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We prove constructively that every finitely generated polynomial ideal has a Gröbner

basis provided that the ring of coefficients is Noetherian in the sense of Richman and

Seidenberg. That is, we give a constructive termination proof for a variant of the

otherwise well-known algorithm to compute the Gröbner basis. In combination with a

purely order-theoretic result we have proved in a separate paper, this yields a unified

constructive proof of the Hilbert basis theorem for all Noether classes: if a ring belongs

to a Noether class, then so does the polynomial ring. Our proof can be seen as a

constructive rereading of one of the classical proofs, in the spirit of the partial realisation

of Hilbert’s programme in algebra put forward by Coquand and Lombardi. The rings

under consideration need not be commutative, but are understood to be coherent, and

strongly discrete: that is, they admit a membership test for every finitely generated

ideal. As a complement we provide a prime decomposition for commutative rings

possessing the finite-depth property.

Introduction

In this paper we complete, in constructive algebra à la Kronecker and Bishop (Edwards

2005; Lombardi and Quitté 2011; Mines et al. 1988),† the unified proof of several variants

of the Hilbert basis theorem whose order-theoretic grounds we have set before (Perdry

and Schuster 2011). The wording of this theorem is readily put: if a—not necessarily

commutative—ring R is Noetherian, then so is the polynomial ring R[X].

In any constructive context, however, the concept in question requires particular at-

tention: “What is Noetherian?” (Seidenberg 1974). The definition going back to Hilbert

is of little use, as recalled in (Mines et al. 1988, p. 193): “Standard classical proofs of

the Hilbert basis theorem are constructive, if by Noetherian we mean that every ideal is

finitely generated, but only trivial rings are Noetherian in this sense from a constructive

point of view.” One of these classical proofs is the one given e.g. for Theorem 69 of (Ka-

† In particular we will make use of the principle of dependent choices.
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plansky 1974). A similar problem as for Hilbert’s definition occurs with the condition

due to Noether that every ascending chain of ideals is eventually constant.‡

Several constructively meaningful notions of a Noetherian ring have nonetheless al-

lowed for a constructively provable variant of the Hilbert basis theorem (Coquand and

Persson 1999; Jacobsson and Löfwall 1991; Mines et al. 1988; Perdry 2004; Perdry 2008;

Richman 1974; Richman 2003; Schuster and Zappe 2006; Seidenberg 1974; Tennenbaum

1973). In the present paper—as in its forerunner (Perdry and Schuster 2011)—we need to

add two preconditions. First, we suppose that the poset IR of the finitely generated ideals

of the ring R be decidable or, equivalently, that each of these ideals have a membership

test. Secondly, we assume that the ring R be coherent: that is, every finitely generated

ideal have a basis of syzygies; which is automatic for the Hilbertian concept that every

ideal be finitely generated.§

Most of those variants of “Noetherian” rely on properties of the poset IR, just as

Noether’s ascending chain condition does. In (Perdry and Schuster 2011) we thus have

abstracted from the ring context, and studied the classes of posets that correspond to

these properties. Each of these classes satisfies four characteristic conditions, which define

what in (Perdry and Schuster 2011) we have called a Noether class of posets. We say that

a ring R is C-Noetherian whenever IR belongs to the given Noether class C, for which

Hilbert’s basis theorem reads as “if R is C-Noetherian, then R[X] is C-Noetherian”.

The perhaps best known constructively meaningful property of IR is the chain condi-

tion used by Richman and Seidenberg (Richman 1974; Seidenberg 1974): every descending

sequence a0 > a1 > . . . halts, i.e. there is n with an = an+1. The posets which possess this

property form the prime example of a Noether class, the Richman-Seidenberg class RS,

which also is the largest Noether class (Perdry and Schuster 2011). (We follow (Perdry

2004) and reverse the natural inclusion order on IR; whence we consider descending

rather than ascending chains of finitely generated ideals.) Richman and Seidenberg’s

condition is both meaningful and useful: plenty of rings are RS-Noetherian (Mines et

al. 1988); and that K[X1, . . . , Xn] is RS-Noetherian for any (discrete) field K suffices

(Perdry 2004) for a constructive termination proof of Buchberger’s algorithm.

In the vein of a partial realisation of Hilbert’s programme in algebra (Coquand and

Lombardi 2006) we reread constructively one of the classical proofs of the Hilbert basis

theorem: e.g., the first proof of Theorem 1 in (Zariski and Samuel 1958, IV). In this type

of proof one first notices that the ascending chain condition propagates from the poset of

ideals to the poset of ascending chains of ideals. Given a chain of polynomial ideals I0 ⊆
I1 ⊆ · · · one next considers for each k the ascending chain of ideals `0(Ik) ⊆ `1(Ik) ⊆ · · ·
where each `n(Ik) consists of the leading coefficients of the f ∈ Ik with deg(f) 6 n.

The double-indexed sequence of the `n(Ik) can then be seen as an ascending chain of

ascending chains of ideals, which—as noticed before—is eventually constant. To conclude

it suffices to verify that if I ⊆ J and `n(I) = `n(J) for all n, then I = J .

‡ Both customary notions of a Noetherian ring are in fact too strong in a recursive interpretation already
for R = F2, the two-element field, for which either of them would solve the halting problem.

§ Strong discreteness, or coherence, can be relaxed for some of the variants listed above, see e.g. (Co-

quand and Persson 1999; Mines et al. 1988; Perdry 2008; Richman 2003; Tennenbaum 1973).
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By thus passing from infinite sequences of ideals to infinite sequences of such sequences,

the complexity of the objects under consideration is increased during the proof. A con-

structive rereading therefore seems hardly possible; and in fact the constructive proofs

listed earlier on all follow different lines. Our key observation however (Perdry and Schus-

ter 2011, Theorem 3.1) was that the method of this classical proof works with finite chains

as well: if a poset E is in a Noether class C, then the poset E? of the eventually constant

descending chains in E is also in C. We further need to invoke one of the conditions we

have imposed on the Noether classes (Perdry and Schuster 2011): if a poset G is in a

Noether class C, then every poset F is in C that can be embedded into G along a strictly

increasing mapping. To apply this to the posets E = IR, F = I?R, and G = IR[X],

and thus to complete the desired unified constructive proof of the Hilbert basis theorem

(Theorem 3.1 below), it suffices to give a strictly increasing mapping from IR[X] to I?R.

The latter is done—mimicking the classical proof recalled above—by assigning (Lemma

3.1) every I ∈ IR[X] to the sequence `0(I) > `1(I) > · · · in IR.

From the constructive angle, an important ingredient is to see that this mapping is

well-defined, which could well be done with some material already present in the literature

(Mines et al. 1988); see Appendix 5.1. However, we prefer to do it with a variant of the

notion of a Gröbner basis, which approach we find more natural. More precisely we prove

constructively (Theorem 2.1) that if the ring R is RS-Noetherian, then R is a Gröbner

ring by which we mean that every finitely generated ideal of R[X] has a Gröbner basis in

the sense of Definition 2.4 below. It is noteworthy that to prove Theorem 2.1 we apply

(Perdry and Schuster 2011, Theorem 3.1) once more, this time to the class RS.

