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j Introduction

There is now an extensive literature on the subject of the control

of time delay systems(lj. The well known Smith predictoriz] and its
extensions are often used in this case. Recent work pays particular
{3.]

attention to the robustness of the Smith predictor scheme !’ to copy
with the plant/model mismatch and to retain stability in the presence
of the changes in plant dynamics. A general theory describing the
robustness of the Smith scheme is given by (3) and some problems,
particularly the choice of approximate model, are investigated in fé}.

In this report, we will first extend the result of (3] to the
more general case - nonunity feedback case in both inner and outer
loops. Then, by looking at a multivariable process control example,
we will discuss the parameter optimal problems and the effects of

nonunity feedback. In addition the sensitivity function in multi-

variable case will be derived and discussed.

2, Robustness of the Extended Smith Schemes

The plant is regarded as a linear operator mapping input linear

vector space U2 into output linear vector space ym and suppose that
it can be expressed into separable form (Fig.1)

Y = TZ wiee )

Z =GU aaw (2)
whre the linear operator T maps Y" into itself and represents the
delays at the plant output and G maps U2 into Ym. Because of the
generality of the theory which will be given it can be applied to plants
expressed as above[4j. Where T is a pure delay matrix and G is a
rational and strictly proper TFM but not necessarily a 'delay free'

component (i.e. it can be a component with time delay).



The extended Smith scheme is illustrated in Fig.2 where the
linear operator GA and TA represent models of the plant components
G and T respectively and K is a forward path controller regarded as
a mapping of " into UR. The only difference with the usual Smith
scheme is that the feedback components are, instead of unity, Fl(s)
in the inner loop and Fz(s) in the outer loop respectively. Here
F1 and F2 are regarded as mapping of Y™ into itself. As to be
mentioned in section 3.2, Fl and F2 may lead to some benefits sometimes,
e.g. improve stability or performance or increase permissible mismatch.
We now derive the general theory of robustnessbJ for the scheme
of Fig.2. The signal yé:Ym is the demand signal. If the initial
conditions are zero, the dynamics can be expressed as follows

Y = TGU ) v ()

K(Y—FIG U—F2 (Y—TAGAU)) va e (4)

¢ A

After a little manipulation, we get

*
U = K (Y—FZTGU) i35 05)
* G,~KF,T G ) -
where K = (I+KFl A 212Gy K -
is an uniquely defined linear mapping of Y" into Uﬁ. It is'trivially

verified from equation (5) that scheme Fig.2 is equivalent to scheme
Fig.3.

For convenience of comparison and use, we follow the method of
reference (3] to give a thoerem to characterize the stability of the
extended Smith scheme. Let UD2 and Yom be linear vector subspace of

2

U” and Y respectively (regarded as spaces of 'stable' inputs and outputs

respectively).



Theorem 1

The scheme of Fig.2 is stable in the BIBO sense if
(i) the plant component G and its model GA map Uog into Yom
and that their restrictions to Uo2 have finite induced norms,
(ii) the delay component T and its model TA map Yom into
itself with restrictions to Yom of finite induced norms,

(iii) the restriction to Yom of the mapping

Yy > U g (I+KF1GA)_1K has range in UOR and finite induced norm,

A
iv) A, & ||xr e kEaTe || < 1 (7)
1 1°A 2°°7A e
A1 -1
(v) by F T:X; |](I+KF1GA) KFZTAGH <1 ... (8)
where AG = G—GA ... (9)
AT = T-T, s 010

represent the mismatch between plant and its model.
Proof: As G and T are stable and bounded by assumption it is

sufficient to prove that U€ UO2 whenever erOm.

F3
From U=K (Y—FZTGU)
* o
=K (Y~F2TGU-F2TAGAU+F2TAGAU) ...(11)
we can get
- (4K F.T.6.) k" (v=F. (Te-T ¢ U 13
U = (I+ F,T,6,) 'K (y 2( A% ) sl 12

This is an equation in Ul of form U = Wr(U). Suppose that wr map

UO2 into itself whenever the demand YEYOm- Clearly the BIBO
(5]

stability is ensured if Wr is a contraction This is the case if

A % -1 * B
A= || (+KF T,G,) "KF,(IC TAGA)“ <1 « v« GLE)

o] 2



We then prove that the following equality is true

(K F. T ¢ ) g -1
Write UA = Vl—V2
. *
with V1 = Ky vz (1)
%
V2 = K FZTAGAUA vo. (16)
and express UA in the form
= (KF.T.6 ) K
Uy = (T'F,T G0 K y e (17)

By definition (6) we get

v, = (I+KF1GA—KF2TAGA)"1KY ... (18)
Rewriting it yields

V) = K(y=(F,-F,1)6,V)) e (19)
By similar means, we can get

v, = K(FZTAGAUA—(Fl—FzTA)GAVZ] ... (20)

Subtracting (19) and (20), we can obtain

Uy = V7V, = Ry-KE;G,U, . by

or its equivalent

_ -1
UA = (I+KF1GA) Ky e e (22)

and equality (14) is then proved.

