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Abstract 

A number of recent techno-economic studies have shown that energy storage could offer significant 

benefits to a low-carbon UK energy system as it faces increased challenges in matching supply and 

demand. However, the majority of this work has not investigated the real-world issues affecting the 

widespread deployment of storage. This paper is designed to address this gap by drawing on the 

systems innovation and socio-technical transitions literature to identify some of the most important 

contextual factors which are likely to influence storage deployment. Specifically it uses a 

coevolutionary framework to examine how changes in ecosystems, user practices, business 

strategies, institutions and technologies are creating a new selection environment and potentially 

opening up the energy system to new variations of storage for both electricity and heat. The analysis 

shows how these different dimensions of the energy regime can coevolve in mutually reinforcing 

ways to create alternative pathways for the energy system which in turn have different flexibility 

requirements and imply different roles for storage technologies. Using this framework three 

pathways are developed – user led, decentralised and centralised - which illustrate potential long-

term trajectories for energy storage technologies in a low-carbon energy system. 
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1. Introduction 

The United Kingdom (UK) has committed to reduce its greenhouse gas emissions so that, by 2050, 

emissions are at least 80% below 1990 levels (Great Britain, 2008). This goal will require significant 

changes to the way in which energy is produced and used - including a huge increase in the use of 

renewable energy, a substantial rise in the demand for electricity to provide heat and transport and 

sustained improvements in energy efficiency (HM Government, 2011). Such developments are likely 

to pose significant challenges for the energy system in matching supply and demand, and so could 

create substantial opportunities for the deployment of additional electricity and heat storage. For 

instance, a recent assessment by the Low Carbon Innovation Coordination Group examined the 

value of innovation in energy storage to decarbonising the UK energy system. It concluded that the 

deployment of energy storage technologies has the potential to yield total system cost savings of 

between £2-10 billion over the period to 2050, while creating a market worth between £3 bn and  

£26 bn over the same period (Low Carbon Innovation Coordination Group, 2012).  

 

Currently, most of the energy storage capacity in the UK energy system is provided by stocks of fossil 

fuels. Wilson, McGregor et al. (2010) estimated the electricity that could be generated from UK 

stocks of coal and gas destined for the power sector was around 30 000 GWh and 7 000 GWh 

respectively. In contrast, electricity and heat storage is several orders of magnitude lower. Bulk 

electricity storage - provided by pumped hydroelectric plants – totals only 28 GWh. There are also a 

few smaller electricity storage facilities connected to the distribution system, most of which are 

demonstration projects involving various types of battery. Heat storage is largely distributed and 

mostly at an individual building scale and is either provided by hot water cylinders (installed in 

around 14 million homes, giving a maximum storage capacity of around 80 GWh) or by electrical 

storage heaters (which are the main source of heating in 1.6 million dwellings). A number of district 

heating schemes in the UK also have hot water storage associated with them.  

 

Despite the likely challenges in matching supply and demand in a low-carbon future, storage has not 

been well represented in the majority of future scenarios for the UK energy system (ERP, 2011). As a 

result, there has been little detailed analysis of the potential role of energy storage in helping the UK 

to achieve deep emission reductions or investigation of the range of factors that could impact its 

deployment prospects. To the extent that current scenarios consider energy storage at all, they 

largely focus on the role of bulk, centralised electricity storage, such as pumped hydro-electric 

storage – with little, if any, consideration for heat storage (Committee on Climate Change, 2008; HM 

Government, 2011).  

 

Until recently, most energy storage research has focused on developing a range of technologies with 

different characteristics (Baker, 2008; Chen et al., 2009; Hall and Bain, 2008), rather than examining 

how different storage technologies might operate in a low-carbon context and their value or means 

of integration into energy systems.  In the case of the UK energy system, notable exceptions include 

an early techno-economic analysis by UMIST for the Department of Trade and Industry (DTI, 2004) 

and more recent work on the role of storage by Grünewald et al. (2011) and Wilson et al. (2011). 

One of the few studies to look at the broader regulatory and policy issues is (ERP, 2011). 

 

However, over the last year there has been a growing interest in the role that energy storage could 

play in a low-carbon energy system. A recent major techno-economic analysis commissioned by the 
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Carbon Trust (Strbac et al., 2012b) concluded that energy storage technologies could have significant 

value to a low-carbon UK energy system, particularly one with a large contribution of renewable 

generation. Furthermore it found that distributed storage could offer higher value to the electricity 

system than bulk storage, due to distribution network savings.  

 

However, energy storage is not the only solution to meeting the challenges posed by a low-carbon 

energy system. Back-up fossil generation capacity, interconnectors and flexible demand, amongst 

others, can also play a role. The competition and interaction between these alternative balancing 

technologies has been explored in a recent report (Strbac et al., 2012a) for the Department of 

Energy and Climate Change (DECC). This study found that the efficient amount of distributed storage 

is highly sensitive to its cost and the level of demand side response in the system; on the other hand 

it is not sensitive to the level of interconnection and flexible generation. 

 

These recent modelling analyses take a ‘whole systems’ perspective and assume a perfectly 

competitive electricity market. They therefore do not take into account many of the real-world 

issues which affect storage deployment, such as the structure of electricity markets and regulations 

and the interaction of users with domestic scale storage applications.  Some of these issues are 

explored by Grünewald et al. (2012) through combining stakeholder interviews and socio-technical 

transitions theory.  They find that distributed electricity storage currently faces a number of 

challenges associated with technology lock-in and path dependency resulting from poor alignment 

of the current regulatory regimes governing generation, networks and consumption with the 

requirements for storage.  

 

Our paper builds on, and extends, the arguments presented by Grünewald et al. (2012) by bringing a 

comprehensive whole systems understanding of the factors that impact energy storage, including 

the role of technology, institutions, business practices and users. This is achieved by using a 

coevolutionary framework (Foxon, 2011) to integrate these different dimensions into a number of 

long-term pathways for both electricity and heat storage, so identifying future opportunities and 

challenges for this group of technologies. In Section 2 we outline this framework, which is based on 

insights from the innovation studies and socio-technical transitions literatures, and explain how we 

have applied it to examine energy storage in the UK. Section 3 then reviews the key contextual 

factors that are likely to influence storage deployment in the transition to a low-carbon energy 

system, drawing on the output of a workshop which included key industry stakeholders, academics 

and policy-makers. Following this, Section 4 presents our illustrative pathways for energy storage in 

the UK, which are based on different forms of coevolutionary interaction between technology, 

institutions, business practices and users.  Section 5 then analyses the energy storage pathways in 

more detail, highlighting potential risks that may lead to ‘branching points’ (Foxon et al., 2013) along 

the pathways. Finally, in Section 6 we present our conclusions, including some implications of our 

findings for policy.   

 

2. Analytical framework and methods 

In this section we draw from the extensive literature on system innovation and socio-technical 

transitions to frame and analyse prospective energy storage pathways. A key motivation in doing so 

was to move beyond much of the existing analysis which tends to treat storage as individual 

technologies with little consideration of how different applications might operate in a wider energy 
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system context, and to try to capture the wider social and institutional factors which might influence 

storage in a low-carbon energy future. 

 

2.1 A systems perspective on energy storage deployment 

Innovation processes in large scale systems such as energy supply have a different character than 

conventional product based sectors. The complex and interconnected nature of infrastructure and 

its public good character means that a wide range of actors and institutions - including government, 

regulators, and lobby groups - influence technical change in these sectors. In our analysis of energy 

storage innovation and deployment we must therefore look beyond the traditional producer-user 

relationships. While cost and performance of technologies are of course important, the institutional 

environment, governance structures and the willingness of users to engage with new technologies 

will be a key factor in influencing which innovations emerge and the degree to which they are 

deployed across a system.  