With Theorem 2.1 we thus give a constructive termination proof for a variant of the

otherwise well-known algorithm to compute the Gröbner basis. Our approach is related

to the customary theory of Gröbner bases over a ring, which in turn resembles the one of

Gröbner bases over a field (Buchberger 1965); see e.g. (Adams and Loustaunau 1994).¶ In

particular, Lemmas 2.6 and 2.7, and Proposition 2.6 below are related to the Buchberger

criterion by which one can tell whether any given finite set of generators is a Gröbner

basis. The main difference is that we prove constructively that the aforementioned algo-

rithm terminates in a finite number of steps. Also, we focus on the case of polynomials in

a single variable; the case of polynomials in several variables with lexicographic monomial

ordering can be obtained by iteration, and is left to the interested reader.

On the road to Theorem 2.1 we prove that if R is a Gröbner ring, and I a finitely

generated ideal of R[X], then `k(I) is finitely generated for every k ∈ N (Proposition 2.5);

in particular (Corollary 2.2) the ideal LC(I) of R that consists of the leading coefficients

of the elements of I is finitely generated as well. In view of this our notion of a Gröbner

ring is to be contrasted with the one coined by Yengui (Yengui 2006), for whom a Gröbner

ring R is such that, for every n > 1 and every finitely generated ideal I of R[X1, . . . , Xn]

with a fixed monomial order, the ideal LT(I) of R[X] that is generated by the leading

terms of the elements of I is finitely generated. See also (Lombardi et al. 2012).

Another example of a Noether class of posets is the one defined by the finite-depth

¶ In the case of polynomials over a ring yet another approach—the so-called dynamical Gröbner bases—

has proved successful (Yengui 2006; Hajd Kacem and Yengui 2010).
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property (Perdry and Schuster 2011): every finitely branching tree labelled by the poset

under consideration has finite depth. This property defines the finite-depth class of posets

FD, which coincides with RS precisely when (Perdry and Schuster 2011) a fairly general

form of Brouwer’s fan theorem holds, the classical contrapositive of which is König’s

lemma. As a complement we provide in Appendix 5.3 a prime decomposition for com-

mutative FD-Noetherian rings, and thus generalise a result from (Perdry 2004).

1. Preliminaries

1.1. Posets and chains

We first recollect and enrich some material from (Perdry and Schuster 2011), which in

parts goes back to (Mines et al. 1988). Let every partially ordered set (E,6) have a

decidable order and thus be a discrete set : that is, x 6 y and thus x = y are decidable

relations between the elements of E. By x < y we denote the conjunction of x 6 y and

x 6= y, where the latter stands for the negation of x = y.

Let E and F be posets. A mapping ϕ : E → F is increasing (respectively, strictly

increasing) if

a 6 b =⇒ ϕ(a) 6 ϕ(b) (respectively, a < b =⇒ ϕ(a) < ϕ(b) )

for all a, b ∈ E. Any ϕ : E → F is strictly increasing precisely when it is increasing and

a 6 b ∧ ϕ(a) = ϕ(b) =⇒ a = b

for all a, b ∈ E.

Let (Ei,6i)i∈I be a family of posets indexed by a poset (I,6). By
∑
i∈I Ei we denote

the disjoint union {(i, x) : i ∈ I, x ∈ Ei} ordered by

(i, x) 6 (j, y) ⇐⇒ i < j ∨ (i = j ∧ x 6i y) .

Since the partial orders on I and on the Ei with i ∈ I are decidable, so is 6 on
∑
i∈I Ei.

If Ei = E for all i ∈ I, then
∑
i∈I Ei is nothing but the lexicographic product I · E.

To replace the eventually constant descending sequences with a concept of finite char-

acter, we consider the set of descending finite sequences in a poset E: that is,

E? =
⋃
n∈N
{(a0, . . . , an) ∈ En+1 : a0 > a1 > · · · > an} .

Every (a0, . . . , an) ∈ E? can be extended, by setting am = an for m > n, to a descending

infinite sequence, with which we often identify it. With this convention we define

a 6 b ⇐⇒ ∀m ∈ N (am 6 bm)

for any two a, b ∈ E?. Note that 6 on E? is decidable for so is 6 on E.

The Richman-Seidenberg class RS consists of the posets E for which

if a0 > a1 > · · · in E, then there is n ∈ N such that an = an+1.

A class C of posets is a Noether class if it satisfies the following four conditions:

1 C ⊆ RS.
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2 N ∈ C.
3 If there is a strictly increasing mapping from E to F , then E ∈ C whenever F ∈ C.
4 Let I be a poset in C. If (Ei)i∈I is a family of posets in C, then

∑
i∈I Ei is in C.

The class RS is a Noether class; by condition 1 above it is the largest one. More examples

of Noether classes are given in (Perdry and Schuster 2011). The following (Perdry and

Schuster 2011, Theorem 3.1) will be crucial for this paper.

Theorem 1.1. Let C be a Noether class. If a poset E is in C, then so is E?.

1.2. Rings and ideals

In the whole paper, R denotes a—not necessarily commutative—ring with unit. Following

(Perdry 2004) we write IR for the poset of finitely generated left ideals of R ordered by

reverse inclusion:

I 6 J ⇐⇒ I ⊇ J .
By 〈S〉 we denote the left ideal of R that is generated by a finite subset S of R. We

sometimes identify a finite family a = (a1, . . . , an) of elements of R with the set of its

elements, and write 〈a〉 or 〈a1, . . . , an〉 for the left ideal generated by them.

Recall that a syzygy of a finite family a = (a1, . . . , an) of elements of R is an element

of ker(ηa) where ηa is defined by

ηa : Rn → 〈a1, . . . , an〉
(α1, . . . , αn) 7→ α1a1 + · · ·+ αnan .

A basis of syzygies of a is a finite set of non-zero elements of Rn which generates ker(ηa)

as a left R-module.

It has been indicated (Lombardi and Quitté 2011, 4.1) that if two finite families of

elements of R generate the same left ideal, then one of these families has a basis of

syzygies if and only if so does the other. For completeness’s sake we give a detailed proof

of this in Section 2.6 below (Lemma 2.9). In particular, it is licit to say that a finitely

generated left ideal I has a basis of syzygies if so does any finite set of generators: that

is, ker(ηa) is finitely generated whenever I = 〈a〉.
Recall that a ring R is coherent if every finitely generated left ideal is finitely presented :

that is, it has a basis of syzygies. Also, a ring R is strongly discrete if every finitely

generated left ideal I is detachable from R: that is, for each r ∈ R it is decidable whether

r ∈ I. A strongly discrete ring is discrete: that is, for each r ∈ R it is decidable whether

r = 0. If a ring R is discrete, then the degree deg(f) of any f ∈ R[X] with f 6= 0 is

defined as usual; we further set deg(0) = −∞.

