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INTRODUCTION

Closed-loop control system designs are frequently based on the
use of a simplified model either because the available model is regarded
as being too complex for design work or because an accurate plant model
is not available. 2n approximate model can be of arbitrary dynamic com-
plexity. However, it is desirable that the model is of low order with the
consequent benefits of reduced computational requirements and the possi-
bility of achieving simple designs to form the basis for further refine-
ment and understanding.

The purpose of this report is to make a numerical study of a number
of single-input/single-output systems usiné recent results developed by
the authors (Owens and Chotai, 1983) with the objectives of

(i) assessing the wvalidity of 'standard' first and second order

differential-delay plant models for design,

{ii) assessing the conservatism of the approach and the effect of

the choice of model by plotting

(a) the predicted and actual stability regions in parameter plane,

(b} confidence bands on the systems frequency response and

(1ii) assessing the success of the technique in predicting standard
Ziegler-Nichols design conditions despite the modelling errors,
(iv) noting the improvement made possible by the use of the Smith
Predictor scheme.
For this report the standard models used for approximate plant

dynamics are taken to be

a

i First : g s = i

(i) First order model GA(S} s ( )
aa o F

v -y . 2 B s = .2

(ii) First order model with delay GA(S) T (1.2)

(iii) Second order model: GA(S) B : (1.3)

s +bs+c



ae_ST (1.4)

(iv) Second order model with delay: GA(s) :
s +bs+c
where the choice of the parameters a,b,c,T and T are undertaken by simple
graphical operations on plant step data.
The controller considered is taken to be of the P+I form
{1.5)

K(s) = k, + k2

1 /s
with performance objectives that
(a) the closed-loop systeﬁ is asymptotically stable, with typical
transient characteristics, such as < 10% overshoot and response
speed increased by 2-3 times.
(b) asymptotic tracking of step input.
(¢) the attainment of standard damping characteristics.
Numerous examples, varying from a third order to 9th order are studied
using both time-domain and frequency-domain techniques introduced by

owens and Chotai (1983). The basic ideas are outlined in section 2.

2 BACKGROUND THEORY

2.1 Problem: The problem considered here is the design of the proper, rational
forward path controller K in Fig. 2.1 for the stable plant G in the presence
of the proper, rational measurement dynamics F. All elements are assumed
to be continuous and linear and it is assumed that the detailed dynamics of
the plant G are unknow, but that the response Y(t) of the plant from zero
initial conditions to a unit step input at t = o is available.

Given the data ¥ (t), an approximate model GA of the real plant G-is
constructed by analytical or graphical curve fitting to the transient data
¥(t) or by model reduction. The (stable) response YA(t) of GA from zero
initial conditions to a unit step input at t = o can be obtained by simu-
lation. The control system K can now be designed, by any means at the
designers disposal, to ensure the required stability and transient per-
formance from the approximating feedback system of Fig. 2.2. The problem

considered is how the modelling error



E(t) = ¥(t) - YA(t) (2.1}

can be used to ensure the simultaneous stability and acceptable performance

of the real systems Fig. 2.1.

Frequency-domain stability response (see [l])

If X stabilises the model GA(S), it will also stabilise the real plant

G(s) if:

(a) the composite system GKF is both controllabe and observable,

and
A
(b) X = sup y(s) < 1 (2.2)
o)
seD
where v (s) is any conveinent real valued function satisfying
v(8) > | (14e, ($IK(SIF () " R(S)F(S) [Als) (2.3)

for all s ¢ D
A(s) is any available function satisfying
6(s) > |G(s)- G (s)| for all s e D (2.4)
and D is the usual Nyguist contour in the complex plane.
The result given above has a useful grahpical interpretation similar
to that of the inverse Nyquist array technique [2—5] as follows:
Expression (2.2) can be replaced by the two conditions:

(i) The inequality

. K(s)F(s) I
Lim sup A(s) <1 (2.5)
Re & > B 14G, (S)K(s)F(s) |

ISI 3 00

is satisfied and

(ii) the 'confidence band' generated by plotting the inverse Nyquist
locus of GA(S)K(s)f{s) for s = iw, w > o with superimposed
‘confidence circle' at each point of radius

r(iw) 2 |G;l(iw)| Aliw) (2.6)

does not contain or touch the (-1,0) peint of the complex plane.
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.3

Choice of A (s)

There are many choices of A(s), the detail and complexity of A(s)
reflecting the degree of plant information that is to be used in design.
In this report we will assume that only the plant step response ¥(t) is
available and that information about the modelling error, (E(t)), inte-
grated modelling error (Z(t)), and derivative of modelling error (é(t))
can be obtained.