Substitute (14) into (13), the result follows by noting



A 4 [}(I+KFIGA)"1KF2(TG—TAGA)H
= H(I+KF1GA)_1KF2(TAG+ATGA)”
< ]|(I+KF1GA)_1KF2TAG“ + |](1+KF1GA)"1KF2ATGAH
< A A =1 ' .. (23)

The condition (i)-(iii) ensures that Wr maps UO2 into itself for all
YE'YOm- In physical view-point, condition (i) and (ii) is the
requirement of open-loop stability of plant TG and its model TAGA’
conditions (iii) simply require that the feedback scheme of Fig.4 is
stable in normal practical sense. Condition (iv) and (v) provide

upper bounds on the mismatch AG and AT that guarantee the BIBO

stability of Fig.2,

For simplicity of applicationm, following (3}, we suppose that G

and GA are rational and strictly proper TFMs, that K is rational and
-T.8 ~T,s8

prover and that both T = diag{e J } and T, = diag{e Al 1

1<j<m A l<jzm

are mxm diagonal matrices of pure delay. In this case, the
theorem has following simple form[3J:
Theorem 2

If the plant component G and its model GA are asymptotically
stable and the feedback system of Fig.4 is input-output stable then
the extended Smith scheme of Fig.2 is BIBO stable if

m
=]
A, = max sup ) l((I+KF1GA) KF

ATG ). .| <1 ...(24)
l<i<m sgQ  j=1 A1)

2

m
A1 -1
Ay, = 3=— max sup { [((I+KF G,) "KF TAG).., <1
: < Al l<i<m s€Q j=1 LA 2 =

id 3 L23)



where s is complex variable and  is the Nyquist contour.
Proof: The stability assumptions are equivalent to conditions (i)-(iii)
of theorem 1 whilst (24) and (25) are identical to (7) and (8)
according to reference.f7].

This result is easily used to evaluate A, and A, by numerical

1 2

calculation.

3. Parameter Optimal Control

In reference (4] we discussed the choice of approximate model GA
and forward path controller K for a kind of process control. But
the choice of time delay component TA has not yet been discussed in
detail. Hence we shall investigate this problem from a parameter
optimal view-point. The parameters of the controller K and the
model GA can also be analysed from this view—point? The effects of
the components FI and F2 in the feedback path will also be investigated
in this section.

Throughout this report the performance indexes used are defined

as integral square-errors:

2
Jo= [ e ldt Y
o)
where
e; = y;(8) - x (t-1,) e (27)

and T is the time delay in output ¥y

3.1. Temporal Optimality

The term 'temporal optimality' is used to present the optimal

choice TA for a certain G, T, K and GA' We will indicate that the



presence of temporal mismatch AT can lead some benefits sometimes.
In other words, the matched case is not necessarily the optimal
case(GJ. The choice of temporal model TA is hence still a problem
which should be handled carefully.

Let's consider the same example used in ref,[&), where the

plant can be expressed into separate form TG:

119.3 -62 e—35x22.85 0
1+812.8s 1+904s
G = , T =
55.3  _ 109.7 3 L~ 35%3s
1+776s 1+715s
For simplicity suppose that Fl =1, F2 =1, i.e. its a usual Smith

predictor scheme.
We choose the first order modelfg] as an approximate model GA’

which is defined as

-1
GA = (AOS + Al) ...(28)
=L "
where Ao = 1lim sG(s)
¥ o £29)
Alm1 = lim G(s)
s=0

The controller K is chosen as proportional plus integral controltaJ,

which is

ke
K = (k+c+ :;-)AO A w5 ¢ (30)

1

where k and c are constant scalar.
Regarding m as a parameter we choose temporal component '1‘A as
e-mx35x22.83 0

A -mx35x3s
0 e

v ol 3 0)

]
i



Fig.5 gives the variation of J—Jo with m under the stability

condition (24) and (25). Here Jo is the performance index when
m =1, i.e. the matched performance index. It is evident from
Fig.5 that the mismatch optimal is lower than matched case. The

similar conclusion was indicated in [6J for single input/single
output. In other words, the performance can be improved by 'correct'
mismatch.  So the minimization of the performance index can be,

in the authors' opinion, one of the criterions of choosing temporal

component.

