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Gain estimates for Davison's robust tuning regulator are shown

to be directly computable from plant open-loop step data using low-
order simulation techniques. At no stage of the procedure is a

detailed model of plant dynamics required.

1. INTRODUCTION

The robust tuning regulator originally proposed by Davison [l]
provides a simple but effective way of generating integrating
process controllers without the need to have a detailed model of
the plant available. More precisely, given the m-input/m-ocutput

stable multivariable plant described by the state-space model

%(t) Ax (t) + Bu(t)

Ex (L) £1)

I

y(t)
n
in R , the integrating unity negative output feedback controller
with transfer function matrix

K(s) = G (o) § (2)

will stabilize the plant, reject constant disturbances and track
step set-point changes for gains € in some (non-empty) range

o <eg < e* provided that G(o) is nonsingular. The matrix G(o) can
be computed directly from the plant transfer function matrix

G(s) = C(sI—A)“lB (if available) or estimated from plant step data
by G(o) = Y(») where Y(t) is the mxm plant step response matrix
with elements Yij(t) equal to the response from zero initial condi-

tions of the output yi(t) to a unit step input in uj(t}.

Davison's original technique usad only minimal plant informa-



tion in the form of the steady state data G(o) = Y(»x) and as a
consequence the actual choice of ¢ (and estimation of e*) must
be left to the on-line tuning stage. It is impossible to estimate
g* without incorporating more plant information! It is the pur-
pose of this note to extend Davison's original procedure to

* *
generate a lower bound €, > o of ¢ by the application of simula-
tion based data analysis techniques to the plant step data Y(t)
similar to those described by the authors in ref [2] using appro-
ximate models of the plant step response characteristics. Although
models of arbitrary desired complexity could be used [2], attention
is focussed entirely onlthe simplest case to retain the spirit of
Davison's work and to produce computational algorithms that can be
implemented successfully on only limited computing facilities.
The availability of an estimate e; < s* could be of considerable
value at the tuning stage in providing an initial gain range
0 < g < €; in which stability is ensured and in putting the com-

missioning engineer 'in the right ball-park'.

2. GAIN ESTIMATES FROM SIMULATION DATA

The control design philosophy described in ref [2] is to
design the controls on the basis of a simple, low-order approxi-
mate stable plant model GA(s) in such a manner that the resultant
controller is guaranteed to stabilize the real plant. The basic

result i% summarized as follows:

Lemma 1 (Theorem 4 in [2]): Let GA have step response matrix

YA(t) and define the 'modelling error', t > o,

B =y -y, 2 M@, 2™ w] 3

with columns E{j){t), 1 <3 < m. Suppose that K stabilizes GA and



that simulations are undertaken to reliably calculate the matrix

A pedd) (m)
W) = [ (e), e, W ] « E2e (4)

A

where W;j)(t) is the response from zero initial conditions of the
system (I + K GA)—lK to the input wvector E(j)(t). Then the con-
troller K will stabilize the real plant G if

(i) GK is both stabilizable and detectable and

(ii) v <1 (5)
where y is any available upper bound for r(Nz(WA)).
(Remarks: (a) r(M) denotes the spectral radius of the matrix M,

(b) N (

[ee)

th
WA) denotes the matrix with (i,3j) element equal
(3)

to the total wvariation [21 of (WA

(t))i, which is
easily computed [2] by graphical analysis of WA(t} and
(¢) note that the stability criterion depends only upon

the step error data E(t) and hence a detailed plant

model is not required for application of the result).

To apply this result to the robust tuning regulator problem,
choose an approximate model of plant dynamics of the form

A . 1
Gy ls) = % diag {l+sTj } 1<j<m B

where GO is a (conveniently structured) nonsingular estimate of the
plant steady state characteristic G(o) and the time constant Tj > 0
is chosen to be representative of the open-loop responses to a unit

step input in channel j. It follows that

_ . ) T
YA(t) = Go diag {(1L - e Ny 4 (7)

@Given a choice of GA' knowledge of Y(t) enables the computation of
E(t) by direct differencing. The following result can then be applied

to characterize a set of permissible tuning regulators:




Theorem l: With the above notation, let

" E(1+sTj)
and
B (t) = G;lE(t) ¢ Bz (9)