It can be shown I:l] that

|G(s) - GA(s)]_i QD(E) for all Re s > © (2.7)
where, for every function £, Nm(f) is the norxrm of f defined by the total

variation

n*(T)
A #H . ; L (2.8)
N, (£) & sup ( £(0) + ] |f(tn) - f(tn*l}l + If(T)—f(tn)I)
n=1
where o = to < tl < t2 .... are the local maxima and minima of £ and
*
n (T) is the largest integer satisfying tn < T.
Also, 1-6] .
|G(s)"GA(s)| < E(w) + |s|N (2) for all Re s > o ! (2.9)
= 1N .
where Z is an integrated modelling error defined by
t
z(t) & [ (E(t") - E(=))at’ (2.10)
o

1f the derivative E = dE/dt is continuoué on Eé, + ©) then we can also
deduce that

]G(sl - GA(S)] f_ls|_le(E) for all Re s > o (2.11)
For our purpose, the best choice of A(s) is obtained by combining (2.7)
(2.9) and (2.11) and setting

4(s) = min(N_(E) ,E(=) + [s] Nm(Z),]sl_le(E)) (2.12)

Time-domain stability result (see DJ)

Suppose that the controller K stabilises the model GA(S) and that the
response WA(t} of the systems (1 + KFGA)_lKF from zero initial conditions

to the demand input E(t) has been computed. Then the controller K will
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stabilise the real plant G if:

(a) the composite system GKF is controllable and observable, and

(b) the following inequality holds:

Nn(WA) = L . (2+13)
Output Performance Assessment (see Eﬂ)
The output feedback response y(t) of the real system Fig. 2.1 from
the zero initial conditions to the unit step demand satisfies the bound
it N (W )
(L). A
|y(t%y'}?tﬂ < e(t) = T7§%€l%FT—' max |n(t")] (2.14)
) t A" o<t'<t
where
(1) _ y .
v (t) = yA(t) +mik) & £ >0 (2.15)

yA(t) is the response of the approximate systems, (Fig. 2.2) from the zero

initial conditions to the unit step demand, and n(t) is the response of

the system (1+ KFGA)-lK (1 - FH) to the error E(t) and H is given by
-1
H= (1 + G KF K 2.16
L n ) GA ( )
Input Performance Assessment (see Eﬂ)
The input response u(t) of the real system Fig. 2.1 from the zero
initial conditions to the unit step demand satisfies the bound
N (W )
luer- o P o)< ey 2 i"tEﬁ_%ﬁ-T— max |E(t")| (2.17)
t A o<t'<t
where
(1) :

u () = uA(t) # E(E) t>o (2.18)
uA(t) is the input response of the scheme (Fig. 2.2) to a step input demand
and E£(t) is the response of (l+ KFGA)ﬂlKF to the input WA{t).

SMITH PREDICTOR SCHEME

Consider the single-input/single-output, linear plant expressed in

S
the separable form GT, where the element T = e T represents an output

delay and the element G represents strictly proper delay-free dynamics.
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The destabilizing effect of the delay T can be offset with a considerable
improvement in performance by the use of the Smith Predictor scheme illus-
trated in Fig. 3.1, (Marshall, 1979 [7], Owens and Raya, 1982 [8]) where

K represents a delay free controller (for this report K is given by (1.5)),
-sT

and GA and TA = e - represent models of G and T respectively. It is

well-known that this scheme can be represented in the standard feedback

Fd

form of Fig. 3.2 where the forward path controller

*

K (s) = K
1 +KG - KG T (3.1}
A A A
and the transfer function is given by
KGT .
(3.2)

1 + K + K(GT - G_.T
1+ GA ( n A)

The mismatch term GT - GAT between the plant and model can be a serious

source of stability and performance problems especially when GT is struc-
turally and parametrically uncertain. When G = GA and T = TA' the Smith
control scheme (see Fig. 3.3) is equivalent to the approximate system of

Fig. 2.2 except that the output is delayed.

Stability and Performance of Smith Predictor Scheme

The results of sections 2.3 and 2.4 are valid for the Smith control

scheme with G - GA replaced by GT - GATA' F(s) = 1 and noting that

E (3.3}

Hence stability and performance degradation can be analysed for Smith
control scheme in the presence of mismatch using approximation ideas
intreduced by Owens and Chotai [i].

CHOICE OF PARAMETERS IN SIMPLE MODELS

Tn this section we will discuss simple procedures for choosing the

parameters in the specified simple approximate plant models given the step
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4,2

response (Y(t)) of the real system to a unit step from zero initial
conditions. The techniques involve only simple graphical operations on YiE .
They are no 'opimal' in any sense but later examples verify that even these
rough and ready methods can lead to successful designs.

First-order Models

Consider the model given by

A

1 + Ts. ol

GA(S) =

The parameter A will be chosen to match the steady-state value of the
real plant response Y(t), that is

A= Iim G(s) = lim Y(t) (4.2)
S0 oo

and the time constant T will be roughly estimated as the time taken for
v(t) to reach 60% of its steady-state value.
v(T) = 60% of steady-state value (4.3)

If 'A' is chosen to satisfy (4.2), then

3
Y(T) = T X A (4.4)
First-order Models with Delay
Consider the model of the form
ST
. _Ae
bA(S) l+Tls (4.5)

The parameter A will be chosen as in section 4.1. The time-delay T will
be chosen by graphical means e.g. by visual assessment of ¥Y(t) or by rough

and ready numerical procedures such as choosing T to satisfy

v(1) = 10% of steady-~state value (4.6)

The time constant will then be taken as Tl = T - 7, where T will be found

using (4.3).