3.2. The Effects of Feedback Components

We investigate the effects of F1 and F2 from the following

view-point:
(i) do they improve the stability characteristics?
(ii) do they improve the performance?
(iii) do they increase the permissible mismatch?
The effects of B is first investigated by looking at the same
example with previous subsection.

Let
e—30x22.85 0

‘ i = ~30x3s va w (32)
0 e

and choose both F1 and F2 to be of diagonal form and regard n as a

parameter

1+30xnxs 0
F = ...(33)
0 1+20xnxs



The norms Al and Az can be evaluated by (24) and (25) and are

illustrated in Fig.6 as a function of frequency for various fixed

value of n. The performance index is shown in Table 1.
n o
-1 138.66
0 151.45
1 164.53
Table 1

It is evident from this example that when n>0 F1 can reduce the max
value of the norms but increase the performance index. In other
words, it can increase the permissible mismatch and hence robustness
but deteriorate the performance. Conversely, When_n<0, F1 can
improve the performance but reduce the permissible‘mismatch. So

Fl provides a margin of choice between the robustness and performance.
When the main purpose is to increase the robustness, designers should
put n>0 (proportional plus differential) in inner loop. And the
performance can be improved by putting n<O in inner loop.

We then investigate the effects of F_, using the same example but

2
supposing .
1+301 0
F, = xnxs oo (34)
2 0 1
1+20xnxs
Fl = I

The norms Al and Az are shown in Fig.7 for various fixed values of n

and the performance index are shown in Table 2.
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n J

0] 151.45

1 154.62

2 153.07
Table 2

We can see from Fig.7 that when n>0, the presence of F2 can increase
the permissible mismatch and hence increase the robustness. The
effect of F2 on performance is very small and can be neglected. The
reason of this small effect on performance is that because this example
is a small mismatch case, the outer-loop feedback is of no importance
in practice. In extreme cases, when it is exactly matched, F2 has
no effect on the performance. However, it is expected that in
serious mismatched cases, F2 might produce more obvious effect on the
performance.

As for the effect of F1 and F2 on stability characteristics, we
only indicate that F1 is in fact a parallel compensator for the
scheme of Fig.4. We know very well that in single-input/single-output
case the addition of a zero to a open-loop transfer function has the
effects of tending to make the system more stable and to speed up
the settling of the response. Hence a Fl formed as (33) can lead the
scheme of Fig.4 to be more easily stabilized and it is this stability
that is a necessary condition for stabilizing the scheme of Fig.2.

In short, the presence of Fl and F2 may yield some benefits and
provide a margin of choice to the designer. Even though the general

analysis has not yet been achieved, we can expect that the extended

Smith scheme may have some advantage over the usual Smith scheme.
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3.3. The Steady State Error

We here note the steady state error in F1 # 1, F2 # I case.

From Fig.3 the closed loop TFM can be obtained as

* -1 %
Hc(s) = T(1+GK FZT) GK w43 (35)

where

% -1
K = (I+KF1GA KFzTAGA) K as before (see formula (6))

According to final value theorem, steady state value for unit step

demand is
% = *

Y(2) = T(o)(I+G(0)K (o)Fz(o)T(o)) G(o)K (o) ... (36)
When both T and TA are diagonal matrix of pure time delays, the
final value is

* -1 * .

Y(®) = (I+G(0o)K (o)FZ(o)) G(o)K (o) s (37)
where

K'(0) = (THK(0) (F, (0)F, (0))€, (0)) 'K (o) D)

We then look at some special case:

(1) When Fl(o) = Fz(o), it is clear that

%
K (o) = K(o)

and

Y (=)

]

(I+G(0)K(0)F2(o))_lG(o)K(O) ... (39)