 

Recognising this, recent studies which adopt a socio-technical transitions perspective have 

emphasised that the diffusion of individual technologies, such as energy storage, cannot be 

considered in isolation, but rather occur in the context of a wider system or regime (Foxon et al., 

2005; Verbong and Geels, 2007). Regimes are composed of ‘(networks of) actors (individuals, firms, 

and other organisations, collective actors) and institutions (societal and technical norms, regulations, 

standards of good practice) as well as material artefacts and knowledge’ (Markard et al., 2012: 

p.956) and provide structure and stability to large scale and complex socio-technical systems. 

Transitions theory argues that regimes act as strong selection environments for a variety of 

technologies and practices, those which align well are likely to be adopted whereas technologies and 

practices which do not are likely to be confined to niche applications. (Geels, 2002, 2004; Raven, 

2005).  

 

The initial stages of regime formation will likely have a great bearing on the subsequent processes of 

technical change. Unruh (2000) argues that dominant designs, such as centralised electricity storage, 

emerge following a period of variation when many competing technologies operate in the market. 

Typically, during this ‘era of ferment’, significant cost and performance improvements are achieved 

as technologies vie for market position; the outcome of innovation processes is therefore highly 

uncertain. In early urban electricity systems, for example, a number of small scale battery 

applications were deployed in an effort to improve the load factor of small scale urban direct current 

(DC) systems (Hughes, 1983; Schallenberg, 1981). However, innovations in long distance 

transmission technology followed and centralised pumped hydro-electric storage emerged as the 

dominant design.  

 

The transitions and innovation systems literature argues that over time incumbent regimes benefit 

from increasing returns to scale and adaptation, along with positive learning effects (Arthur, 1989; 

Arthur, 1994; Foxon, 2003; Unruh, 2000). For the case of infrastructure based technologies there is 

also a strong network effect as technologies that fit in with the overall system architecture are likely 

to benefit. Pumped storage, for example, benefited in the emerging centralised regime structure, 

partly because it operates at the same scale as centralised generation. This points to the fact that 

storage deployment is particularly dependent on developments in the wider energy system 

(Grünewald et al., 2012). As such, it can be regarded as a system-dependent technology, which 
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unlike innovation in power generation or demand-side practices, will not be the motive force behind 

an energy transition, but can enable or constrain alternative low-carbon transition pathways. As 

regimes develop, there is a risk that ‘apparently inferior designs can become locked-in through a 

path-dependent process in which timing, strategy and historic circumstance, as much as optimality, 

determine the winner’ (Unruh, 2000: p. 820). This raises the potential that energy storage 

technologies which could help to reduce the overall system costs of the low-carbon transition over 

the longer-term may become locked-out as they are not commercially viable under current market 

arrangements.  

 

2.2 A coevolutionary framework 

It is likely that established technologies such as pumped storage will continue to have an important 

role in future low-carbon energy systems. However, there is significant uncertainty as to the role 

that other electrical and heat storage applications will play as they are currently are at an early stage 

in the innovation chain and may only operate in niche contexts e.g. research and development 

(R&D) programmes and demonstration projects. As the UK moves towards a low-carbon energy 

system it is likely that the transition will not only involve dramatic changes in the technical 

architecture of energy systems but also in governance structures, institutional arrangements and 

actor networks which support the reliable delivery of energy services to end customers.   

 

In developing a more systematic understanding of how a low-carbon energy regime might emerge 

we now consider in more depth the driving forces behind system change and the key contextual 

factors which are likely to influence storage deployment. Here we draw from Foxon (2011) who 

presents a coevolutionary framework on energy system transitions, identifying five dimensions – 

technologies, ecosystems, institutions, business strategies and user practices - which coevolve, 

through mutual causal influences, to shape alternative transition pathways (Figure 1). Foxon draws 

from socio-technical systems approaches but is critical of the representation of regimes as 

monolithic entities which provide ‘overly structural explanations’ of system change. Foxon’s 

framework allows us to open up regimes to consider the role of different actors and sub-system 

processes.  

 

The framework has already been deployed to analyse transition pathways towards a low-carbon 

energy system in the UK, exploring alternative governance models involving market, government 

and civil society actors (Foxon, 2013). As part of our pathway analysis in the next section we have 

adapted this framework to look at the implications of a broader system transition for a specific 

component technology, electrical and heat storage. Figure 1 points to the possibility of multiple 

pathways for energy storage which emerge as these system dimensions change and coevolve, 

creating new causal interactions in the system, altering selection criteria and creating new 

opportunities for actors to influence system change (Foxon, 2013). A key question we explore is how 

these system dimensions are likely to change in the future and how this might alter the selection 

environment for different energy storage technologies in the longer term. Drawing on Foxon (2011), 

the key components of the pathways are outlined below and in the following section we explore 

these pathway dimensions and how they are changing in the context of the low-carbon energy 

transition. 
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Figure 1: A coevolutionary framework for energy storage 

 
 Source: Extended from (Foxon, 2011) 

 

 Technologies are ‘methods and designs for transforming matter, energy and information from one 

state to another in pursuit of a goal or goals’ (p.2262): Here we must consider the range of potential 

electrical and heat storage technologies in the context of the changing technical architecture of the 

system, in particular if large amounts of variable renewables are connected.  

 Ecological systems are defined as ‘systems of natural flows and interactions that maintain and 

enhance living systems’ (p.2262): As outlined in the introduction, the UK has legally enshrined 

emissions reductions targets and as part of our pathway analysis in the next sections it is presumed 

that each of our pathways meet these targets. 

 Institutions: ‘ways of structuring human interactions’ including ‘regulatory frameworks, property 

rights and standard modes of business organisation’ (p.2262). In our analysis we explore the 

changing structure of electricity markets in the UK as increasing amounts of low-carbon generation 

are connected to the system.  

 Business strategies refer to ‘the means and processes by which firms organise their activities so as to 

fulfil their socio-economic purposes’ (p.2262). In the UK electricity storage is currently largely used 

to provide short-term operating reserve and other balancing services. The extent to which storage 

might deliver services to other markets and the role of new business models in facilitating storage 

deployment is explored.  

 User practices are ‘routinised, culturally embedded patterns of behaviour relating to fulfilling human 

needs and wants’ (p.2263). As discussed above, pumped storage has become the dominant mode of 

storage and as such users have little direct interaction. However, if electricity systems become more 

decentralised and users become producers as well as customers small scale storage applications may 

become part of a user-led system transition. Public perceptions and the interaction between users 

and storage devices will therefore influence future pathways.  

 

2.3 Methods 

Drawing on  Foxon’s iterative method of socio-technical pathway development (Foxon, 2013), our 

analysis of energy storage pathways for the UK was conducted as a three stage process. Firstly a 

team of energy storage technology experts from the Universities of Leeds, Sheffield and Birmingham 

reviewed key storage technologies, selecting and documenting their characteristics, so enabling an 

investigation of their potential roles in a low-carbon energy system. As part of this process, a set of 
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technology ‘fact-sheets’ were produced (available for download1) containing information on the 

technical and economic performance of each application (cycle efficiency, energy cost, duration, 

power capacity capital cost), along with their current status in terms of R&D and progress along the 

innovation chain. Also, during this initial phase, outline energy storage pathways were developed 

which were basic versions of the centralised, decentralised and user-led pathways presented in 

Section 4 of this paper. The initial pathways were constructed using a step-wise approach. First, a 

narrative for the wider developments in the energy system was proposed based on how a low-

carbon system might develop at different scales. Secondly, the implications of these developments 

for balancing the grid and network constraints were considered. Lastly, a pathway for the 

development of energy storage was postulated as a solution to the issues identified in the first two 

steps, explicitly considering the coevolution of technologies, institutions, user practices and business 

strategies.  