4.3 Second-order Models

For under-damped systems, the second-order model of the form

GA(S)=2 _ T>0,0<g<1 (4.7)
s + 2gwns + w
will be chosen. Here, we have
7 — Time delay
g - Damping ratio
w = Natural frequency
A - Steady-state value
The parameters A and p are chosen as in section 4.2. The damping ratio

g is calculated from Em

2%
1-£7) o< E <1 (4.8)

maximum % overshoot of Y (t) = 100 e
(see Fig. 4.1)

The natural frequency w, is obtained either by matching the first
peak of the step response or using settling band arguments. The peak
overshoot for a unit step input Y(t) occurs when

T

£ == ' (4.9)
F o o B

n

From (4.9)

m
o = = . (4.10)
2
= (e, =1) (1- L

Alternatively, for + 5% settling band, with a settling time, ts, we
could choose

3 (4.11)

W=
n (tS — ) E

(Remark: The parameters W and ¢ can be obtained by other means but for

the purpose of this report we will use (4.8) and (4.10) or (4.11) . They

have the advantage of simplicity yet still enable successful designs to

be obtained).
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EXAMPLE 1
Suppose that a single—input/single—output plant has an (unknown)

transfer function

G(s) = L (5.1)

(s+1)3

and that plant Step tests yield the step response Y(t) illustrated in

Fig. 5.1. Four different models of the form
1

a
@ G6) = 5T G2
-0.7s
e
(b) G};(S) = m‘ (5.3)
(c) G;(s) = —21—— (5.4)
25“+3s+1
-0.5s
R R (5.5)
Iy 2
2s +3s+1

were fitted with step responses denoted by Y;(t), Yi(t),Y:(t) and Yg(t)
respectively. (see Figs: 5.2, 5.3, 5.4 and 5.5).
(Remark: The models (a) and (b) were obtained by using the methods of
sections 4.1 and 4.2 and models (c¢) and (d) were obtained by trial and
error visual curve fitting).
. . a b o) d

The modelling error functions E (t), E (t), E (t) and E (t) are

shown in Fig. 5.6 and using (2.8) it was found that

0. 36

N_(E%) = 0.57, Nm(Eb)

0.25  N_(E°)=0.16

]

N_(E)
showing that the modelling error (represented by the total variation)
reduces with complexity of the models.

A proportional-plus-integral controller of the form K(s) =}{l+s_%(2
was used with F(s) = 1. The stability region deduced from the frequency

domain technique is shown in Fig. 5.7 for all four models together with
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the stability regions of the actual plant. It is evident from Fig. 5.7
that conservatism decreases as model complexity increases, also that all
models are good for predicting gains kl and k., for standard closed-loop

2

damping ( g= %ﬂ conditions (see Appendix A), but none of the models can
predict the Ziigler—Nichois tuning points.. (see appendix B).

Since the radii of the confidence circles are 'proporticnal' to
the total variation of the modelling error, they decrease in width as the
complexity of the model is increased and this is shown in Fig. 5.8 for
‘kl = 1 and’k, = 0.5. |

So far we have only used information about the total variation of
the modelling error to bound ]G(s) - GA(S)I. Using inforﬁation about
integrated modelling error and derivative of modelling error (i.e. using
(2.12) ,

A(s) = min (N (E), E(w) + |s| N (@), |s|™" n (@)
o o o
a better bound can be obtained and this is illustrated in Figs. 5.9 and 5.10
for models (a) and (c¢). It is clear from Fig. 5.11 that by using (2.12)
for A(s), the frequency-domain method permits slightly higher gains.

The stability regions deduced from the time-domain technique are
illustrated in Fig. 5.12 for all four models together with the actual
stability region of the real plant. From Fig. 5.12 we observe that all
models are good for predicting gains kl and k2 for standard damping of
the system, that model (d) can also predict both P and P + I, Ziegler-
Nichols tuning points and that model (c) --can describe the P Ziegler-

Nichols tuning point. From Fig. 5.13 and comparing Figs. 5.7 and 5.12, it
is clear that the time-domain method is less conservative than the

frequency-domain technique. Other examples will strengthen this observation.

Taking k; = 1.0 and k., = 0.5 as before, it was found that

2
a b
Nw(WA) = 0.68 i Nm(WA) = 0.50
c d
N = - = F
m(WA) 0.36 7 Nm(WA) 0.26



= AT

The correction term n(t) and the error bound €(t) depend on the choice
of approximate model GA(S),lthe better the model, the smaller the wvalue
of n(t) and e(t). These facts are illustrated in Fig. 5.14 and Fig. 5415y
For all four models, bounds y(l) + ¢ together with y and i are
illustrated in Figs. 5.16, 5.17, 5.18 and 5.19.
Using model (d) and setting controller K(s) to the P+I Ziegler-
Nichols tuning point (i.e.‘kl = 3.6 and k2 =1.2), it was found that
N (Wi) = 0.54. The closed-loop responses y and ¥a are shown in Fig. 5.20
indicating that controller gains are probably too high, since the res-
ponses are very oscillatory.