Now let C be a Noether class of posets.

Definition 1.1. We say that a coherent and strongly discrete ring R is C-Noetherian if

IR belongs to C.

By the definition of a Noether class, if R is C-Noetherian, then R is RS-Noetherian:

that is, if I0 ⊆ I1 ⊆ · · · are finitely generated ideals of R, then there is n ∈ N such that

In = In+1.



H. Perdry and P. Schuster 6

2. Gröbner Bases for Noetherian Rings

We assume throughout that the ring R under consideration is strongly discrete and

coherent. Also, all ideals of R are thought to be left ideals.

2.1. Leading coefficients

Let LT(h) and LC(h) denote the leading term and the leading coefficient, respectively,

of h ∈ R[X] with h 6= 0. In other words, if

h = cnX
n + · · ·+ c1X + c0

with cn 6= 0, then LT(h) = cnX
n and LC(h) = cn.

In the following let S = {f1, . . . , fs} be a finite subset of R[X]. For any such S we set

LC(S) = {LC(f) : f ∈ S, f 6= 0},

which equally is a finite subset of R. We also define

Sk = {Xnf : n+ deg(f) = k, n ∈ N, f ∈ S, f 6= 0}

for k ∈ N. Note that Sk is a finite subset of 〈S〉. If h ∈ Sk, then deg(h) = k and

k > minf∈S\{0} deg(f); whence Sk = ∅ whenever k < minf∈S\{0} deg(f). Moreover,

LC(S1) ⊆ LC(S2) ⊆ · · · ⊆ LC(Sd) = LC(Sd+1) = . . . = LC(S) (1)

where d = maxf∈S\{0} deg(f), for which if k > d, then

Sk = Xk−dSd = {Xk−dh : h ∈ Sd} .

Remark 2.1. If Sk = {h1, . . . , h`}, and β = (β1, . . . , β`) ∈ R`, then β is a syzygy of

〈LC(Sk)〉 precisely when
∑
j βjhj has degree < k.

2.2. Reductions of polynomials

In this subsection, S = {f1, . . . , fs} is a finite subset of R[X].

Definition 2.1. Let g ∈ R[X]. We say that

— g is reducible by S if g 6= 0 and there are α1, . . . , αs ∈ R and n1, . . . , ns ∈ N with

LT(g) =

s∑
i=1

αiX
ni LT(fi) , (2)

αi 6= 0⇒ αi LC(fi) 6= 0 & ni + deg(fi) = deg(g) ; (3)

— g is irreducible by S if g is not reducible by S: that is, either g = 0 or else there are

no α1, . . . , αs ∈ R and n1, . . . , ns ∈ N satisfying both (2) and (3).

The following lemma is readily verified.

Lemma 2.1. The following are equivalent for each g ∈ R[X] with g 6= 0:

1 g is reducible by S.
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2 There are α1, . . . , αs ∈ R with

LC(g) =

s∑
i=1

αi LC(fi) , (4)

αi 6= 0⇒ αi LC(fi) 6= 0 & deg(fi) 6 deg(g) . (5)

3 LC(g) belongs to the left ideal 〈LC(Sk)〉 with k = deg(g).

Corollary 2.1. For each g ∈ R[X] it is decidable whether g is reducible by S.

Proof. Decide first whether g = 0. In case g 6= 0, decide next whether the third

equivalent of Lemma 2.1 holds; this can be done because R is strongly discrete.

Proposition 2.1. For each g ∈ R[X] there is g̃ ∈ R[X] with

g =

s∑
i=1

αiX
nifi + g̃

for suitable α1, . . . , αs ∈ R and n1, . . . , ns ∈ N satisfying (3) such that

— if g is reducible by S, then deg(g̃) < deg(g);

— if g is irreducible by S, then g̃ = g and αi = 0, ni = 0 for all i.

Proof. We may assume that g is reducible by S; let k = deg(g). Write Sk = {h1, . . . , h`}.
The hj ’s are of the formXnij fij where ij ∈ {1, . . . , s}. In particular, there are β1, . . . , β` ∈
R with LC(g) =

∑
j βj LC(hj).

Set αij = βj for all j, and set the other αi’s to 0. Similarly, for any i which is not

among the ij ’s, set ni = 0. Now set

g̃ = g −
∑̀
j=1

βjhj = g −
s∑
i=1

αiX
nifi,

for which deg(g̃) < deg(g) by (2) and (3).

Note that g − g̃ ∈ 〈S〉. Applying recursively this lemma, we next obtain what we call a

reduction of g by S.

Proposition 2.2. For each g ∈ R[X] there is g′ ∈ R[X] with

g =

s∑
i=1

gifi + g′

for suitable g1, . . . , gs ∈ R[X] satisfying

gi 6= 0⇒ LC(gi) LC(fi) 6= 0 & deg(gi) + deg(fi) 6 deg(g) (6)

such that

— g′ is irreducible by S;

— if g is reducible by S, then deg g′ < deg g;

— if g is irreducible by S, then g′ = g and gi = 0 for all i.
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Proof. We construct g′ by recursion on deg(g). If g is irreducible by S, which includes

the initial case g = 0, then g′ = g is as required, with gi = 0 for all i. If g is reducible by

S, then deg(g̃) < deg(g) where g̃ is as in Proposition 2.1; whence there is g̃′, irreducible

by S, with

g̃ =

s∑
i=1

g̃ifi + g̃′

for suitable g̃1, . . . , g̃s ∈ R[X] satisfying the appropriate counterpart of (6): that is,

g̃i 6= 0⇒ LC(g̃i) LC(fi) 6= 0 & deg(g̃i) + deg(fi) 6 deg(g̃) . (7)

Now g′ = g̃′ is as required, with gi = g̃i + αiX
ni for every i where αi and ni are as

in Proposition 2.1. To see this, note first that deg(g̃′) 6 deg(g̃) no matter whether g̃ is

reducible; whence

deg(g′) = deg(g̃′) 6 deg(g̃) < deg(g)

in any case. To verify (6), assume that gi 6= 0. Since then either g̃i 6= 0 or αi 6= 0, we

need to distinguish three cases. First, if g̃i 6= 0 and αi = 0, then gi = g̃i, and (6) follows

from (7) together with deg(g̃) < deg(g). Next, if g̃i = 0 and αi 6= 0, then gi = αiX
ni ,

and (6) is a consequence of (3). Last, if both g̃i 6= 0 and αi 6= 0, then deg(g̃i) < ni in

view of (3), (7), and deg(g̃) < deg(g); whence LC(gi) = αi and deg(gi) = ni, in which

case (3) applies again.

Definition 2.2. Let g ∈ R[X]. We call any g′ as in Proposition 2.2 a reduction of g by

S.

Note that g′ is not uniquely determined by g: for example, if f1 = X, f2 = X+1, then

g = X + 1 can be reduced to g′1 = 1 with g = f1 + g′1 and to g′2 = 0 with g = f2 + g′2.