 

The second phase of the study consisted of a workshop which was primarily designed to provide a 

more detailed qualitative understanding of energy storage in a wider system context and to develop 

further our pathways drawing on insights from the attendees. The outline pathways were presented 

at the introduction to the workshop in order to guide the discussion which went on to focus on 

specific areas such as the structure of the electricity markets in the UK, the changing role of energy 

users and public perceptions of low-carbon technologies, the energy storage innovation system in 

the UK and internationally and the energy system challenges of decarbonisation. In all there were 29 

attendees at the workshop including members of the core project team, along with prominent 

academics in the field, representatives from the energy industry, government, local authorities, and 

trade bodies.   

 

The final step in the process was to review and analyse the outcomes of the workshop based on the 

notes taken by project team members. These were used as a basis to refine the description of the 

selection environment for energy storage (Section 3) and further develop the outline pathways 

(Section 4) and the discussion of them (Section 5). The main results were also presented in a report 

for the Centre for Low Carbon Futures (Taylor et al., 2012).  

 

3. A changing selection environment for energy storage in the UK 

As discussed in the section above, the contextual factors which influence storage deployment are 

likely to change dramatically as the UK moves towards a low-carbon future. In the sub-sections 

below we analyse this by discussing in more depth how the dimensions of the coevolutionary 

framework outlined above are changing as part of the ongoing and prospective energy system 

transition. 

 

3.1 Technologies 

3.1.1 Context of the energy system transition 

Substantial reductions in greenhouse gas emissions will require massive changes in the way that the 

UK supplies and uses energy. Scenarios produced by the Government in its Carbon Plan (HM 

Government, 2011) show that the share of fossil fuel use in the primary fuel mix is expected to fall 

                                                           
1
 http://lowcarbonfutures.org/pathways-energy-storage-uk   

http://lowcarbonfutures.org/pathways-energy-storage-uk
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from around 90% today to between 13% and 43% by 2050. In contrast, the share of renewable 

energy could increase to between 36% and 46% from a level of less than 4% today. Even by 2030 the 

energy mix could look quite different, with fossil fuels accounting for less than two-thirds of the 

primary fuel mix and renewables for more than a quarter. A second major trend is the greater use of 

electricity – particularly to provide heat and transport. The proportion of electricity in total final 

demand is currently around 18%, but under the Carbon Plan scenarios this share increases to 

between 25% and 31% by 2030 and between 33% and 44% by 2050. All scenarios also show a 

substantial increase in energy efficiency. 

 

Much of the storage capability of the energy system is currently provided by fossil fuels. However, 

with the share of these declining and a much greater use of renewable energy as a primary energy 

carrier and electricity as a secondary carrier, there is likely to be a greater emphasis on the potential 

for directly storing electricity and heat. The precise role that energy storage will play will be 

impacted by developments right across the energy system (Table 1).  

 

Table 1: The impacts of selected energy system developments on the market for energy storage 

Development Electrical energy storage Heat energy storage 

More variable 

renewable energy 

Positive for all scales and for both 

power and energy storage 

Could be positive if used with combined 

heat and power as a buffer between 

electricity and heat 

Widespread 

electrification of heat 

Could be positive – particularly at 

macro and meso-scale (system 

operator and distribution network 

operators managing demand) 

Positive at micro-scale (combined with 

heat pumps), but less so at meso-scale 

(less market for district heating) 

Significant introduction 

of plug-in hybrid and all-

electric vehicles 

Uncertain – could provide additional 

opportunities or compete for some 

services 

Little impact 

Availability of low cost 

and flexible fossil fuel 

generation 

Negative for macro-level reserve and 

response functions 

Negative for macro-scale inter-seasonal 

storage 

Increased combined 

heat and power (CHP) 

and district heating 

Negative for meso and micro-scale 

storage 

Positive for macro and meso-scale 

storage, but negative for micro-storage 

at household level (unless combined 

with micro-CHP) 

Increased demand for 

space cooling 

Positive if can help smooth demand Positive for systems that combine 

heating and cooling  

Greater interconnection 

with mainland Europe 

Uncertain – depending on relative 

electricity prices 

Little impact 

Increased demand-side 

flexibility 

Generally negative – although 

opportunities to contribute to 

increased flexibility at household level 

May contribute to increased flexibility 

 

Note: This table combines findings from a variety of published studies and the outcomes of the workshop 

described in Section 2. “Positive” indicates a situtaion that is likely to create opportunities for additional 

electricity or heat storage, whereas “negative” is used for developments that could reduce opportunities for 

the deployment of the technologies. 

Source: Adapted from Taylor et al. (2012) 
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3.1.2 Energy Storage Technologies 

These changes in the wider energy system are likely to create new challenges for system balancing 

and energy security, potentially creating new windows of opportunity for storage technologies. 

There are many different technologies that can provide heat or electrical storage at different stages 

of maturity and with a wide range of technical characteristics (Chen et al., 2009; Díaz-González et al., 

2012; Evans et al., 2012; Fernandes et al., 2012; Hadjipaschalis et al., 2009). It is unlikely that a single 

solution will emerge in the near (or perhaps even distant) future given the wide variations in 

possible applications (Hall, 2008).  

 

An ideal electrical storage technology would be cheap, have high cycle efficiency, high energy and 

power density and a long lifetime, while being environmentally benign. A combination of these six 

attributes does not yet exist in a single solution, but instead different electrical storage systems are 

more or less suited to different application ranges (Figure 2).  To date the push towards electrical 

storage is mostly from companies wishing to provide load levelling and frequency response 

correction with higher power/energy, centralised systems. Pumped storage and compressed air 

energy storage are both commercial technologies that can provide long-term large scale storage and 

may be joined by flow batteries, hydrogen and cryogenic energy storage in the longer term (Strbac 

et al., 2012b). Current research efforts on these technologies include examining new redox flow 

battery technologies (to lower costs), reducing the cost and improving the durability of hydrogen 

fuel cells and extending the operating range and usability of cryogenic energy storage. Where fast 

response is required then flywheels are currently commercially available, but supercapacitors also 

offer interesting prospects, including the longer-term possibility of significantly larger power devices.  

 

Figure 2: Suitability of different electrical energy storage technologies for grid-scale applications 

 
Source: Taylor et al. (2012) 
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There is also growing interest in decentralised, or distributed, electricity storage that may bring 

additional benefits. For these applications, a wide variety of battery technologies may have a role to 

play, of which lead-acid and nickel and sodium-sulphur are most likely near term choices, with 

metal-air holding longer-term promise. For the smaller and scalable technologies – such as batteries, 

fuel cells, supercapacitors and flywheels – demand from the transport industry is spurring parallel 

research efforts, which should reduce the time to commercialisation and increase the rate of 

technical developments. Key research areas include extending the useful operating life of all battery 

storage systems and developing more accurate state of charge and state of health prediction 

algorithms, as well as improving the safety of high temperature molten metal batteries and 

investigating newer battery chemistries, such as sodium-ion (reducing dependence on lithium 

resources) and lithium-air (which has a very high energy density).  The use of second-life lithium-ion 

batteries could also be an interesting option if electric and hybrid electric vehicles start to take 

significant market share. 