Finally consider the above example in a Smith Predictor context when

we use a delay-lag model of the form (b). More precisely,

1
G(s) = (5+1) + Tis) =1
and
‘ -0.7s
Gals) = 15 s+ Tal®) =¢

The stability regions deduced from the time-domain technique using the
Smith predictor scheme and standard feedback scheme are shown in Fig. 5.21,
indicating that the Smith scheme permits higher gains and mismatch can
have benefits in stabilizability. Using the Smith Predictor scheme with
controller K(s) = 1.0 +,s—10.5, the response WA(t) was computed to be as

in Fig. 5.22 and g?aphical analysis of this response leads to the con-
clusion that Nm{WA)= 0.39 < 1, hence verifying the stability predictions.
The correction term n(t) is shown in Fig. 5.23 and bounds th) t e

together with y and YA' are illustrated in Fig. 5.24, where y is the output
response of the mismatched Smith control scheme of Fig. 3.1 and YA is the

output response of the ideal Smith scheme of Big. 3.3,

Summary and Discussion

The above example has demonstrated the following results on control

system design using approach developed by the authors DJ.
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(1) By using very simple models ((a) -(d)), a highly satisfactory

design can be achieved. 1In fact all four models can predict standard
damping design conditions.

(2) The predicted stability regions increase as the complexity of the
model increases.

(3) Conservatism and the total wvariation Nm(E) decrease as the complexity
of the model increases.

(4) Although the model (a) verifies the stability prediction for the
controller K(s) = 1.0 + 5_10.5, it gives large error bounds (maximum of
40% error) which are not regarded as acceptabie in this report. For the
purpose of this report error bound < 25% are regarded as ideal. The model
(b) gives a maximum error bound of 15% < 25%, hence yielding a satisfactory
design.

(5) The time-domain method is better than the frequency-domain method in
the sense that it permits higher gains to be used for a given model.

(6) For the delay-lag model, the Smith predictor scheme gives much
better performance than a standard feedback scheme and increases the
stability margin in the sense that it permits higher control gain to

be used.

(7) Although only model (d) can predict the P + I Ziegler-Nichols tuning
point, the maximum % overshoot obtained by this setting is 72% (which is
unacceptable as, for this report, the maximum % overshoot permitted is
(arbitrarily) set at 10%) which is greater than 10% and hence design is

unsatisfactory and the controller gains are too high.
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EXAMPLE 2

Consider a process with transfer function

1

(s+l)6

G(s) = (6.1)

with step response Y shown in Fig. 6.1 (a). Using the technique of Section

4.1 the first-order model of the form

1
1+5.9s

GA(S) = (6.2)

was fitted, with step response Y k6 again illustrated in Fig. 6.1 (a) and

A
the error E = Y-YA shown in Fig. 6.1(b). The total wvariation, Nm(E) was
found to be 0.87. Consideration of GA suggests the P+I controller

K(s) = 0.6 + s 0.15 (6.3)
to stabilise GA and produce the acceptable closed-loop characteristic
indicated in Fig. 6.3. This choice clearly satisfies equation (2.5)
and the inverse Nyquist plot of GAKF = GAK with superimposed confidence

circles shown in Fig. 6.2 indicates that the (-1,0) point does not lie

in or on the confidence band. Stability of real plant is hence guaranteed

provided that the controllability and observability condition is satisfied

and this is so for the above plant.

Finally, for comparative purposes, the closed-loop response of the
real feedback scheme is also shown in Fig. 6.3.

Using the time-domain method for the above example, the response
WA(f) was computed to be as in Fig. 6.4 and graphical analysis of this
response leads to the conclusion that Nm(WA) = 0.64 < 1, hence verifying
the stability predictions for the real plant. The correction term n(t)
is shown in Fig. 6.%5.and the error bound e(t) is shown in Fig. 6.6. The

1)

bounds y(a +* eg(t), together with y and.yA, are illustrated in Fig. 6.7.

Although the first-order model of the form (6.2) verifies the stability

"prediction for the P+I controller of the feorm (6.3), it clearly gives

. large error bounds (with a maximum of 38% error) and to. reduce these we



- 14 -
must choose a better model (say) of the delay-lag system

-2.58

e
GA(S) = TS e (6.4)

The open-loop step responses Y and YA are shown in Fig. 6.8 and modelling
error E(t) is illustrate in Fig. 6.9. Using the same controller as before
(equantion (6.3))., the response WA(t) is shown in Fig. 6.10 and graphi;al
analysis of this respénse leads to the conclusion that Nm(WA) = 0.4. The
correction term n(t) is shown in Fig. 6.11 and the improved bound e£(t) is
shwon in Fig. 6.12 indicating that the maximum error is 8%. (compared
with 38%). The bounds y(l) + e, together with y énd y, are illustrated

in Fig. 6.13. The stability regions deduced from the time-domain technique
are illustrated in Fig. 6.14 for both models together with the actual
stability region of the real plant. From Fig. 6.14 it is clear that for
stability purposes, both the models are good for predicting Ziegler-Nichols
tuning points. .

Using the Smith Predictor scheme for the delay-lag model of the form
of (6.4), with the same controller gains as before, it was also found that
NW(WA) = 0.3 and the bound e(t) is shown in Fig. 6.15. The responses ¥r¥,
and y(l) + g are illustrated in Fig. 6.16 for the Smith control scheme and

the maximum error was found be 4% only.

Summary and Discussion:

We make the following observations from the above example.
(1) Again we notice that, by using highly simplified process models, a
successful design can be achieved.
(2) For stability purposes, both models (first-order and first-order
model with delay) can predict the.standard P and P+I Ziegler-Nichols tuning
points. Also note that both models predict the substantial part of the

actual stability region.
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(3) The first-order model verifies the stability prediction for the

i but gives large performance error bounds

controller K(s) = 0.6 +
which are not regarded as acceptable. The error bounds are reduced by

using a better model (i.e. a first-order model with delay).