Note further that g − g′ ∈ 〈S〉: whence g ∈ 〈S〉 if and only if g′ ∈ 〈S〉. In particular, if

a reduction of g is 0, then g ∈ 〈S〉. Also, if g′ = 0 and g is irreducible by S, then g = 0.

Lemma 2.2. Let g ∈ R[X]. If g ∈ S and g 6= 0, then g is reducible by S. In particular,

g′ = 0 for every reduction g′ of g by S which satisfies g′ ∈ S.

Proof. If g ∈ S and g 6= 0 with deg(g) = k, then g ∈ Sk and thus LC(g) ∈ LC(Sk),

which is to say (Lemma 2.1) that g is reducible by S. Recall that every reduction is

irreducible.

2.3. Extensions of sets of polynomials

Let S = {f1, . . . , fs} be a finite subset of R[X]; set d = maxf∈S deg(f). For each k 6 d fix

a basis of syzygies Bk of LC(Sk), which is possible because R is assumed to be coherent.

With Sk = {hk,1, . . . , hk,`} set

pk,α =
∑̀
i=1

αihk,i (8)
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for every α ∈ Bk with α = (α1, . . . , α`). Note that deg(pk,α) < k by Remark 2.1, and

pk,α ∈ 〈S〉 since Sk ⊆ 〈S〉. By Proposition 2.2 each pk,α has a—not necessarily uniquely

determined—reduction p′k,α by S, for which p′k,α ∈ 〈S〉 because p′k,α − pk,α ∈ 〈S〉.

Proposition 2.3. There is a finite subset S′ of R[X] such that

1 S ⊆ S′, and for every k 6 d and α ∈ Bk there is a reduction p′k,α of pk,α with

p′k,α ∈ S′;
2 for every g ∈ S′ either g ∈ S or g is a reduction of pk,α for some k 6 d and α ∈ Bk.

Definition 2.3. We call any S′ as in Proposition 2.3 an extension of S.

In other words, an extension S′ of S consists of the elements of S together with finitely

many reductions pk,α such that for all k 6 d and α ∈ Bk at least one—and possibly more

than one—reduction of pk,α belongs to S′. Note that 〈S〉 = 〈S′〉 for every extension S′

of S.

Definition 2.4. We call a finite subset S of R[X] a Gröbner basis of an ideal I of R[X]

if 0 ∈ S, I = 〈S〉, and S = S′ for some extension S′ of S.

If every finitely generated left ideal of R[X] has a Gröbner basis, we say that R is a

Gröbner ring.

We often simply say “S is a Gröbner basis” in place of “S is a Gröbner basis of 〈S〉”.

Lemma 2.3. The following items are equivalent for each finite subset S of R[X] with

0 ∈ S:

1 S is a Gröbner basis.

2 For all k 6 d and α ∈ Bk some reduction of pk,α equals 0.

In particular, if S is a Gröbner basis, then for all k 6 d and α ∈ Bk:

pk,α =

s∑
i=1

qk,α,ifi with deg(qk,α,i) + deg(fi) 6 deg(pk,α) . (9)

Proof. Let first S′ be an extension of S with S = S′. For all k 6 d and α ∈ Bk there is

a reduction p′k,α of pk,α by S such that p′k,α ∈ S′, for which p′k,α ∈ S by S = S′ and thus

p′k,α = 0 by Lemma 2.2. Conversely, if 0 is a reduction of pk,α for all k 6 d and α ∈ Bk,

then S ∪ {0} is an extension of S, which of course equals S whenever 0 ∈ S.

Note that 0 ∈ S is unnecessary for the implication from the first to the second equiv-

alent.

We shall see (Lemma 2.7, Proposition 2.6) that if S is a Gröbner basis, then S = S′

for every extension S′ of S, and that for all k 6 d and α ∈ Bk every reduction of pk,α
equals 0.
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2.4. Properties of Gröbner bases

Lemma 2.4. Let S = {f1, . . . , fs} be a Gröbner basis, k ∈ N, and g ∈ R[X] with

deg(g) < k. If there are α1, . . . , αs ∈ R and n1, . . . , ns ∈ N with

g =

s∑
i=1

αiX
nifi and αi 6= 0⇒ ni + deg(fi) = k ,

then there are g1, . . . , gs ∈ R[X] such that

g =

s∑
i=1

gifi and deg(gi) + deg(fi) < k .

Proof. With Sk = {h1, . . . , h`} there are β1, . . . , β` ∈ R such that

g =
∑̀
j=1

βjhj .

Since deg(g) < k, β = (β1, . . . , β`) is a syzygy of LC(Sk) (Remark 2.1).

Let Bk = {β1, . . . , βr} be a basis of syzygies of LC(Sk). We thus can write

β =

r∑
u=1

λuβ
u

where λu ∈ R for every u 6 r; with βu = (βu1 , . . . , β
u
` ) this amounts to

βj =

r∑
u=1

λuβ
u
j

for every j 6 `. For each u 6 r let

pu =
∑̀
j=1

βuj hj ,

for which deg(pu) < k (Remark 2.1). Now we can rewrite g as

g =

r∑
u=1

λupu.

Let d = maxi deg(fi), and u 6 `. If k 6 d, then pu is one of the pk,α from (8); if

k > d, then pu is equal to some Xk−dpd,α. In any case 0 is a reduction of pu (Lemma

2.3); whence

pu =
∑
i

qu,ifi with deg(qu,i) + deg(fi) 6 deg(pu)

as in (9), from which together with deg(pu) < k the desired result follows immediately.



Constructing Gröbner Bases for Noetherian Rings 11

Lemma 2.5. Let S = {f1, . . . , fs} be a Gröbner basis, k ∈ N, and g ∈ R[X] with

deg(g) < k. For any h1, . . . , hs ∈ R[X] with

g =

s∑
i=1

hifi and max
i

(deg(hi) + deg(fi)) = k

there are g1, . . . , gs ∈ R[X] such that

g =

s∑
i=1

gifi with max
i

(deg(gi) + deg(fi)) < k .

Proof. Let g =
∑
i hifi with deg(g) < k and maxi(deg(hi)+deg(fi)) = k. We construct

ĝ =
∑
i αiX

nifi as follows:

— if deg(hi) + deg(fi) = k, then set αi = LC(hi) and ni = deg(hi);

— if deg(hi) + deg(fi) < k, then set αi = 0 and ni = 0.

We now have

g − ĝ =
∑
i

(hi − αiXni)fi and deg(hi − αiXni) + deg(fi) < k ;

in particular, deg(ĝ) < k because deg(g) < k; moreover, ni + deg(fi) = k whenever

αi 6= 0. Hence by Lemma 2.4 there are ĝ1, . . . , ĝs ∈ R[X] such that

ĝ =
∑
i

ĝifi and deg(ĝi) + deg(fi) < k.