 

In comparison to electrical storage, heat storage technologies have been the focus of much less 

research. The characteristics of thermal energy storage can be defined in terms of capacity, power, 

efficiency, storage period, charge/discharge time and cost (ETSAP and IRENA, 2012). Hot water 

tanks, utilising sensible heat2, are a fully commercial technology from the scale of individual 

households to district heating schemes. Larger storage volumes and longer storage periods (up to 

months) can be achieved by storing hot (or cold) water underground. These storage technologies are 

technically feasible, but the actual application is still limited because of their high investment costs. 

Sensible heat energy storage has the advantage of being relatively cheap, but the energy density is 

low and the efficiency can be low due to heat losses. To overcome those disadvantages a variety of 

phase change materials are being explored for thermal energy storage applications, either in 

containers as a standalone store or included in building materials. Thermochemical storage is 

another option with the advantages of high energy storage density and, in principle, no thermal 

energy losses even for long storage periods. The economics of this approach are still uncertain, but 

there should be the potential for R&D to improve performance and to reduce costs through mass 

production.  

 

3.2 Ecosystems 

Concerns over the impact of greenhouse gas emissions on ecological systems are one of the main 

drivers that could create opportunities for further energy storage, while a wider variety of 

environmental impacts associated with storage may also be a factor influencing technology 

selection.  

 

The desire of many countries to substantially decarbonise their energy systems is driven by concerns 

over the effects of greenhouse gas emissions from fossil fuel combustion on the climate and 

consequent deleterious impact on ecosystems. Reducing fossil fuel use, with its inherent capacity for 

storing energy, is likely to increase the opportunities for electricity and heat storage. In addition, 

most energy storage technologies emit very little or no greenhouse gas emissions during use, the 

main exception being some types of compressed air energy storage that involve fossil-fuel 

                                                           
2
 Sensible heat is the energy released or absorbed by a material as a result of a change in its temperature. 
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combustion. There is therefore a (potential) correlation between the level of greenhouse gas 

emissions reductions, the share of fossil fuels and the opportunities for energy storage. 

 

The broader environmental impact of energy storage technologies is highly variable, although most 

are considered relatively benign in comparison to the impacts from fossil fuel electricity generation. 

Amongst electrical energy storage technologies, cryogenic energy storage is unique in that it can 

provide environmental benefits by removing contaminants in the air and CO2 capture during the 

charging process. A number of the chemical-based electrical storage mechanisms have potentially 

high environmental impacts dependent on their exact chemical composition – there can be dozens 

of subtypes for a single technology. However, it is hoped that through improvements in recycling 

processes toxic waste can be reduced. Some concerns have been recently expressed over the safety 

of high temperature sodium-sulphur batteries. Other considerations are the impact on landscapes of 

pumped storage systems, and the negative effect on human health associated with strong magnetic 

fields such as in superconducting magnetic energy storage. 

 

For thermal energy storage, the most significant potential environmental impacts are from 

underground systems, which may pose risks to the ground water system if not managed properly 

(Bonte et al., 2011).  

 

3.3 Institutions 

As has been outlined, pumped storage plays a limited but important role in the current electricity 

system, particularly at peak times. There is approximately 2,800 MW of capacity on the system 

which can be called upon for a range of services including ‘peak demand levelling, fast reserve, … 

emergency grid restart services’ (Postnote, 2008). In order to understand the role that storage plays 

in the current system and its prospective role in a low-carbon energy system it is important to have 

an overview of the structure of energy markets and how they are changing. 

 

The Great Britain (GB) high voltage transmission network is divided into three parts, all owned by 

publicly listed companies: the two Scottish networks are owned by Scottish Power and Scottish and 

Southern while in England and Wales the network is owned by National Grid who, as System 

Operator (SO), is also responsible for ensuring that there is sufficient capacity on the system to meet 

demand. Although electricity suppliers are incentivised to procure adequate capacity to meet 

demand on an ongoing basis, (predominantly through bilateral trading between the retail and 

generation divisions of the large suppliers), the SO intervenes at ‘Gate Closure’- one hour before 

each trading period – to ensure that there is a continuous balance between supply and demand. 

From this point forward a ‘Balancing Mechanism’ operates where National Grid purchases the 

required balancing services which can be storage, generation, demand flexibility or interconnector 

capacity (Taylor et al., 2012) from a range of registered providers including storage operators. This 

market structure is illustrated in Figure 3.  
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Figure 3: The British Electricity Trading Arrangements 

 
Source: National Grid (2011a) – © National Grid plc, all rights reserved. 

 

Although there is adequate capacity currently on the system to deal with imbalances, in the medium 

and long term future, as existing coal-plants are retired due to environmental constraints and 

increasing levels of renewables are connected to the system, new challenges will be faced by the 

system operator. National Grid estimate that in a scenario with 25 GW of wind generation 

connected to the transmission networks by 2020, operating at a 30% load factor, the SO will need to 

increase its operating reserve requirement from the current 4 GW to somewhere in the region of 7 

GW (National Grid, 2011b). In theory this will include increasing levels of demand response, 

interconnector capacity, gas-fired back-up generation and storage. As Table 2 illustrates, it is likely 

that a mix of these solutions will be required, as they each possess different systems attributes. 

 

Recent proposals for Electricity Market Reform (EMR) made by DECC have recognised the need for 

policy change to reflect the greater levels of reserve and response that will be required in a low-

carbon electricity system. A capacity mechanism has been proposed which will introduce a new 

capacity market to incentivise investment in generation, storage, interconnection, demand side 

response3. As discussed above, these solutions can be called upon by National Grid to maintain 

system security, particularly at peak periods. As part of the proposed market the required volume of 

capacity will be determined centrally by the SO and participants in the market will compete in 

periodic auctions to win contracts to provide services and receive payments.  

 

                                                           
3
 EMR consists of a number of proposed changes that are designed to enable large-scale investment in low-

carbon generation capacity in the UK and deliver security of supply, in a cost-effective way. At the time of 

writing, these proposals are being considered by Parliament and so still could be subject to change. Along with 

the capacity market, the changes include long term contracts for low-carbon generation and a guaranteed 

carbon price floor to 2030 which are designed to provide long term certainty to investors in low-carbon 

generation. 
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Table 2: Advantages and disadvantages of different sources of system flexibility 

Source of system 

flexibility 

Advantages Disadvantages 

Storage  A diverse set of technologies that 

provide multiple system-wide 

services 

 Can be deployed at all scales of 

the system 

 Ability to provide fast response 

and two-way arbitrage 

 Many storage applications are 

unproven and at an early stage in the 

innovation chain 

 Lack of certainty over revenue 

streams  

 Regulatory barriers 

Interconnection  Proven technology which 

facilitates market integration 

with the EU 

 Ability to provide two-way 

arbitrage 

 

 Relies on a price differential between 

markets 

 Similar weather systems can affect 

neighbouring markets 

 Lack of certainty over revenue 

streams and regulatory barriers 

Demand Response  Less capital intensive than other 

solutions 

 Can offset investment in network 

capacity and improve utilisation 

of generation 

 Typically relies on human response, 

so potentially less reliable than 

technology based solutions 

 Market is immature and the potential 

for and costs of domestic scale 

demand response is unproven 

Backup generation  A proven technology and 

operating in a positive 

investment climate 

 Potentially high and variable cost of 

natural gas  

 Contributes to CO2 emissions 

 

Note: This table combines findings from a variety of published studies and the outcomes of the workshop 

described in Section 2 

Source: Adapted from Taylor et al. (2012) 

 

The main reason for introducing a capacity mechanism is that as old fossil fuel generating plant 

come off stream over the next decade there will be a tightening of capacity margins which, although 

currently adequate at approximately 16%, are projected to decline to somewhere in the region of 

10% or below by the end of the 2010s (DECC, 2011a). In the liberalised market structure prices alone 

have been relied upon to provide signals to investors and this has been sufficient to deliver 

significant levels of new gas-fired generating capacity which serves as the system marginal plant. 