In this case if integral action is included in the controller,
K(o)+> then

Y(x) = Fz"l(o) ... (40)
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That means steady state error will exist if Fz(o) # I even though
integral action is included in the controller.
(2) Fl(o) # FZ(O) and controller includes integral action, in this

case

* -1 -1
K (0) = 6, (0)(F (0)-F,(0)) ooa (A1)

the steady state value of y is

1@ = (146006, (0) (7 (0)-F, (0) F,(0)] eto)e, (o) (7 (0)F, (o))

w5 s (A2)
If the approximate model is chosen such that

GA(O) = G(o)

then Y(x) is of more simple form,

Y(=) = [I+(F1(O)*FZ(O))_le(o)]_l(Fl(0)_F2(Q))“1 _ Flﬁl(o)

w4 3)
The steady state error will again exist if Fl(o) # I.
Summarising the analysis above, we can conclude that the steady state
error exists in general even though integral action is included in
the controller. This is perhaps the expense for obtaining the
increase in permissible mismatch or the improvement of the performance.
The designer should hence check the steady state error when either in?er

loop or outer loop feedback is not unity.

4. Sensitivity Function for Multivariable Smith Scheme

The sensitivity problem for time delay systems in single input/
single output case has been studied in {6). We will here investigate
this problem in multivariable case. Following [6], the term 'temporal

sensitivity' is used to describe the sensitivity of system performance
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to the time delay parameter and 'parameter sensitivity' for the
other parameters. Throughout this report we suppose that the
perturbation of the parameter is time invariant. For simplicity

assume both F1 and F2 in scheme Fig.2 are unity.

4.1. General Sensitivity Function

From Fig.3 we obtain

Z

GK*(Y—TZ) w4

(14MT) "Iy .. (45)

or Z
where M = GK*, includes all parameters except temporal parameter.
The output y can then be expressed as

Y = TZ ... (46)

T(14MT) Ty L (47)

Differentiate both sides of (46) with respect to a general parameter o

Y = T2+ TZ ... (48)

where the notation '.' means é%—.

It is clear from (45) that
7 + MTZ = My ... (49)
and by differentiating (49) we get

Z + MTZ + (MT + MT)Z = My ... (50)

Noting (45), after a little manipulation, we obtain

z = (IMT) TM(I-T(IMT) M)y - (TMT) MT(T4MT) My
... (51)
The general sensitivity function is
' -1 -1 -1, -1
Y = T(I+MT) "M(I-T(I+MT) "M)y+(I-T(I+MT) "M)T(I+MT) "My
...(52)

The parameter sensitivity function Yu can be obtained by taking T =0

in (52)
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Y= T(IMT) H(I-T(Iam) oy ... (53)

The corresponding temporal sensitivity %T is
_ o P ~1
YT =  (I-T(I+MT) "M)T(I+MT) My ... (54)

4.2, Sensitivity Function for Matched Case

In the matched case the outer loop disappears in fact and the

Smith scheme is simplified to be Fig.8. The output y 1is

Y = TZ ...(55)
where Z = (I+M)_1MY « .0 (56)
and M = GK

Differentiate both sides of (55) with respect to a parameter o
T = T2 + T2 P

Z can be obtained by the similar means with 4.1
- -1 -1
Z = (I+M) "M(I-(I+M) M)y ... (58)

It is simpler than (51) because the disappearance of the outer-loop.

The sensitivity function in matched case is then

Y = T(I+M)_1ﬁ(I—(I+M)-lM)y+T(I+M)_lMY ... (59)
because
(I-120) "y = @l ... (60)

substitute (60) into (59) we then get
: -1 -1 -1
Y = T(I+M) "M(I+M) "y + T(I+M) My a0 (61)
The parameter sensitivity function can be easily obtained from (61)

id = T(I+M)_lﬁ(1+M)_1y ... (62)
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The corresponding temporal sensitivity is

i, - T(T+m) "Lyy ... (63)

The parameter sensitivity can be further analysed as follows. If
only a parameter ¢ in G changes, then

M = GK .. (64)
We use the term 'plant sensitivity function' and notation ?G to
describe the sensitivity of system performance to this parameter.

Which is

Y, = T(I+eK) ! 2 xerery Ty ... (65)

When only a parameter a in the controller K changes, so called

'controller sensitivity function' YK can be defined by similar way:

~ -1 _ 3K -1
YK T(I+GK) i o (I+GK) "y «o 0 (66)

It describes the sensitivity of system performance to a parameter

of controller.

4.3. Sensitivity Function for Mismatched Case

We rewrite the parameter semsitivity function (53) and make

further observations to it.