If we set gi = (hi−αiXni) + ĝi, then g =
∑
i gifi with deg(gi) + deg(fi) < k as required.

Iterated applications of Lemma 2.5 yield the following.

Proposition 2.4. If an ideal I of R[X] has a Gröbner basis {f1, . . . , fs}, then for each

g ∈ I there are g1, . . . , gs ∈ R[X] such that

g =

s∑
i=1

gifi and deg(g) = max
i

(deg(gi) + deg(fi)) .

Given an ideal I of R[X] and k ∈ N, the following subset is an ideal of R:

`k(I) = {a ∈ R : ∃a0, . . . , ak−1 ∈ R (aXk + ak−1X
k−1 + · · ·+ a0 ∈ I)} .

In other words, `k(I) is the set of the leading coefficients of the g ∈ I with deg(g) 6 k.

Proposition 2.5. If an ideal I of R[X] has a Gröbner basis S, then `k(I) = 〈LC(Sk)〉
for every k; in particular, `k(I) is a finitely generated ideal of R for every k.

Proof. It suffices to prove that LC(g) ∈ 〈LC(Sk)〉 for every g ∈ I with g 6= 0 and

deg(g) = k. Let S = {f1, . . . , fs}. By Proposition 2.4 we can achieve that

g =
∑
i

gifi with max
i

(deg(gi) + deg(fi)) = k .
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If we set J = {i 6 s : deg(gi) + deg(fi) = k}, then LC(g) =
∑
i∈J LC(gi) LC(fi)

belongs to 〈LC(Sk)〉: in fact, if i ∈ J , then Xnifi ∈ Sk with ni = deg(gi), and thus

LC(fi) ∈ LC(Sk).

Corollary 2.2. If an ideal I of R[X] has a Gröbner basis, then the set LC(I) consisting

of the leading coefficients of all the elements of I is a finitely generated ideal of R.

Proof. Let S be a Gröbner basis for I, and d = maxf∈S\{0} deg(f). Then

LC(I) =
⋃
k>0

`k(I) =
⋃
k>0

〈LC(Sk)〉 = 〈LC(Sd)〉 = `d(I)

by Proposition 2.5 and (1) on page 6.

Lemma 2.2 is a forerunner of the following.

Lemma 2.6. Let S be a Gröbner basis of the left ideal I of R[X], and g ∈ R[X].

1 If g ∈ I and g 6= 0, then g is reducible by S.

2 The following items are equivalent:

(a) g ∈ I.

(b) Every reduction of g by S is 0.

(c) Some reduction of g by S is 0.

Proof. 1. If g ∈ I and g 6= 0, then LC(g) ∈ `k(I) where k = deg(g); by Proposition 2.5

we thus have LC(g) ∈ 〈LC(Sk)〉, which is to say (Lemma 2.1) that g is reducible by S.

2. If g ∈ I, and g′ is a reduction of g by S, then g′ ∈ I (because g − g′ ∈ I), and g′ is

irreducible; whence g′ = 0 according to the first item of this lemma.

Corollary 2.3. If R is a Gröbner ring, then R[X] is strongly discrete.

Proof. Let S be a Gröbner basis of the finitely generated ideal I of R[X]. Given any

g ∈ R[X], pick a reduction g′ of g by S. Since R is (strongly) discrete, we can check

whether g′ = 0, and thus decide whether g ∈ I.

Recall that the pk,α from (8) all belong to 〈S〉. By Lemma 2.3 and Lemma 2.6 we have:

Lemma 2.7. For a finite subset S of R[X] with 0 ∈ S, the following are equivalent:

1 S is a Gröbner basis.

2 For each k 6 d and α ∈ Bk every reduction of pk,α equals 0.

3 For each k 6 d and α ∈ Bk some reduction of pk,α equals 0.

Proposition 2.6. It is decidable whether a finite subset S of R[X] is a Gröbner basis;

and if S is a Gröbner basis, then S = S′ for every extension S′ of S.

Proof. Since R is (strongly) discrete, it is decidable whether 0 ∈ S. Assume now that

0 ∈ S. For every k 6 d and α ∈ Bk pick any reduction p′k,α of pk,α. By Lemma 2.7, S is

a Gröbner basis if and only if p′k,α = 0 for all k 6 d and α ∈ Bk, which is decidable.

Assume now that S is a Gröbner basis, and let S′ be any extension of S. Apart from

the elements of S, the elements of S′ are reductions p′k,α of the pk,α with k 6 d and
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α ∈ Bk. But all those p′k,α are 0 in view of Lemma 2.7, and thus belong to S because

0 ∈ S.

2.5. Existence of Gröbner bases

We are going to show that if R is RS-Noetherian, then for each finite subset S0 of R[X]

by successive extensions Si+1 = (Si)′ we arrive in a finite number of steps at a Gröbner

basis of 〈S0〉. Since 〈LC(Sk)〉 = 〈LC(Sk+1)〉 for all k > maxf∈S deg(f), the sequence

Φ(S) =
(
〈LC(Si)〉

)
i∈N

belongs to I?R. Clearly, Φ(S) > Φ(T ) in I?R whenever S > T in IR[X]: that is, when

S ⊆ T .

Lemma 2.8. For every extension S′ of a finite subset S of R[X] with 0 ∈ S, we have

Φ(S) > Φ(S′) in I?R, and moreover Φ(S) = Φ(S′) if and only if S = S′.

Proof. The first assertion is clear from S ⊆ S′. As for the second, assume that Φ(S) =

Φ(S′), and remember that every element of S′ which does not belong to S is a reduction

h′ of some h ∈ R[X]. To verify S ⊇ S′ it therefore suffices to show that if h′ ∈ S′, then

h′ = 0; the latter indeed implies h′ ∈ S because 0 ∈ S. Since R is (strongly) discrete,

either h′ = 0 or else h′ 6= 0. In the latter case LC(h′) ∈ 〈LC(S′k)〉 with k = deg(h′);

since Φ(S) = Φ(S′), we thus have LC(h′) ∈ 〈LC(Sk)〉, which (Lemma 2.1) contradicts

the irreducibility of h′.

The proof of the following in general requires an invocation of dependent choice.

Theorem 2.1. If R is RS-Noetherian, then R is a Gröbner ring.

Proof. Let S0 be a finite subset of R[X], and I = 〈S0〉. We may assume that 0 ∈ S0.

Construct a sequence of iterated extensions (Si)i∈N by setting Si+1 = (Si)′ where (Si)′

is any extension of Si, which exists by Proposition 2.3. Note that 0 ∈ Si and 〈Si〉 = I

for every i.

Now R is RS-Noetherian: that is, IR ∈ RS. By Theorem 1.1, also I?R ∈ RS. Since

Φ(S0) > Φ(S1) > · · · in I?R, there is n > 0 with Φ(Sn) = Φ(Sn+1), for which Sn = Sn+1

by Lemma 2.8. Hence Sn is a Gröbner basis of the finitely generated left ideal I.