(4) For the delay-lag model, the Smith Predictor scheme gives much
better performance predictions than a standard feedback scheme in the

sense that it reduces the maximum error bound from 8% to 4%.



Lt

8. 1E+61

eeat
ot
e
e

S eae .,
o

m. Fig. 6.1(a)
. JE+ED [
E

in
50
[y
15
x|
j -y
N
kA
\-
3l
1=

23.8

IE+GG

* Fig. 6.1 (b)



FE

R i e e .

‘,m
g
ot
L OW1
¥
it
e
™
A
By
el

i 5 I 5155 |

Pl Gl

8. E+al

h
o
[y
(]
Y]
[ -
ih
T
Lo
0
i Ini
1
AR

s

1. 2B+ |



e L e
Uit b

Fig. 6.4

e

Fig. 6.5



pan cnngmn O

&

-_¢-W‘

Fig. 6.6

(1)

' +E

b

~E

: /...........,

0 \ o ST

Fig. 6.7



£

I__:.,l
m
-'_
0
L)

JAE+51

Fig. 6.8

¥ig. 6.9



G ZE-E

i
iy
&
m
+
=
:

3
]
i

Yy
ol
NE
+
<=
e
e
Y

v
I

Fig. 6.10

254

N

&

18.9

Fig. 6.11

15.8

N2 BT



-
LR

i
il
m
|
-
peX
b

&

/’-_“_M_-«-u——u-—-—-
. 2 e *
f"--w“.
-"
. B iaa 158 ZB.a 254

Fig. 6.12

(AT T
.o w
en®®

errontruesose T EID

\(1)__ -

Y

e

T

LS.

Fig. 6.13



. 4

T actual stability region

stability region using

stability region using
lst-order model

P+I Ziegler-Nichols

~ tuning point

T i T ¥ 3

=l i1

Fig. 6.14



Figs: 6+l6

Fig. 6.15
y(l}+E
| F E//p,""W””w"”ﬂﬂM:;
=N )
| h'4 -£
5.8 i3.8 5.8 6.8 -



= A6 =

EXAMPLE 3
Suppose that a single-input/single-output system has
transfer function

4
(sz+25+4)(s+1)

G(s) =

Two simple models of the form

= S 1
(@) Gyls) = 937768
and
~-0.6s
b e
(b) GA(S) T 1+s

an (unknown)

(7.1)

{7.2)

(7.3)

. b .
were fitted with step responses denoted by Y;(t) and YA respectively.

(see Figs. 7.1 and 7.2). The modelling error functions E°

are shown in Fig. 7.3 and it was found that

Nm(Ea} 0.72

Nm(Eb} 0.45

(t) and E°(t)

(7.4)

The stability regions deduced from the time-domain technique are illus-

trated in Fig. 7.4 for both models together with the stability region of

the real systems, for the P+I controller of (L.5) with F(s) = 1. From

Fig. 7.4 it is clear that both models predict the substantial part of the

actual stability region.

1f

Taking k 1 and kz = 9,5 dn (L.5), d.e.

ill
K(s)

I

1.0 + 0.5

=}

(7.5)

a b
The responses WA(t) and WA{t) are shown in Fig. 7.5 and it was noticed

that
N (WY) = 0.72
@A
b =
and NW(WAI = 0,62

(7.6)

1
For both models, the performance bounds y( ) + & together with the responses

y and Y, are illustrated in Figs. 7.6 and 7.7. The maximum error bound

using model (a) is 46% and for model (b) is 22%. It is important to note
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that the error bounds can be reduced by decreasing gains or by using a
better mode, but for this report error bounds up to 25% are acceptable,
hence the model (b) yields a satisfactory design.

Design Based on Smith Predictor Scheme

Consider the above example in a Smith Predictor context. More precisely
consider the scalar system with transfer function

4"t , T > 0 (7.7)

T(s)G(s) = 5
(s"+2s+4) (s+1)

and a simple model (Owens and Chotai, 1984, EQ]) having the delay-lag

structure
—S ‘.'
e ‘2
¥ = - -+ . 5
PA(S)GA(S) 1+ s P TR 5T 0.6 (7.8)
_STA
where we identify TA(S) with e . The use of the approximate model (7.8)

to represent the plant (7.7) in unity feedback control has been discussed
in detail in the case of T = o by Owens and Chotai (1983) and in Section 7.
We concentrate here on the general case of T > o and the use of the Smith
control scheme to demonstrate that the permissible errors in the Predictor
scheme can be larger than the errors allowed under normal feedback condi-
tions and to indicate the improvements in input/ocutput performance.

The total variations of E, NwQE) = 0,45 independent of the value of
t > o. Considering initially the case of proportional control K(s) = kq
and using the frequency-domain method it can be verified that

K,

1 545 2 w22 (7:8)

independent of the value of v > o. This should be compared with the
lower maximum gains of kl < 1.32 allowed (Owens and Chotai, 1984) in the
standard feedback configuration in the case of v = o and kl < 0.78
when t = 3.