Y, = T(1+MT)'lﬁ(I—T(I+MT)'1M)y cea (67)

%*
where M = GK

1

-1
G(I+KGA*KTAGA) K wws (68)
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(1) When only a parameter ¢ in G changes,

. ] -1
M = G(I+KGA KTAGA) K ... (69)

then the plant sensitivity function YG is

-1 3G

-1 -1
3q (T*KG,=KT,G,) "K(I-T(I+MT) M)y

« .+ (70)

éG = T(T+MT)

(2) When only a parameter @ in GA changes, define 'model sensitivity

function' and use notation YG to describe the sensitivity of system
A

performance to this parameter.

From (68), we have

(1+KGA~KTAGA)G'1M = K . (71)

Differentiate both sides of (71) with respect to o included in GA’
after a little manipulation, obtain

. . _1
M = GM(TA I)GAG M sani L 2)

The model sensitivity function is obtained by substituting (72) into

(67)

aG

_ -1 ) A -1 -1
YG =  T(I+MT) GM(TA I) o G M(I-T(I+MT) M)y

A e (73)

We can see from (72) that the nearer the T. to I, the smaller the

A
model semsitivity. This is easy to be understood - if I, = L,
the feedbacks of GA in inner loop and outer loop will offset each

other (see Fig.2 when Fl = F2 = I) and the model sensitivity will be

Zero.

(3) Similarly, when only a parameter in K changes, we can find M from

(71),
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: _ -1 3K . -1
M = G(I+KGA KTAGA) o (I-(1 TA)GAG M) .. (74)

The controller sensitivity function YK can be easily found by

substituting (74) into (67) but will be omitted here for brevity.

4.4. The Application of Sensitivity Functions

It is well known that semsitivity plays an important part in
system synthesis. The sensitivity functions have been found in
both matched and mismatched case without difficulty but we suffer
from their complex structure. The structure of the sensitivity
functionlin the multivariable case is much more complex than it is
in single-input/single-output case. Because of this the application
of the sensitivity function has to be carried forward by numerical
method rather than analysis.

If the topic is the investigation of the sensitivity of performance
to one parameter o which is included in plant or model (or controller,
temporal component), regard the corresponding sensitivity function
as a function of s and parameter o: é(s,a). Where s is the complex
variable. We then can obtain the induced norm of the sensitivity
function for a fixed a. The induced norm is of course different for
different-a. The best a, from the sensitivity view-point, is such
a o which makes norm reach their smallest value under the stability
condition. In other words the proper o should tend to minimize the
induced norm of sensitivity function.

Like in theorem 2, suppose that G and G, are rational and strictly

A

proper TFMs, that K is rational and proper and that both T and TA are

3¢ 96y

diagonal matrices of pure time delay, and suppose that o’ Sa ?
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%g s gg are all proper and rational, then the induced norm is as
follows
A .
n = max sup ](Y(s,a))il sz (7.5
l<i<m SE€E R

where  is usual Nyquist contour.

The proper o should tend to minimize the n, i.e. for a series of a,
the best o is the o which make n get their smallest value under the
stability condition.

We here give an example to illustrate the application of the
sensitivity function. The example is to investigate the controller
sensitivity in the matched case. Suppose that the plant components
T and G are the same as in section 3.1 and that the controller is of

form

K = Bee+28 0 -4 ... (76)
s o 1

where AO and A, are as in (29).

1
The parameter which changes is k, i.e. a 'multiple gain'. It is
clear that

oK c -
E = (1 & —S-)AO --'(77)
The controller sensitivity function can be found by substituting (77)

into (66), which is

_ ¢ =1 =1
YK = (1+-§)T(1+GK) GAO(I+GK) Y ...(78)

Choose a unit-impulse function as the input, which Laplace
transformed is (é] i The norm can be calculated according (75) and

is illustrated in Fig.9 as a function of s for a series fixed k.
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It is evident from this graph that the larger the k the smaller the
norm n. So designers should choose k as large as possible under
the stability condition for reducing the sensitivity of performance
to parameter k.

The sensitivity to other parameters or temporal can be evaluated

by the same means.

5. Conclusions

This report has derived the robustness theorem for the extended
Smith scheme. Because the nonunity feedback in the inner loop or
outer loop may lead to some benefits, so the extension of the
robustness theorem is helpful in general,

Some parameter optimality problems are also discussed. The
results indicate that the performance may be imprdved by temporal
mismatch[6] or proper chosen feedback component. Minimization of
the performance index may be one of the criterions for choosing
temporal model TA.

When the feedback in either inner or outer loop is not unity,
the steady state error should be carefully checked even though an
integral_action is included in the controller.

The sensitivity functions for Smith scheme in the multivariable

case have been established in this report, In spite of their complex

structure they can be checked numerically.
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