2.6. Bases of syzygies in R[X]

To allow for some convenient notations from linear algebra, we consider a finite family

(f1, . . . , fn) of elements of R as a column vector f ∈ Rn×1. A syzygy of f is then nothing

but a row vector a ∈ R1×n such that af = 0.

Independence of generators The following lemma is a classic: see (Mines et al. 1988,

Theorem III.2.2), (Glaz 1989, Lemma 2.1.1), and (Lombardi and Quitté 2011, IV.1).

Here we give a particularly elementary proof.



H. Perdry and P. Schuster 14

Lemma 2.9. Let f = (f1, . . . , fn) ∈ Rn×1 and g = (g1, . . . , gm) ∈ Rm×1 such that

〈f〉 = 〈g〉. If g has a basis of syzygies, then f has a basis of syzygies.

Proof. There are A ∈ Rm×n and B ∈ Rn×m such that Af = g and Bg = f . Let

M = BA− In. Clearly, Mf = 0, so if s1, . . . sn ∈ R1×n are the rows of M , then each si
is a syzygy of f . If a is a syzygy of f , then aB is a syzygy of g, and if b is a syzygy of g,

then bA is a syzygy of f .

Let β1, . . . , β` ∈ R1×m be a basis of syzygies of g. Every αi = βiA is a syzygy of f .

Moroever, (α1, . . . , α`, s1, . . . , sn) is basis of syzygies of f . To see this let a ∈ R1×n be a

syzygy of f . Then aB is a syzygy of g, and aB =
∑`
i=1 biβi for suitable b1, . . . , b` ∈ R.

Hence

a = aBA− aM =
∑̀
i=1

biβiA− aM =
∑̀
i=1

biαi −
n∑
i=1

aisi

by virtue of BA = In +M .

In particular, whether a finitely generated ideal has a basis of syzygies is independent

of any particular choice of a finite set of generators.

Coherence with Gröbner bases We fix f = (f1, . . . , fn) ∈ R[X]n×1 \ {0} for the rest of

this section, and set

d = max
j=1,...,n

deg(fj) .

Just as S \ {0} = {f1, . . . , fn} we view Sk and LC(Sk) as finite families, for every k ∈ N.

As already noted, for k > d we have Sk = Xk−dSd, and thus LC(Sk) = LC(Sd).

Given k ∈ N we write Sk = (h1, . . . , hmk
) where mk 6 n and hi = Xdifϕk(i) with

1 6 ϕk(1) < . . . < ϕk(mk) 6 n

such that j = ϕk(i) for some i precisely when deg(fj) 6 k. Note that di = k− deg fϕk(i)

for every i. We next consider the linear map

Φk : R1×n → R1×mk , (α1, . . . , αn) 7→ (αϕk(1), . . . , αϕk(mk)) .

Note that if k > d, then mk = n and thus Φk = id. We further define the linear map

Ψk : R1×mk → R1×n , (β1, . . . , βmk
) 7→ (α1, . . . , αn)

where αj =

{
βi if j = ϕk(i) for some i ,

0 if j 6= ϕk(i) for every i .

Clearly, Φk ◦Ψk = id; and Ψk(β) is a syzygy of LC(S) whenever β is a syzygy of LC(Sk).

Now let g ∈ R[X]1×n. We set

k(g) = max
j=1,...,n

(deg(gj) + deg(fj))

with the convention that deg(0) = −∞ (in particular k(g) = −∞ when gj = 0 for all j).

Now let k ∈ N. We set

Ck(gj) =

{
the coefficient of Xk−deg(fj) in gj if 0 6 k − deg(fj) 6 deg(gj) ,

0 otherwise
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for every j ∈ {1, . . . , n}, and define accordingly the linear map

Ck : R[X]1×n → R1×n , (g1, . . . , gn) 7→ (Ck(g1), . . . , Ck(gn)) .

Note that if k > k(g), then

Ck(gj) =

{
LC(gj) if deg(gj) + deg(fj) = k ,

0 otherwise

for every j. Hence, still for k > k(g),

k > k(g) ⇐⇒ Ck(g) = 0 . (10)

In particular, Ck(g)(g) 6= 0 whenever g 6= 0.

We finally set βk = Φk ◦Ck : R[X]1×n → R1×mk , which is a linear map. Note that for

k > k(g), Ck(gj) 6= 0 implies that deg(fk) 6 k,, hence j = ϕk(i) for some i; thus clearly

βk(g) = 0 precisely when Ck(g) = 0, and it follows that if k > k(g),

k > k(g) ⇐⇒ βk(g) = 0 . (11)

Now we define

β : R[X]1×n \ {0} → R1×mk(g) \ {0} , g 7→ βk(g)(g) .

Clearly, β(g) is a syzygy of LC(Sk(g)) if and only if deg(gf) < k(g), which is the case if,

for instance, g is a syzygy of S: that is, gf = 0.

Although β is no longer a linear mapping, we have β(−g) = −β(g), and the following.

Lemma 2.10. Let k ∈ N, and g, g′ ∈ R[X]1×n. If k(g) = k(g′) = k, then k(g + g′) 6 k

and

1. k(g + g′) < k ⇐⇒ β(g) + β(g′) = 0 ;

2. k(g + g′) = k =⇒ β(g) + β(g′) = β(g + g′) .

Proof. Note first that g 6= 0 and g′ 6= 0, whereas g + g′ may be = 0. In any case

β(g) + β(g′) = βk(g) + βk(g′) = βk(g + g′) . (12)

If k(g + g′) = k, then also βk(g + g′) = β(g + g′); whence part 2 is proved.

If k(g+g′) < k then βk(g+g′) = 0, thus β(g)+β(g′) = 0. Conversely, if β(g)+β(g′) = 0

then βk(g + g′) = 0 and, by (11), k(g + g′) < k; whence part 1 is proved.

Lemma 2.11. If S is a Gröbner basis, and k 6 d = maxj deg(fj), then for every syzygy

β of LC(Sk) with β 6= 0 there is a syzygy gβ of S such that k(gβ) = k and β(gβ) = β.

Proof. With the notations developed before Lemma 2.10 we set α = Ψk(β) and

`j =

{
di if j = ϕk(i) for some i ,

0 if j 6= ϕk(i) for every i .

If αj 6= 0, then j = ϕk(i) for some i, for which

`j + deg(fj) = di + deg(fϕk(i)) = k .

Since α is a syzygy of LC(S), we further have deg(
∑n
j=1 αjX

`jfj) < k.
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Hence by Lemma 2.4 there are e1, . . . , en ∈ R[X] such that

n∑
j=1

αjX
`jfj =

n∑
j=1

ejfj with deg(ej) + deg(fj) < k .

We now define gβ = (g1, . . . , gn) ∈ R[X]1×n by gj = αjX
`j − ej for j = 1, . . . , n.

We have deg(gj)+deg(fj) 6 k for every j, where equality holds precisely when αj 6= 0.

