L
sense) in the presence of the controller K if the contraction condition
A=)y < 1 i CTT)

1s satisfied.

The interpretation of the result is similar to that of theorem 1.
Note that the stability result depends only on the incremental gain v
of ny and is independent of q and hence . The validity of (17)
depends clearly on the magnitude of v but it also depends explicitly
on the magnitude of modelling error E as can be seen by examination of
(16). In general terms an increase in the modelling error requires
a decrease in the gain v to satisfy (17), indicating that the presence
of modelling errors can make the design analysis more sensitive to
measurement nonlinearities at implementation.

To illustrate the application of the ideas, consider the example

of section 2.1 with the specified controller but where the implemented
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scheme is subject to the nonlinearity

(0.9 + 9.9y2) 3 ... (18)

N(y) 5
(L +9y7)

Choosing unity feedback (F = 1) as in section 2 to represent a linear

form of the nonlinearity and nz(y) = 0 defines nl(y) uniquely by

2
n(y) = 0.1y—(-912——1-)— ... (19)
(9y"+1)
which has incremental gain v = 0.1. The data y(l), WA and n obtained

in the linear design can now be used to deduce that A(x) = 1.98.
It is easily verified that condition (17) is hence satisfied and
that the nonlinearity will not affect the stability predictions based

on the linear approximating model G, and the linear approximation F = 1

A

to N.

3.2. Performance Assessment

It can be anticipated that the nonlinear characteristic will also
affect performance predictions. More precisely, we expect that the
results of theorem 2 will remain essentially valid but with én increase
in performance uncertainty represented by an increase in e(t)! This
intuition is formalized in the following statement (Owens and Chotai,
1981) proved in Appendix 7.2. The result is stated for unit step
responses but steps of any magnitude can be obtained by prescaling of

variables.
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Theorem 4

Suppose that the conditions of theorems 1, 2 and 3 are satisfied.
Then the response ynz(t), t>0, from zero initial conditions of the
nonlinear feedback system of Fig.9 to a unit step input satisfies the

inequality, t>0,

0, ® -y V@] e 0 & e
Sheas (v + a/2) ... (20)

The interpretation of this result is identical to that of
theorem 2 with € replaced by Enz. Note that Enﬂ(t) > e(t), t>0,
and hence that the nonlinearity increases the uncertainty in y(t),
t>0.

A similar result can also be proved as follows (see appendix 7.3)

and is expected, on intuitive grounds, to give better results.

Theorem 5

The conclusions of theorem 4 remain valid with Enﬂ(t) replaced by

A e(t) A(E)v (1), _At) g
%20 (® = 15y * TRy o e ]+ s 2
- i s (202)

The results are illustrated by considering the example of section
3.1 using (20a). The performance bounds y(l)isng are given in Fig.1ll
together with the unit step response of Fig.9. Note that Pul lies

between the bounds as expected.

LIBRARY
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4. Conclusions

In the presence of modelling errors in a linear process G and
measurement nonlinearities N, the natural approach to control systems
design is to base the design on an approximate model GA and a linear
version F of the nonlinearity. This procedure leads to severe
uncertainty in predicting the stability and performance of the
implemented scheme unless some information on modelling error and
nonlinear characteristics is included in the linear design. This
chapter has illustrated recent developments to address this problem
that rely on the availability of step response data for the plant and
an upper bound for the incremental gain of the nonlinearity. This
data can be processed using simulation techniques to predict the
stability of the implemented scheme and the construction of a 'response
envelope' containing the scheme response. The stébility prediction
has obvious value and the response envelope provides a measure of
the maximum and minimum possible values of the effect of the modelling
errors and nonlinearity on predicted linear performance.