Turning our attention now to the case of proportional plus integral

control K(s) = kl + s kz.
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Choosing kl = 1.5 to obtain closed-loop fine-constants of 0.4
from the approximating predictor of Fig. 3.3 and k, = 1.0 to obtain

2

reset times of the order of 1.0, the corresponding inverse Nyquist plot
is given in Fig. 7.8 and indicates stability as the (-1,0) point does
notllie in or on the confidence band. This prediction is wverified by
the closed-loop unit step responses given in Fig. 7.9 for the cases of

T =o0 and T = 3, ]

It is known {(Marshall and Salehi, 1982 [ld]) that mismatch of the plant

delay can benefit performance of Smith schemes. The above example also
indicates that overestimation of the plant delay can have benefits in
stabilizability. To demonstrate this,let T and TA now vary independently
and let &1 = Ty ~ T- The plots of Nm(E) against-[A are given in Fig. 7.10

for the cases of T = o0 and t = 3 and indicates that the stability predic-
tions are least conservative by the choice of §1 = &T* = 0.7 aé N _(E) is
minimized for this choice of &t. (overestimation of the delay improves
stability characteristics independent of the length of the plant delay).
Using the time-domain technique with controller K(s) = 1.5 + s_ll.o,
the response WA(t) was computed t§ be as in Fig. 7.11 in the case 7 = 0
and hence NQ(WA)‘: 0.595 < 1., Note that NW(WA) is independent of T as
and
increasing 1 simply delays E and hence WA/has no effect on the total
variation. This verifies the stability predictions of Fig. 3.1 and also
indicates that the time-domain approach is less conservative than the
frequency domain approach and that the Smith scheme permits higher
- gains than the standard feedback-scheme. These observations can be sub-
stantiated in a quantitative way by considering the case of proportional
control K(s) = ky and plotting the contraction constants for the feed-
back contrel and Smith scheme as a function of kl as illustrated in

*
Fig. 7.12. The feedback scheme permits a maximum gain of kl = 1.55 in

*
the case of v = o and kl = 1.02 when T = 3 whilst the Smith scheme permits
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a maximum gain of kl = 3.35 independent of the value of T > c. Choosing

the P+I controller with kl = 1.5 and k2 = 1.0, the deterioration in input

characteristics predicted by uA(t) are obtained by evaluation of E(t),

shown in Fig. 7.13 for t = o. (The g(t) for T = 3 is obtained as a

delayed version). The error bounds on the input are represented graphi-

cally in Figs. 7.14 and 7.15 the cases of 1 = o and T = 3 respectively.
The deterioration in output characteristics predicted by yA(t):

are obtained by evaluation of n(t), given in Fig. 7.16 for the cases of

T =o0 and 1t = 3. The error bounds y(l) +* & , together with y and ¥5

are illustrated in Fig. 7.17 for the cases of T = o, and 1 = 3. DNote

that the perfofmance predicted by the ideal Smith scheme was a reasonable

indicator of the performance to be expected of the implemented scheme.

Summary and Discussion:

The above example has demonstrated the following results.

(1) We note that both models (first-order and first-order model
with delay) predict the substantial part of the actual stability region.
F;r the purpose of this report, the model (b) achieves a successful design
with a maximum error bound of 22% for the controller K(s) = 1.0 + 5“10.5.

(2) The example has again demonstrated that the time-domain approach
is better than the frequency-domain in the sense that it permits higher
gains to be used for a given model.

(3) For the plant (7.7) with model (7.8), the Smith Predictor scheme
gives much better performance than the standard feedback scheme and also
increases the stability margin in the sense that it permits higher control

gains to be used. Also note that stability region is independent of the

~value of delays t > o for the Smith control scheme but for normal feedback

the stability region decrease as the value of T increases.
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EXAMPIE 4

Considexr a plant with transfer function

G(s) = 4 (8.1)

355 + le4 + 3l53 + 2652 + 9s + 3

with step response Y shown in Fig. 8.1. Using the technigue of Section
4.2, the delay-lag model of the form

-1.2s

- e
68 = T 36 (8.2]

was fitted, with step response YA again shown in Fig. 8.1 and the error

E(t) shown in Fig. 8.2. The total variation NW(E) was found to be 1.73.
. -1

Using the frequency domain technique and a P+I controller K(s) =k1+8 k2

with kQ # 0, F(s) = 1 and A(s) = N_(E), the required inequality,
-1 -1 -1
|1+ (e (s)x(s)) 7| > |6, (s)| A(s) = [GA (s)| N_(B) (8.3)

cannot be satisfied as GA(o) =1 and Nm(E} = 1.73. We conclude from this
analysis that the delay-lag model of (8.2) is not accurate enough to
provide a basis for the design of integral controllers using the frequency
domain technique and the error bound A(s) = Nm(E). Clearly, to use
integral actions using the same model we either need to find a better

A(s) or use the time-domain technique.

Using the time-domain method with]cl = 0.25 and,k2 = 0.12, the function
WA(t) was computed to be as in Fig. 8.3 and graphical analysis of this
function leads to the conclusion that Nm(WA) = 0.75 < 1, hence verifying
the stability prediction. The error bounds y(l) + £ together with y and
¥ are illustrated in Fig. 8.4. From this figure it is clear that the
error bounds are toc large (with a maximum of B80% error) and a more
accurate model GA is required for the system of (8.1) if performance

predictions are to be useful.