By hypothesis there is i such that αϕk(i) = βi 6= 0; whence k(gβ) = k. Finally, Ck(gβ) =

α = Ψk(β), thus β(gβ) = Φk(Ck(gβ)) = Φk ◦Ψk(β) = β.

Proposition 2.7. Assume that f is a Gröbner basis. If (βk1 , . . . , β
k
mk

) is a basis of syzy-

gies of LC(Sk) for every k 6 d, then (gβk
j

: j 6 mk, k 6 d) is a basis of syzygies of

f .

Proof. Let g = (g1, . . . , gn) be a syzygy of f ; set k = min{k(g), d}. Clearly, β(g)

is a syzygy of LC(Sk) = LC(Sk(g)); whence there are b1, . . . , bmk
∈ R with β(g) =

b1β
k
1 + · · ·+ bmk

βkmk
.

Let

g′ =

mk∑
i=1

biX
k(g)−kgβk

i
,

and ĝ = g − g′. For every i we have k(gβk
i
) = k, thus k(biX

k(g)−kgβk
i
) = k(g), and since

β(gβk
i
) = βki we have β(biX

k(g)−kgβk
i
) = biβ

k
i . Since

∑mk

i=1 biβ
k
i = β(g) 6= 0, from iterated

applications of Lemma 2.10 we get k(g′) = k(g) and β(g′) =
∑mk

i=1 biβ
k
i = β(g). Now ĝ is

a syzygy of f and using Lemma 2.10 again we get k(ĝ) < k(g): we are done by induction

on k(g).

Corollary 2.4. If R is a Gröbner ring, then R[X] is coherent.

3. A Unified Hilbert Basis Theorem

Let R be a not necessarily commutative ring. Recall that “R is C-Noetherian” means

(Definition 1.1) that R is coherent and strongly discrete, and that IR belongs to the

given Noether class C. In particular, if R is C-Noetherian, then the results from Section 2

apply to R, and R is RS-Noetherian: any Noether class C is contained in the Richman-

Seidenberg classRS. From the definition of a Noether class C (Section 1.1) we will further

use that if there is a strictly increasing mapping E → F between posets E and F , then

E ∈ C whenever F ∈ C.

Lemma 3.1. If R is RS-Noetherian, then the mapping

Ψ : IR[X] → I?R
I = 〈f1, . . . , fm〉 7→ (`0(I), . . . , `d(I)) where d = max deg(fi)

is well-defined, and strictly increasing.

Proof. By Theorem 2.1 and Proposition 2.5, the mapping Ψ is well-defined. In fact,

Ψ(I) = Φ(S) where S is a Gröbner basis of I and Φ is the mapping defined in Section

2.5.
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Given I, J ∈ IR[X] with I ⊆ J we have `n(I) ⊆ `n(J) for every n: that is, Ψ is

increasing. To prove that Ψ is strictly increasing, let I, J ∈ IR[X] with I ⊆ J , and

assume that `n(I) = `n(J) for every n ∈ N. We deduce that I ⊇ J as well, by showing

f ∈ I for each f ∈ J .

To this end we proceed by induction on n where f = aXn + g for suitable a ∈ R and

g ∈ R[X] with deg g < n. If n = 0, then f = a belongs to `0(J) = `0(I); whence f ∈ I as

required. Assume next that n > 0. Since a is an element of `n(J) = `n(I), we also have

aXn + h ∈ I for some h ∈ R[X] with deg h < n. Now

g − h = f − (aXn + h) ∈ J

and thus, by induction, g − h ∈ I; whence

f = aXn + h+ (g − h) ∈ I

as required, simply because aXn + h ∈ I and J ⊆ I.

The existence of a Gröbner basis was only needed for proving that Ψ is well-defined.

Theorem 3.1. If R is C-Noetherian, then R[X] is C-Noetherian.

Proof. Let R be C-Noetherian. First, R[X] is coherent and strongly discrete by Corol-

lary 2.4 and Corollary 2.3, respectively. By Theorem 1.1, moreover, we have I?R ∈ C, and

thus IR[X] ∈ C by Lemma 3.1.

Corollary 3.1. If R is C-Noetherian, then R[X1, . . . , Xn] is C-Noetherian.

4. Discussion

With Theorem 3.1 we have also reproved Theorem VIII.1.5 of (Mines et al. 1988): if

R is RS-Noetherian, then so is R[X]. The road we have followed is on the one hand

somewhat more specific: we needed to suppose from the outset thatR be strongly discrete,

whereas in (Mines et al. 1988) the issue of strong discreteness could be treated separately.

(Coherence needed to be included in (Mines et al. 1988), too.) On the other hand our

approach is more general inasmuch as it works for all Noether classes of posets rather

than being limited to the Richman-Seidenberg chain condition. In particular we also have

reproved the Hilbert basis theorem for strongly Noetherian rings (Perdry 2004).

While in the classical proof of the Hilbert basis theorem referred to in the introduction

one needs to invoke the ascending chain condition on I?R only once, in the constructive

proof provided in the present paper we have used twice that I?R ∈ C. The additional

invocation is required to prove that the mapping Ψ from Lemma 3.1 is well-defined,

which is to say that

(*) for each I ∈ IR[X] all the `n(I) belong to IR.

In view of Proposition 2.5 the ring R has property (*) provided that R is a Gröbner ring

which by Theorem 2.1 can be ensured whenever R is RS-Noetherian; more precisely—see

the proof of Theorem 2.1—one needs that I?R ∈ RS.

Yet it is possible to prove (*) without any talk of Gröbner bases, following (Mines et
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al. 1988) and using IR ∈ RS rather than I?R ∈ RS—that is, by applying the Richman-

Seidenberg condition to chains of ideals rather than to chains of chains of ideals; see

Appendix 5.1 below. However, the avenue we have followed above is not only closer to

the classical proof quoted in the introduction but might also be considered somewhat

more natural. In a similar way, Gröbner bases have been used for constructive proofs in

the context of polynomials over a field (Lombardi and Perdry 1998).

5. Appendix

5.1. Doing without Gröbner bases

We sketch how, following (Mines et al. 1988) and without Gröbner bases, one can see

that if R is coherent and RS-Noetherian, and I is a finitely generated ideal of R[X], then

for every n the ideal `n(I) of R is finitely generated.

Let first R be an arbitrary ring, and n > 0. As in (Mines et al. 1988) we denote by

R[X]n+1 the set of polynomials of degree 6 n. This is a free R-module of rank n + 1.

The mapping

LC : R[X]n+1 → R , f 7→ LC(f)

is R-linear, and for every left ideal I of R[X] we have

LC(I ∩R[X]n+1) = `n(I) .

Now let R be coherent and RS-Noetherian. Theorem VIII.1.2 of (Mines et al. 1988) says

that if I is a finitely generated left ideal of R[X], then I ∩R[X]n+1 is a finitely generated

R-module. In all,

I ∈ IR[X] =⇒ `n(I) ∈ IR .

5.2. Corrections to the preparatory paper

We list three substantial corrections to (Perdry and Schuster 2011).