However, as increasing levels of renewable plant is connected to the system over the coming 

decades, it is likely that the load factors of gas generation will decrease, becoming a potential barrier 

to investment and a threat to energy security. Recognising that competitive auction processes tend 

to favour incumbent technologies, the Government is proposing transitional arrangements which it 

hopes will better enable the participation of demand response and smaller scale storage in the 

capacity mechanism. Nevertheless, the extent to which the new arrangements might open a window 

of opportunity for increased storage capacity on the system is still uncertain. 

 

Developments in the heat market are also likely to have a significant impact on the role and nature 

of energy storage in a low-carbon energy system. In the UK energy system approximately 81% of 

domestic space heating is met by gas-fired boilers with renewable heating accounting for only 1%. In 
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the medium and long term future this is likely to change dramatically as by 2020 it is expected that 

12% of the UK’s heat demand will be from renewables, and by 2050 there will be near total 

decarbonisation of emissions from buildings and a 70% reduction in industry emissions (DECC, 2012). 

The market for low-carbon heat in the UK is currently at an early stage of development; however in 

recent years there has been some growth with a 17% increase in renewable sources in 2010 which 

was primarily biomass and heat pumps in new builds (DECC, 2012). In an effort to stimulate 

deployment the government has begun to introduce a subsidy scheme for renewable heat called the 

Renewable Heat Incentive (RHI) on a phased basis beginning with the non-domestic sector and near 

commercial technologies, with phase II supporting domestic technologies (DECC, 2011b)4. DECC’s 

recently published heat strategy (DECC, 2012) also highlights the potentially significant role that 

district heating could play in a low-carbon future, particularly in densely populated urban areas. 

Analysis in DECC’s 2009 Heat and Energy Saving Strategy showed that CHP and district heating (CHP-

DH) investments in areas with a heat density above 3000 kW/km2 could be commercially viable and 

potentially supply 5.5 million properties (DECC, 2009), however there are significant economic and 

institutional barriers to be overcome if the UK is to develop district heating to a similar degree as 

Nordic countries, for example.  

 

Perhaps due to the early stage of development of the low-carbon heat market in the UK there has 

been relatively little discussion of the potential role of heat storage in this context. However there is 

a recognition that as the capability to store energy in the form of natural gas in the grid becomes 

diminished, there will need to be new ways of finding flexibility (DECC, 2012). This may be in the 

form of storage at the site of demand as part of more intelligent heating controls which help to even 

out daily or inter-seasonal demand fluctuations. Lessons can be learned from more mature heat 

markets such as Denmark where thermal storage is being used in conjunction with CHP-DH systems, 

allowing CHP operators to engage in arbitrage by generating excess electricity during peak periods 

and storing it for subsequent distribution during periods of peak heat demand (Toke and Fragaki, 

2008). As the Danish system has a high penetration of wind power, during periods of high wind and 

low demand this can help to balance the system and improve the integration of renewables. The 

role of storage in creating these types of synergies between the heat and electricity markets could 

play an important part in the transition towards ‘smart energy systems’ (Lund et al., 2012). 

 

3.4 Business Strategies 

Under the current liberalised market structure, as described above, storage operates in the 

competitive, rather than the regulated monopoly, component of the value chain. This means that 

the revenue stream from storage investment is from its arbitrage value i.e. storing electricity when 

electricity prices are low during off-peak periods and selling it as a system service to the SO during 

peak periods. The value of storage to the system lies in its ability to provide fast response as it can 

be called upon by the SO to meet short term fluctuations during peak periods.  

                                                           
4
 Renewable heating technologies that are to receive support include biomass boilers, solar thermal, energy 

from waste combustion (biomass portion of waste), heating from biogas combustion – gas from waste, ground 

and water source heat pumps, biomethane injection into the gas grid, deep geothermal, renewable district or 

community heating (biomass), renewable CHP, for biomass, biogas and geothermal. Different levels of support 

are to be given based on the technology type and size. 
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As the electricity system is increasingly decarbonised and as the flexibility provided by fossil fuel 

storage and generation is diminished, the system benefits of storage will potentially become much 

more valuable.  As such it is likely that the application of electrical and heat storage can contribute 

to a reduction in the overall system cost of the low-carbon transformation - in terms of investment 

and operation - by; reduced costs of reinforcing the transmission and distribution networks, reduced 

curtailment of renewables, improved asset utilisation and reducing network congestion.  

 

However, under the current market arrangements, where there is strict business separation, or 

unbundling, across the regulated monopoly (transmissions and distribution) and competitive 

(generation and retail) areas of the system, it is difficult to allocate the risks and benefits of 

investment in storage technologies. Similar issues are faced when looking at how to realise value 

from demand response and therefore, from a ‘whole systems perspective’, it is clear that novel 

forms of contractual arrangements and business models are required in order to adequately value 

these new forms of system flexibility which will be increasingly important in a low-carbon context (it 

is arguably the case that the EMR proposal for a capacity mechanism does not fully address this 

issue). A number of proposals have been suggested including the participation of distribution 

network operators (DNOs) in the electricity markets where new arrangements allow them to act as 

distribution system operators (DSOs) similar to a TSO but at a regional/local level, whereby the 

output of decentralised generators, demand response and storage are actively managed in order to 

optimise the operation and planning of distribution networks (see, for example, EDSO (2012)). An 

alternative novel business model arrangement has been proposed by He et al. (2012) where storage 

capacity is sold through repeated auctions during a given time period and returns can be optimised 

either to maximise profits from arbitrage, minimise costs etc.; thus enabling the investor to ‘capture 

the overall value of storage by providing multiple services to the power system’ (p. 1584). In a 

decentralised storage pathway there may be a requirement for aggregators to pool the resources of 

many small scale applications operating in such a market. Developing new business and commercial 

arrangements will be one of the key challenges to the deployment of storage technologies, 

particularly at the distribution network scale where it could potentially have the most significant 

overall system value.  

 

This also has relevance to the heat market in the UK. As it is currently underdeveloped the potential 

value of thermal storage to the system in terms of flexibility and the creation of synergies between 

the electricity and heat supply are not recognised. In the Danish case cited above, where thermal 

storage at CHP plants helps to smooth system peaks and integrate wind power, the presence of 

aggregators who pooled the output of many small CHP units and a tariff structure which paid higher 

prices for CHP electrical output during peak periods enabled investment in thermal stores (Toke and 

Fragaki, 2008). In the event that electrical and heat storage becomes deployed at the domestic scale, 

such a role could potentially be fulfilled by small scale energy service companies (ESCOs) who are 

likely to have a better understanding of end-user practices and routines, and as such effectively 

optimise the potential system benefits. 