Finally, the chapter has described the ideas for single-input/
single-output continuous control schemes. The ideas carry over with
little change to the sampled-data case and also to cope with multi-
variable systems. The reader is referred to the references for

details of these generalizations.
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75 Appendix

7.1. Proof of Theorem 3

Let rEIHKO,m). The closed-loop equation of Fig.9 is written as

Vg = OKG = (Fy, + 00 ) + 0,0y ))) ¢33 (21)

in LEXt(O,m). If LC is the linear operator in Lm(O,w) defined as
the map r » y of Fig.1(a), then, noting that y = Lcr, (21) can be

rewritten as

i

. Y Lc(r ~ nl(yng) - nz(ynz)) »aw(22)

i
<

<
&

- Lc(nl(ynz) + nz(ynl))

Regarding v - nz(yng)EELm(O,m) as fixed, the contraction mapping
theorem (Holtzmann, 1970) guarantees the existence of a unique
solution of (21) in Lm(O,w) (and hence stability) if we can choose

a real number u (termed the contraction constant) satisfying

Ll v < w<t ... (23)

<o

e

where . denotes both the norm of any point in Lm(O,m) and the
induced norm of an operator in L _(0,») as required by the context.
The input/output equation y = Lcr can be written (Owens and
Chotai, 1983) as
y = GKr - GKFy . 5+ (24)

or, after a little manipulation

(1 + GAKF)"I(KGr - KF(G-C,)y)

kc:
1]

e

v(y) ... (25)
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Let Pt be the natural projection of L (0,®») onto Lw(O,t) with
P® = I (the identity map). The work of Owens and Chotai (1983)
then indicates that PowP, is a contraction on L_(0,t) for all t>0

with contraction constant

[P, (1+kFG,) TIKF(G-G) || = N (W) <N (W) <1 ... (26)

Let‘VEIajO,w) be arbitrary and use the triangle inequality to obtain

leyll, < lleovll, + B G-I, e 2)

Kr and consider the successive approximation

_ -1
= (1+GAKF) GA

Let ¥, ™ Ya

scheme Vsl = ¢(Yk)’ k>0, to obtain, in particular

-1
y., = (1+GAKF) GA

=1 i1
Kr + (1+KFGA) K(1+KFGA) (9 GA)r
=y + (1+KFG) 'k (1+kFG ) T(G-G )r ... (28)
o A A A
Let v = vy and deduce that

-1 -1 ~
vl [P (146, KF) "G, K+(14KFG,) "K(1+KFG,) ~(6-G, N[ [P x|l

IA

AP RIE ... (29)

t

by using lemma 4 in Owens and Chotai (1983) to identify the operator

norm with the total variation of its step response and noting that

1
y

. . c : .
its step response is just y ot o= . Next, use standard contraction

formula to deduce that

N ()
||PE(Y~Y1) I, = TW HPt(yl'yo) .. .+ . (30)
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and use (28) to yield

Nt(WA)

-1 -1
ST 0y Ip, (L+xFe,) "k (exre,) T G-6 ) Il [P xll

2, w1,

Nt(WA)Nt(n)

P rfl ..+ (31)
—j'_T" “ )

1 Nt WA t

as the operator norm can (again) be identified with the total variation

of its step response which is just n! Substituting (29) and (31) into (27)
yields HPty”G) < A(t)”?tr”Dc and hence HPth”m < A(t). The

result follows by taking t = +» and p = A(=)v.

Proof of Theorem 4

The analysis of section 7.1 indicates that thnRPt is a contraction

on Lw(O,t) with contraction constant A(t)v. Chooée r as a unit step
and apply successive approximation with initial guess yéz) = x leads
to the first iterate

y(l) = 3 =L {8 (x) +n.ly ) ... (32)

nf e 1 27 nk

whence, using I,Pth“aa < A(t),

L
2,6y =l < ez ll, Clem @, + llpa, 6 )llL)

< Al +3) s 1 4 (351

and

o KLY AE)v

1
O AL S YO [T oxe L4
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Clearly
v, ® -y P ®] <y - yP o]+ Iy, m -y

Dy + [y -y

1A

e(t) + lym(t) - I

< e+ 2 e P00l + e 6Pl
A 1
< oo + 2 e g0l + o 1P 0 W,

i +435)
Choosing x = 0, noting that ||Pty[Ln < HPth”m ”r“Dc < A(t) and

using (33) leads to (20) directly. The result is hence proved.

7.3. Proof of Theorem 5

Applying the argument of section 7.2, choose x = y(l) in (35)

and use (8) to verify that I|Pt(y-y(1))“a) < e(t) and hence that

(1) e(t) (1)
|Yn2(t) -y ()] < ooy T Is l(t)v ”p (y 'Y)”m
e(t) Xty (1) AE) g
o 1-A(t)v + eI || ” m)—v > —l))

which is just (20a) as required.
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