Using the technique of section 4.3, the second-order model of the form
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o

GA(S) - 0.1225 (8.3)
s” +0.222 + 0.1225

was fitted to the system of (8.1). The step responses Y and YA are
shown in Fig. 8.5 and the error E(t) shown in Fig. 8.6. The total
variation NW(E) was found to be 0.92. Using the same controller as bhefore
(i.e. K(s) = 0.25 + s_lO,lZ), the inverse Nyquist plot of GAKF = GAK with
superimposed confidence circles shown in Fig. 8.7 indicates that the
{(-1,0) point does not be in or on the confidence band. Stability of
real plant is hence guaranteed provided that the controllability and
observability condition is satisfied and this is so for the above
plant.

Finally, the closed-loop responses of the real and the approximate
feedback schemes are shown in Fig. 8.8.

The function WA(t) for the above example is shown in Fig. 8.9 and
it was found that Nm(WA) = 0.44 < 1, hence verifying the stability

predictions for the real plant. The correction term n(t) is shown in

Fig. 8.10 and the errorbound e (t) 4is shown in Fig. 8.11. The bounds
(1)
'S

7

+ g, together with y and Yy ? are illustrated in Fig. 8.12.

summary and Discussion

We make the following observation from the above example.

(1) When the total variation Nw(E) is greater than the steady-state
value of the real plant, the chosen model is not accurate enought to
provide a basis for the design of integral controllers using the
frequency-domain method with A(s) = Nm(E)°

(2) .For non-monotonic stable systems, the first —order or first-
order with delay model may not be accurate enough to achieve a successful
design for the real system and higher order models must be used.

(3) The delay-lag model for the system of (8.1} ; {non-monotonic)

wll
verifies the stability prediction for the controller K(s) = 0.25 + s 0.12



w P s

using the time-domain method. However, it gives large performance
error bounds, (maximum of BO% error), which are not
regarded as acceptable.

(4) The second-order model verifies the stability predictions
for the controller K(s) = 0.25 + s_lo.lZ using both the time-domain
and the frequéncy—domain techniques. The performance error bounds

obtained are small with a maximum error of 10% only.
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EXAMPLE 5

Consider a process with transfer function

Gls) = — 3 (9.1)

(s+1)

with step response Y illustrated in Fig. 9.1. The first-order model of

the form

1 i
1 + 9.5s -

GA(S) =
wag fitted, with step response YA again illustrated in Fig. 9.1 and the
error E(t) =Y - YA shown in Fig.9.2. The total variations N_(E) was
found to be 1.02. Since Ng(E) is greater than the steady-state value
of plant, the above model is not accurate enough to provide a basis for
the design of integral controllers using the standard frequency-domain
technique with A(s) = Nm(E). Using (2.12), i.e.

As) = min (N_(E), E(=) + [g| n_(2, |s|"n @) (9.3)

a better bound on

IG(S} = GA(S)[ can be obtained and this is illustrated in Fig.
9.3. Using j9.3) and the controller

K(s) = 0.3 + 0.09 5 * (9.4)
clearly satisfies equantion (2.5) and
the inverse Nyquist plot of GAKF = GAK with superimposed confidence
circles shown in Fig. 9.4 indicates that the (-1,0) boint does not lie in
or on the confidence band. Closed-loop stability of the real plant is
hence guaranteed as the controllability and observability condition is
satisfied. The closed-loop responses of the real and the approximate
feedback schemes are shown in Fig. 9.5.

The function WA('t) for the above example is shown in Fig. 9.6 and

it was found that Nm{WA) = 0.57 < 1, hence verifying the stability pre-

dictions for the real plant. The correction term n(t) is shown in Fig. 9.7



- 24 -

and the errorbound ¢(t) is shown in Fig. 9.8. The bounds y(l) * e,

together with the responses y and Y, are illustrated in Fig. 9.9.
The delay-lag model of the form

-4 .,0s
e

1.+ B.5s Gl

GA(S) =

was fitted to the systems of (9.1), with step responses Y and YA illus- ;
trated in Fig. 9.10 and the error E(t) illustrated in Fig. 9.11. The
total variation NW(E) was found to be 0.56. Using the time-domain
technigue and the same controller as before (i.e. equation (9.4)), it
was found that Nm(WA)‘= 0.3 (see Fig. 9.12). The correction term n(t)

is shown in Fig. 9.13 and the errorbound eg(t) is shown in Fig. 9.14.

The bounds y(l) + g, rogether with y and ¥ are illustrated in Fig. 9.15

Using the improved frequency-domains technique. (i.e.

A(s) = min (N_(E), E(=) + |s|N_(2) ,]s|_1 N_(£))) and for higher gain
controller
K(s) = 1.0 + s~ 0.3 (9.6)

the inverse Nyquist plot of GAK with superimposed confidence circles
shown in Fig. 9.16 indicates that the (-1,0) point does lie in the con-
fidence band, hence the theory cannot predict the stability of the real
systems. The closed-loop responses of the real and the approximate
standard feedback schemes are shown in Fig. 9.17. From Fig. 9.17 we
noticed that the real system is, in fact, unstable for the controller
(9.6). However using the same controller and the Smith predictor scheme,
the inverse Nyquist plot of GASK (where GAS = IIE%?E ) with superimposed
confidence circles shown in Fig. 9.18 indicates that the (-1,0) point
does not lie in or on the confidence band. Stability of the real system

using the Smith predictor scheme is hence guaranteed with the closed-loop

responses of the real and the approximate systems as shown in Fig. 9109,
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Summary and Discussion

The above example has demonstrated the following results

(1) We note that, by using the first-order model for the system
of (9.1), the total variation Nm(E) is 1.0 2, which is greater than the
steady-state value of the real plant and hence the first-order model is
not accurate enough for the design of integral controllers using the
frequency-domain technique with A(s) = Nm(E}.