 

3.5 User practices 

Here we focus mainly on issues relating to domestic and community-level forms of energy storage, 

given that large-scale, system level issues are considered above. From a domestic and community 
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perspective, large scale energy storage infrastructure may have industrial connotations, regardless 

of benefits to end-consumers. We may assume that equipment out of sight, below ground or low 

level is likely to be preferable to more visible infrastructure that draws attention, but this is only an 

assumption – as in the case of carbon capture and storage, any underground storage perceived as 

presenting a risk, even if slight, may become a focus of objection if there are other, predisposing 

factors (Oltra et al., 2012). Moreover, little positive perception gain should be expected simply as a 

result of the infrastructure facilitating renewable energy use, unless there is close involvement of a 

directly benefitting community. Positive perceptions of community-level infrastructure may be more 

plausible in rural locations with obviously-defined communities, particularly where the community is 

not on a main gas grid or in some other respect energy insecure (Upham and Speakman, 2007). 

Appropriate messaging is important when introducing new energy technology cases and there are 

established principles for this, amongst which trust in the message source is particularly important 

(Brunsting et al., 2011). Conversely, there may be little that can be done to prevent opposition to 

storage infrastructure that people view as imposed on them, or which brings little obvious benefit to 

them. Similarly, siting in aesthetically sensitive locations or more generally where people have strong 

place attachments (Devine-Wright, 2009) will also increase the chance of opposition that may be 

difficult to reduce. 

 

At the small scale of domestic or building-level devices, where homeowners need to live or work 

with a device, commission installation or self-install, then the technology needs to satisfy many of 

the criteria that are normally associated with consumer devices. This should be accounted for at the 

design stage.  Based on experience of consumer uptake of micro-renewables and energy efficiency 

products, affordability, controllability, performance, aesthetics and fit with the domestic or work 

habits will likely be important (Roy et al., 2007). Convincing consumers of this will require the 

development of mature and well-trialled storage technologies, followed by a variety of approaches 

to encouraging uptake. 

 

Measures to encourage uptake are likely to include the precondition of either mandatory energy or 

emissions performance standards for residential buildings, or sufficiently high energy costs. If we 

assume that microgeneration technologies are analogous to domestic storage options, then without 

a strong incentive to install, uptake will likely be low to modest. Experience with domestic-focussed 

feed in tariffs shows the importance of financial subsidies as an enabler for microgeneration 

installation; even where consumers have strong pro-environmental attitudes, without subsidies only 

a minority can or will install (Upham, 2011). Moreover, the consumer will need to be convinced that, 

of the various energy-related options available, storage makes sense as an investment relative to 

other options. As even environmentally conscious consumers find information in this field confusing 

(ibid), this issue of providing accessible information should not be underestimated. Given these 

preconditions, installation may be catalysed through demand stimulation measures, such as 

marketing and promotions in DIY stores and other retail outlets; enhancing market confidence 

through an installer certification scheme; and assistive financing through standard domestic energy 

billing e.g. energy service companies and measures such as zero interest repayment. In general the 

role of government in supporting and under-writing financing would likely be critical. Financing 

support also applies at the level of community-scale energy storage. Community champions and 

ownership/benefits issues are also likely to be important and models and lessons from the 

community wind sector are relevant (e.g. TLT Solicitors, 2007; Walker, 2008).  
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4. Bringing the framework together: Pathways for energy storage 

To explicitly recognise the diversity of energy storage options that may have a role in the UK energy 

system to 2050, this section presents three contrasting socio-technical pathways for the deployment 

of energy storage based on the coevolutionary framework described earlier. In doing so, our 

approach builds on a recent review of low-carbon scenarios which calls for a better understanding of 

the role of different stakeholders and social processes to be built into scenario methodologies 

(Hughes and Strachan, 2010). All the pathways are assumed to be consistent with the UK reducing its 

greenhouse gas emissions by 80% by 2050, from 1990 levels, in line with the Government’s target, 

whilst also aiming to achieve energy security and affordability objectives.5 However, each pathway 

has deliberately distinct characteristics and, in practice, some combination of the three pathways is 

probably the most likely outcome. The three pathways are: 

 

• User-led storage: household level heat and electricity storage 

• Decentralised storage: distribution-level electricity storage and community heat storage 

• Centralised storage: large–scale, bulk electricity storage with limited heat storage 

 

We also recognise that the narratives are based on certain assumptions about actor behaviour and 

underlying social processes which in reality are more complex and contested than is presented 

below. The pathways approach, although a simplification, serves as a conceptual tool to explore the 

diverse roles that energy storage technologies might play in a low carbon energy system. Therefore, 

the pathways themselves are for illustrative purposes only and should not be seen a predictions of 

the future.   

 

4.1 User-led storage 

The user-led pathway describes a scenario in which civil society plays a leading role in the 

governance of UK energy systems. This could be because individuals become convinced of the need 

to act on climate change and decide that neither central government nor market actors are likely to 

deliver sufficient action to keep the pathway on track to meet the 80% target. This lack of trust in 

the capacity of dominant industry players to deliver may be accompanied by the emergence of 

strong financial drivers, in which increasing fuel prices drive domestic and community level action.   

 

In this pathway, local bottom-up diversity of solutions flourish, with community leadership providing 

decentralised and microgeneration and energy conservation options (Figure 4). Energy supply 

companies roll-out smart meters and introduce new tariff structures which incentivise demand-side 

management and so individuals become more proactive and aware of their energy use. Associated 

with this trend, a range of microgeneration options including photovoltaic systems, micro-wind 

turbines and heat pumps are more widely deployed from 2015 onwards. Plug-in hybrid electric cars 

become widespread after 2020, followed by a more widespread take-up of electric cars which take 

significant market share from 2030 onward. 

 

                                                           
5
 Since all pathways are assumed to meet the UK’s long-term greenhouse gas emissions reduction target, the 

impacts of alternate developments in the ecosystem dimension are not considered further. 
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Figure 4: Summary of key developments in the user-led pathway 

 
 

2012 

Individuals start to become 

more proactive and aware of 

their energy use. Customers 

begin to invest in heat pumps 

with storage. 

Constraints on the 

urban low voltage 

networks due to the 

clustering of micro 

generation.  

2014: Smart Meter 

Rollout begins 

2020s: Microgeneration 

and EVs diffuse 

An initial uptake of 

EVs and a move 

towards phase change 

material for thermal 

storage 

2030s: Developments in 

V2G technology 

Recharging infrastructure and 

innovations in battery technology 

leads to the mass uptake of V2G 

technology 

  
 

Source: Adapted from Taylor et al. (2012) 

 

However, these developments lead to constraints on the electricity networks during the 2020s, 

particularly on urban low-voltage distribution systems due to the clustering of technologies in 

certain locations. Active consumers see themselves as a resource that can address network 

constraints and help to offset expensive reinforcements. Initially consumers adopt a range of larger 

hot water tanks to act as heat storage for heat pumps. After 2025, the availability of cost-effective 

heat storage using phase change materials increases the heat storage capacity in larger dwellings. 

Vehicle-to-grid technology starts to be deployed from 2020 onwards to allow PHEV car batteries to 

be used for frequency stabilisation and other response services. After 2030, the trend in vehicle-to-

grid (V2G) technology accelerates as the recharging infrastructure is put in place with larger 

batteries in electric cars used as a more significant source of electricity storage. Some consumers 

also invest in battery storage units (including second-life batteries from PHEVs and EVs) to help 

smooth output from microgeneration systems and to act as a buffer between the grid and electric 

vehicle charging (thus avoiding peak electricity prices).  