Then the unity negative feedback integrating control scheme with

controllexr

K(s) =5 & (10)
s

will stabilize the plant G provided that G(o) is nonsingular,e > o
and

e ()
where Ys is any conveniently computed upper bound for the spectral
radius of Nz(W;) and WZ(t) is the mxm matrix with (i,j)th element
equal to the response of the system hi from zero initial conditions
to the 'normalized' error data E(i;(t), t > o. (Remark: the
assumed controller coincides with Davisons control of equation (2)
if we set GO = G(o)).
Proof: We simply have to verify that the conditions of lemma 1
are satisfied. It is easily verified that K stabilizes GA for all
choices of ¢ » o. Also GK is stabilizable and detectable from the

assumption that the plant is stable and G(o) is nonsingular and the

arguments to be found in Davison rl]. Finally, note that

Ie(s) = diag {hj(s)} Gt (12)

(Im % K(S)GA(s}) L e

and hence that WA is just the response from zero initial conditions

of the system diag {h;(s)}1<j<m to the normalized error E(O)(t).

o

This completes the proof.




In practical terms the result provides, for a given value of

¢ > o, an off-line means of checking the stability of the impleﬁented
scheme by using the step data directly and without the need to use

or construct a detailed plant model. The actual computations invel-
ved consist of the normalization operation (9) and m2 simulations

of the second order systems (8). Both operations can easily be under-
taken even with limited computing facilities. The final requirement
is to check the spectral radius condition (11). The best answers
obtainable from the theory are obtained by choosing Ye = r(N:(WA))
but more conservative gestimates can be used to eliminate the need

for eigenvalue calculations e.g., estimates obtained from eigenvalue
estimation theorems such as Gershgorin's theorem.

For any given value of g, the computations described will either
predict stability or will be inconclusive (when Yo > 1). Note however
that condition (11) is automatically satisfied for all small enocugh
positive gains € provided that E(x) is small enough and hence that the

*
theory predicts stability in a non-empty range o < g < €q where

*
Eo =min {g¢ : ¢ > o, YE =1} (13)

*
The actual computation of €, can be undertaken rapidly and efficiently

by elementary search technigques. The implicit requirement that E ()
is 'small' is easily guaranteed by choosing, for example,
GO = G(o) when E(w) = O.

3. ILLUSTRATIVE EXAMPLE

Consider the boiler-furnace system described by Rosenbrock [3}

with transfer function matrix



(1 0.7 0.3 0.2 )
1+4s 1+5s 1+5s 1+5s
G(s) = 0.6 1 0.4 0.35 (14)
1+5s 1+4s 1+5s 1+45s
335 0.4 1 0.6
1+5s 1+5s 1+4s 1+5s
0.2 0.3 0.7 1
1+5s 1+5s 1+5s 1+4s
L J
Noté that G(o) is nonsingular with
( ]
1.75 -1.21 -0.16 0.17
=1
G (o) = |-0.98 1.87 -0.23 -0.32 (15)
-0.32 -0.23 1.87 -0.98
0.17 -0.16 -1.21 L. 75

4

Examination of equation (14) (or its step response matrix) suggests

. 1
the use of the approximate model GA(S) = Tis &G(o) or GO = G(o) and
T, =4.0, 1 <] 5‘4. The corresponding step response error is given
explicitly by
-t/4 —t/5
E(t) = (G(o) - I4)(e - e ) (16)
or, after normalization,
-t/ -t/
5% = 165 - 1,) (e . M (17)
Clearly, we have
+
h?(S) = 5 Blitds) ;3 =1,2,3,4 (18)
J 45 + s + ¢
and hence
WE(e) = (6 o) - 1)y (v)
A 4 ¢e
where
s [
b o) = - (19)

L(452+s+e)(l+55)



Choosing
;o -1
T, =N, () |6 (o) - 14]| (20)

where Nm(ws) is the total variation of we on [o,mﬂ and !|M|| denotes

the norm max E [M,.I of an mxm matrix M, the condition y < 1
lgam 1 P o e
corresponds to the condition Nm(we) 4 l/|IG (o) - 14[] = 0.416, and

*
eo can be computed by finding the smallest e > o such that Nw(ws) =

0.416. The results of a simple numerical search are summarized in
Fig. 1, which shows that e: = 0.78. Choosing € = 0.1, the plant
closed-loop responses to a unit step demand in Y, as shown in Fig. 2
and are seen to be highly acceptable with notably small interaction
effects.
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Fig. 2 Closed-loop response to a unit step demand in yl
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