(2) By using the improved frequency-domain technique the first-order
model verifies the stability prediction for the controller K(s) = 0.3 +
6.09 shl. The performance error bounds obtained are acceptable with a
maximum of 20% error. This error can be reduced to 7% by using the
delay-lag model of (9.5).

(3) We cannot predict the stability or instability of the real
systems using the delay-lag model and the controller K(s) = 1.0 + 5-10,3
for the standard feedback scheme but stability can be predicted using

this control in a Smith predictor scheme.
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CONCLUSION

The problem of designing a controller for an unknown plant using
simple model so that the closed loop stability, asymptotic tracking of
step input occurs, and also other desirable properties of the controlled
system result such as fast response, < 10% overshoot occurs, is consi-
dered in this report. The design method uses both, the time-domain and
the freguency-domain techniques of Owens and Chotai (1983). The
stability criterion given using the frequency-domain technique has the
same struckture as the INA with the Gershgorin band replaced by the
‘Confidence band'. The time-domain technique can predict the stability
and also can assess the degradation in input and output transient per—
fornamce of the actual system. In this report we have illustrated simple
procedures for choosing the : parameters in the first and second order
differential-delay plant models using techniques involving only simple
graphical operations on the step response ¥(t) of the real system to
a unit step from zero initial conditions. We have studied a number of
single-input/single-output systems and made the following observation.

(1) By using very simple models such as first and second order
differential-delay plant models, it appears that a highly satisfactory
design can be achieved for most monotonic and for large numbers of non-
monotonic stable plants.

{2) The constant measure of modelling error Nm(E) used ~ in this
report is conservative. However, conservatism in N_(E) is no problem,
if we take GA as a design variable. The numerical study has demonstrated
that conservatism in the total wvariation Nm(E) decreases as the complexity
of the model increases.

(3) The study has indicated that in most cases the predicted
stability region using simple models is a substantial part of the actual
stability region and frequentlyincludes the standard design conditions

such ag Ziegler-Nichols tuning points and standard closed-loop damping
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conditions. We also note that the predicted stability regions increase
as the complexity of the model increases and coincide with the actual
stability region when G = GA'

(4) 1In some cases, the performance error bounds obtained for a given
model and controller may be large and unacceptable for the design purpose,
in this case, either the controller gains must be reduced if possible or
the designer must use a better model.

(5) wWhen the total variation Nw(E) is greater than the steady-state
value of the actual plant, the chosen model is not accurate enough to
provide a basis for the design of integral controllers using the frequency-
domain method with A(s) = N;(E). In this case, to use integral action we
must either Find a better A(s), use the time-domain technique or find a
better model so that Nm(E) is less thaﬁ the steady-state value of the
real plant.

(6) The study has shown that the time-domain method is better than
the frequency-domain method in the sense that it permits higher gains to
be used for a given model.

(7) For a differential-delay model, the Smith predictor scheme
gives much better performance than a standard feedback scheme and increases
the stability margin in the sense that it permits higher control gains
to be used.
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APPENDIX A

Standard Damping Conditions for the Example 1

The closed-loop characteristic equation for the example 1 using

P+I controller is given by

54+3s3 + 352 + G<l+l}s +k2 = 0 (aAl)
For the standard damping
s = w(=1 + i) and |S| =w?2 w> o (A2)

Substituting (A2) in (Al) and equating real and imaginar parts,

we obtain

~4m4 + 6m3 - (kl+l)m +-k2 =0 (A3)
and
3 2
6w - 6w + m(kl+1) == ) (nd)
From (A4d)
5
w = 0.5+ (0.25 - (kl + 1)/6) (A5)

For real w > O, we require

1 .
K <k (26)

From (A3)

4 3 ’
k do” - 6w + (k1w (A7)

2

where p is given by (A5) and k satisfy (A6). For any chosen value of

1
kl in -1 ifkl < 0.5, there are two corresponding values of k2 and this
is illustrated in Fig. 5.7.

APPENDIX B

Ziegler-Nichols control conditions:

Assume that the controller can be expressed by
g) = + +
K(s) =X [1 1/(TIS) T 5]

lLet TI = o, TD = O (assume only proportional control) and determine
the stable limit of the control systems by changing KP. Iet the value of

Kp at the stable limit be K i and the period of sustaining oscillation be
P

Pu. Ziegler-Nichols obtained the following formulas to derive the values
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for K , T_and T .
P I

D
(a) For only proportional control (TI = o, TD = 0)
K = 0.5K
P bu
(b) For proportional + integral control (TD = 0)

= 0.45 T_ = 0.83
Kp O Kpu' I Q pu

(c) For proportional + integral + differential control

= 0.6 K T = 0.5 , T = 0.125 F
Kp 4 pu’ I Py’ "p Py
‘T/(,f ’
15 J(}:f(\/“-
ey, ey
44{\0 9]
{pp Sy, J{/"}’.)
T, Sin
”1“)/ fm{\(\