 

4.2 Decentralised storage 

Under a decentralised pathway, meso-scale community and city based energy provision become a 

much more prominent feature of the UK energy system. This is driven by a localism agenda, which 

sees local authorities and local energy companies, or ESCOs, as best able to respond to the needs of 

customers and to address issues such as rising fuel poverty due to the costs of decarbonisation. This 

is incentivised by a significant uptake of the Feed-in Tariff, Renewable Heat Incentive and Green Deal 

schemes, which are coordinated initially by innovative local authorities and later this best practice 

spreads across the country. Once again, this leads to constraints on the medium and low voltage 

distribution networks due to voltage control and balancing issues and two-way flows.  

 

Around 2015, it starts to become apparent that the uptake of electric heat pumps will not be as 

significant as originally thought due to a combination of technical issues, including the lack of space 

in many homes for significant heat storage (Figure 5). Meanwhile, technical advances in smart grid 
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technologies and regulatory changes help DNOs take a more active role, blurring the distinction 

between transmission and distribution. By 2020 DSOs become key actors in the electricity system, 

taking over much of the system operator role within their regions currently carried out by National 

Grid. At the same time, central and local government provide incentives for the development of 

district heating systems in urban areas and energy companies become much more involved in 

delivering heat as well as electricity. 

 

Both electricity and heat providers develop innovative business models and evolve into ESCOs. 

Initially, the development and expansion of city-wide district heating schemes in a number of UK 

cities sees the use of thermal storage with combined heat and power, allowing operators to optimise 

their plant. As DNOs begin to actively manage their systems they utilise this to help manage 

constraints. During the 2020s, following the success of the regulator’s innovation initiative, the Low 

Carbon Networks Fund and its successor in trialling a range of innovative electrical storage 

technologies – including lead-acid, nickel and sodium-sulphur batteries – innovative DNOs begin to 

integrate storage into their networks and reduce costs. This is facilitated by a new regulatory regime, 

which rewards innovation as a means of more effectively managing distribution networks with a 

range of decentralised technologies. During the 2030s, as best practice spreads across the sector, 

the development of smart grids gathers pace across the UK. This sees DSOs emerging as the key 

actors, enabling them to act as a platform for markets for decentralised energy services, e.g. storage 

provision.  

 

Figure 5: Summary of key developments in the decentralised pathway 

 

 
Source: Adapted from Taylor et al. (2012) 

 

4.3 Centralised storage 

Under the centralised storage pathway, the current ‘predict and provide’ philosophy of energy 

system planning and operation prevails. The transition to a low-carbon energy system is enabled by 

government providing the policy framework, within which private companies operate in a 

competitive market. This corresponds to the twin beliefs that only central government has the 

authority to drive the energy system to decarbonise at the rate necessary, and that the market is the 

most efficient way of delivering the outcomes according to the targets that have been set.  
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This pathway favours large-scale electricity generation with a rapid expansion of wind generation, 

particularly offshore, in order to meet the 2020 target of 15% of all energy produced from 

renewables (Figure 6). Facilitated by the introduction of a new capacity mechanism under the 

Electricity Market Reform, some new investments take place in pumped storage, for example at 

former small scale hydro plants in Scotland and there is some deployment of flywheels for frequency 

stabilisation. 

 

The central role for National Grid as SO in balancing the grid remains as today and although the 

capacity of pumped storage increases, it retains a relatively small but important role in the 

management of the energy system. During the 2020s and 2030s, as CCS and new nuclear come on 

stream, there is little need for large-scale investment in pumped storage. However, some trials of 

compressed air storage, underground storage, cryogenic energy storage and redox flow batteries 

receive R&D funding and there is interest in hydrogen as a longer-term option.  

 

Figure 6: Summary of key developments in the centralised pathway 

 
Source: Adapted from Taylor et al. (2012) 
 

5. Discussion of the pathways in the context of the coevolutionary framework  

The pathways described in the previous section have been constructed to explore three different 

scales – micro, meso and macro - at which energy storage may play a role in a low-carbon energy 

system. The technologies, business strategies, institutions and user practices that coevolve under 

each of these pathways are summarised in Table 3. 

 

The following discussion highlights the coevolutionary processes that are most relevant under each 

of the pathways. We also give some consideration to ‘branching points’6 in order to identify some of 

the key risks associated with the pathways. Policy responses that can help mitigate these risks are 

                                                           
6
 A branching point is a point at which internal or external stresses, stimuli or triggers mean that key actors 

make choices that will determine whether a particular pathway is followed or not (Foxon, Pearson et al. 2013). 
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also described i.e. what actions should be taken now in order to help realise a particular pathway 

and/or mitigate against risks and/or make the pathways more resilient? 

 

In the user-led pathway, electricity and heat storage are deployed at a building level as part of a 

trend which sees consumers take a much greater interest in, and control over, the supply of their 

own energy. Such a scenario would require technology developments in micro-level energy storage 

to co-evolve with user practices that embrace such technologies.  Initially, the storage technologies 

could be relatively simple, such as large hot water tanks, but later would develop into more complex 

devices including advanced heat storage and battery systems and smart battery management.  A 

virtuous circle could therefore be created by demand from consumers leading to new technology 

developments so stimulating further increases in demand for storage technologies. Such 

developments would be supported by innovative institutional arrangements and business strategies, 

such as time of day pricing of electricity and “aggregators” who trade in the electricity market on 

behalf of customers. 

 

Table 3: Summary of the pathway characteristics 

Pathway Storage 

Technologies 

Deployed 

Business Strategies The role of users in 

the pathway 

Institutional 

changes required 

to facilitate 

pathway 

User-Led 

Domestic level 

thermal storage 

and V2G 

Innovative retail 

companies engage 

with customers 

Active customers 

participate in and  

drive the energy 

transition  

New tariff 

structures facilitate 

active customers 

and DSM 

Decentralised 

Thermal and 

electricity storage 

embedded on the 

distribution grids 

 

DNOs and 

innovative local 

authorities are key 

actors in system 

transformation 

 

Users have a more 

passive role.  

Less uptake of 

DSM and micro 

generation 

Changes to 

regulations to 

facilitate DSOs 

Centralised 

Large scale 

pumped storage on 

the transmission 

grid 

 

Some new 

investments by 

Scottish companies  

Passive users. 

Sector is dominated 

by the ‘big six’  

EMR capacity 

mechanism 

stimulates some 

storage 

investments 

 

Source: Adapted from Taylor et al. (2012) 

 

A major risk associated with this pathway is that consumer take-up of energy storage technologies 

falters after the first phase of early adopters, due to a lack of interest in, or low acceptance of, the 

technologies amongst the broader public. Such a lack of engagement by consumers could lead to the 

pathway being limited in its ability to deliver emissions savings from households or even failing 

completely, possibly with the result that a branching point is created onto one of the other 

pathways. The implications of such developments could therefore be that energy storage 

technologies fail to play a major role in the future UK energy system, or that decentralised or 

centralised storage technologies become the dominant form. Mitigating the risk of this pathway 

failing would therefore include strategies to subsidise and help to build confidence in the installation 
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of storage technologies, using measures such as zero interest repayment plans and installer 

certification schemes as described in Section 3.5.  

 

In the decentralised pathway, a localism agenda sees community and city-based energy provision 

become a much more prominent feature of the UK energy system, with local authorities, local 

energy companies and energy service companies all playing an active role.  At the heart of this 

pathway is the coevolution of institutional structures and business strategies, which provide 

incentives for the more active involvement of DNOs in managing their distribution networks and 

alliances of local authorities and energy service companies to roll-out a greater level of community-

based heating. Successful early demonstration of the business case for this approach would be 

crucial in ensuring its widespread adoption. This would also need to be supported by developments 

in storage technologies, such as large-scale battery and heat storage systems, including underground 

systems. Engaging consumers, while less significant than in the user-led pathway, could also be 

important in the case of public acceptance of heat provision from community-based schemes.  

 

An important risk to this pathway could be that the business case is not universally recognised and 

as a result a piecemeal approach develops, with some cities and local energy companies embracing 

the concepts, while other areas lag behind. This could lead to a situation where smart grids, which 

incorporate dynamic energy flows and utilise storage technologies, develop in a fragmented fashion 

and only in a small number of areas of the system. This lack of a national smart grid roll-out strategy 

could in turn lead to national emission reduction targets coming under threat due to a failure to 

cope with a more complex and decentralised energy system in an intelligent and efficient manner 

(Bolton and Foxon, 2011; Foxon et al., 2013). One possible response would then be a branching to 

the centralised storage pathway if central government decided that it needed to take more control 

to ensure that the targets were reached. These risks could be minimised by ensuring that storage 

technologies form an integral part of LCN fund trials and ensuring that the next price control review, 

due in 2015, provides incentives for DNOs to actively manage their networks through procuring 

third-party services, such as storage and demand-side management.  In addition, local authorities 

could be encouraged to identify the most appropriate role for district heating in their area and 

support its deployment. This could be through a combination of activities including heat mapping, 

energy planning, encouraging co-location of potential heat customers and suppliers and offer 

brokering services, providing planning support and guidance and prioritising cost-effective 

deployment in their own building stock. 

 

The centralised pathway can be seen as representing a natural development of the current energy 

system, but is dependent on an institutional structure that provides the necessary incentives to 

encourage investment in large-scale low-carbon generation and storage coevolving with businesses 

strategies that respond to those incentives. Most of the centralised storage technologies that are 

deployed initially in this scenario are already commercially available, although further R&D would be 

needed to ensure that less mature designs are available post 2030. The involvement of users is much 

less than in the other two pathways.  

 

A potential risk to this pathway concerns the attractiveness to investors of the electricity market 

arrangements. The pathway could come under significant threat if, after a few years, it becomes 

apparent that due to poor design, the electricity market reform fails to provide strong enough 
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investment signals for large-scale low-carbon technologies and so the pace of electricity 

decarbonisation is too slow. This could result in greater intervention by the government to shore-up 

the pathway by issuing long term contracts for defined amounts of low-carbon capacity, with 

centralised storage becoming part of that portfolio. Alternatively, the pathway could fail to deliver 

centralised storage, with new natural gas plant built to meet the looming supply-demand gap and to 

provide back-up generation. This may mean that carbon targets are missed, but security of supply is 

maintained. 

The key risk mitigation strategy for this pathway is to ensure that the design of the EMR provides an 

environment conducive to low-carbon investment and this could include elements such as a credible 

approach to underwriting the contracts for differences, setting the carbon price floor at an 

appropriate level and ensuring the capacity mechanism provides a level playing field for demand-

side, storage and back-up fossil generation options. 

 

6. Conclusions  

The storage of electricity and heat has the potential to play a much more significant role in matching 

supply and demand in a future decarbonised UK energy system than has been the case while fossil-

fuels dominated. Drawing on insights from the system innovation and socio-technical transitions 

literatures, we have utilised a framework based on coevolutionary thinking (Foxon, 2011) to analyse 

how changes in ecosystems, user practices, business strategies, institutions and technical systems 

are creating a new selection environment and potentially opening up the energy system to new 

variations of storage for electricity and heat. These dimensions of the energy regime, we argue, will 

coevolve in mutually reinforcing ways to create alternative pathways for the energy system which in 

turn have different flexibility requirements and imply different roles for storage technologies beyond 

the current centralised pumped storage dominant design. Using this framework we analysed the 

contextual factors which might influence the deployment of storage technologies in the UK and 

developed three pathways – user led, decentralised and centralised - which illustrate potential long-

term trajectories for this set of technologies in a low-carbon energy system.  

 

This analysis illustrates that the overall development of the UK energy system will be key in 

determining the need and role for energy storage. Increased electricity generation from variable 

renewable sources, such as wind, combined with the electrification of heat in homes are two 

important factors likely to drive the deployment of energy storage. Other energy system 

characteristics that will impact on energy storage (either positively or negatively) include the 

penetration of plug-in hybrid and all-electric vehicles; the availability of cheap and flexible fossil-fuel 

generation; the extent of combined heat and power and district heating; the demand for space 

cooling; the extent of electricity interconnection with other countries; and the degree of demand-

side response. 

 

There are many different technologies for heat or electrical storage at different stages of maturity 

and with a wide range of characteristics. The types of energy storage technologies that are 

ultimately most successful will have strong bearing on the pathway that is followed. At the moment 

large-scale electricity storage technologies are most prevalent amongst the commercial technologies 

and this may lead to a lock-in to a centralised pathway unless more R&D is spent on the 

decentralised and user-level alternatives, including advanced heat storage.  
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Energy storage currently faces a number of significant barriers relating to institutional arrangements 

and business practices. A number of studies have shown how storage can bring benefits across the 

electricity system, but also highlight that currently it may be too expensive for any discrete part of 

the value chain to realise a sufficient return on investment. In addition, the regulatory arrangements 

in the UK separate network and generation activities so that transmission and distribution operators 

cannot own energy storage facilities and use them in the trading environment. Finally, storage may 

offer greatest value to the system when placed closest to the source of demand. However, capturing 

this value will require new institutional and business arrangements. 

 

Public attitudes towards energy storage could be crucial in determining the future deployment of 

energy storage, but to date little or no work has been undertaken in this area. While macro-scale 

storage is likely to be viewed in a similar way to other industrial installations, micro-storage will 

probably need to satisfy many of the criteria that are normally associated with consumer devices. 

Affordability, controllability, performance, aesthetics and fit with the domestic or work habits will 

therefore all be important. Without a strong incentive to install, evidence from other technologies 

suggests that uptake is likely to be low to modest.  

 

We believe this type of qualitative analysis provides a useful complement to the recent quantitative 

modelling studies that have looked at the value of energy storage to a low-carbon energy system 

(Grünewald et al., 2011; Strbac et al., 2012a; Strbac et al., 2012b; Wilson et al., 2011). The 

coevolutionary framework and pathways approach has allowed us to explore storage in its wider 

system context and to analyse how different storage technologies, as part of a suite of solutions 

incorporating demand response, interconnection and back-up plant, could contribute to delivering 

flexibility in a low-carbon energy system. Taking a long-term pathways perspective has illustrated 

the potential risk of lock-in to sub-optimal pathways if policy makers and regulators develop 

strategies based solely on current market conditions. Many promising storage technologies are 

currently at an early phase of the innovation chain and if their potential value to the energy system 

is to be realised, long-term strategies need to be put in place which create pathways to deployment.  

 

Our approach of course has its limitations as these are outline pathways which require significant in-

depth further analysis. Firstly, the pathways presented are for illustrative purposes and are idealised 

simplifications of a complex reality. A next step would be to analyse how these pathways are 

unfolding in real-time, potentially focusing on the emerging synergies and tensions. Secondly, we 

have pointed to the fact that there has been little or no published research into the interaction of 

domestic end-users with storage technologies and public perceptions of both centralised and 

decentralised applications. Finally, the energy system implications and economic costs of our 

pathways could be interrogated in more depth using formal modelling to complement our 

qualitative insights.  
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