1 In the proof of Proposition 3.1, ϕ(an) > ϕ(an+1) must be replaced by ϕ(an) =

ϕ(an+1).
2 The proof of Proposition 4.1 needs to be concluded as follows. Let T be a decreasing

tree with root labelled by y. To prove that T has finite depth, let a1, . . . , ak with

k > 0 be the childs of the root of T , labelled by x1, . . . , xk. For each i, if xi < y, then

xi ∈ H by hypothesis; whence the subtree of T with root ai has depth 6 Ni for some

Ni ∈ N. Set N = max{Ni : xi < y}. We show that T halts before N + 1. To this end,

let u be a branch of T . We either have |u| 6 0, in which case u halts before |u|+1 6 1,

or else |u| > 1. In the latter case, there is i such that u passes through ai. If xi = y,

then u halts before 1; if otherwise xi < y, then u halts before Ni + 1 6 N + 1.
3 In the proof of Lemma 4.1, four occurrences of C need to be read as FD.

5.3. Prime decomposition with trees of finite depth

As in (Perdry 2004) we study a minimal prime property of a strongly discrete, commu-

tative ring A:
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MPP For every a ∈ IA there are prime ideals p1, . . . , pk ∈ IA with pi ⊇ a for every i

such that if p ∈ IA is a prime ideal with p ⊇ a, then p ⊇ pi for some i.

By removing the unnecessary ones among the p1, . . . , pk one indeed obtains the minimal

primes over a. All the ideals that occur in MPP are supposed to be finitely generated.

In the following, as in (Perdry 2004), one needs to assume that A allows for a strong

primality test :

SPT For every a ∈ IA either a is a prime ideal or else there is rs ∈ a with r, s /∈ a.

With SPT a constructive proof of MPP has been given (Perdry 2004) in each of the

following cases:

(i) A is RS-Noetherian, and the fan theorem for binary trees is assumed;

(ii)A is a fully Lasker-Noether ring in the sense of (Perdry 2004).

Following the method of (Perdry 2004) we now sketch how to relax these hypotheses:

we prove MPP still with SPT but in the case that A is FD-Noetherian. Here FD is the

Noether class of posets that have the finite-depth property (Perdry and Schuster 2011),

which we recall first. Since every fully Lasker-Noether ring is strongly Noetherian in the

sense of (Perdry 2004), and every strongly Noetherian ring is FD-Noetherian (Perdry

and Schuster 2011), our treatment includes case (ii). As we only need to consider binary

trees, it includes case (i) too: FD equals RS in the presence of the fan theorem (Perdry

and Schuster 2011).

5.3.1. Trees of finite depth We briefly sketch the required material from (Perdry and

Schuster 2011). A (finitely branching) tree is a poset T such that T has a least element

ε, the root of T ; for every a ∈ T the set Da = {x ∈ T : a < x} has a finite number of

minimal elements, the childs of a; and for every a ∈ T the set {x ∈ T : x < a} is a finite

chain. The elements of T are also called nodes. If Da = ∅, then a is a leaf of T .

A branch of T is a (possibly finite) sequence a0 = ε, a1, a2, . . . in T such that ai+1 is

a child of ai for all i. If u = a0, a1, a2, . . . , an is a finite branch of T , then |u| = n is the

length of u. We say that the length of the empty sequence () is < 0, and that an infinite

branch of T has length > n for all n ∈ N.

A mapping ϕ : F → G between posets is (strictly) decreasing if ϕ : F → G◦ is

(strictly) increasing where G◦ stands for G with the reverse order. A mapping ϕ from a

tree T to a set E is called a labelling of (the nodes of) T by (the elements of) E. Now

let T be a tree labelled by a poset E with labelling ϕ : T → E. We further assume that

T is a (strictly) decreasing tree: that is, ϕ is a (strictly) decreasing mapping.

A (finite or infinite) branch u = a0, a1, a2, . . . of T halts before N ∈ N if either |u| < N

or else |u| > N and there is n < N with ϕ(an) = ϕ(an+1). If a branch halts before N ,

then it halts before M for every M > N ; a finite branch u = a0, a1, a2, . . . , aN halts

before |u| = N precisely when ϕ(an) = ϕ(an+1) for some n < N . Last but not least, only

() halts before 0.

We say that T has depth 6 N if every branch of T halts before N . Finally, T has

finite depth if it has depth 6 N for some N ∈ N. (This notion of depth is essentially the

one given in (Mines et al. 1988, I.5).) A poset E has the finite-depth property if every

decreasing tree T labelled by E has finite depth. The class FD consisting of the posets
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with the finite-depth property is a Noether class; in particular, FD is a subclass of the

Richman-Seidenberg class RS.

If a branch in a strictly decreasing tree halts before n, then it has length < n. Hence

if a poset E is in FD, then every strictly decreasing tree T labelled by E is finite: that

is, there is N ∈ N such that every branch of T is finite and has length 6 N . If a tree T

is finite, then it is well-founded : that is, every branch of T is finite. The generalized fan

theorem (GFT) says that, for every tree T , if T is well-founded, then T is finite. This

GFT is equivalent to the assertion that RS actually equals FD.

5.3.2. Prime decomposition Let A be a strongly discrete, commutative ring.

Proposition 5.1. If A is FD-Noetherian, and we have SPT for A, then MPP holds for

A.

Proof. We construct, for each a ∈ IA, a strictly decreasing binary tree labelled by IA.

To start with, let the root be labelled by a. By SPT either a is prime, in which case we

stop the construction, or else there is rs ∈ a with r, s /∈ a. In the latter case we endow

the root of the tree with two childs, label them by the ideals a + 〈r〉 and a + 〈s〉 strictly

containing a, and continue the construction of the tree by applying SPT to each of them.

Since IA has the finite-depth property, the resulting tree is finite. Moreover, the ideals

p1, . . . , pk labelling the leaves of the tree are as required. They indeed belong to IA,

contain a, and are prime ideals. It thus remains to see that if p ∈ IA is a prime ideal

with p ⊇ a, then p ⊇ pi for some i. Starting with the case a = b, this follows from the

following consideration.

Let b be a label of a node, and p a prime ideal with p ⊇ b. Again by SPT either b is

prime, in which case b labels a leaf and thus pi = b for some i, or else the node labelled

by b has two childs labelled by b+ 〈r〉 and b+ 〈s〉 where rs ∈ b but r, s /∈ b. In the latter

case r ∈ p or s ∈ p; whence p ⊇ b+ 〈r〉 or p ⊇ b+ 〈s〉. This allows us to climb the tree.

A particular case of the finite-depth property was sufficient: that is, every strictly de-

creasing binary tree is finite. This has ensured the termination of the algorithm contained

in the proof. As a by–product one gets a constructive proof of the following:

Corollary 5.1. If A is FD-Noetherian, and we have SPT for A, then
√
a = p1 ∩ · · · ∩ pk

for every a ∈ IA where the p1, . . . , pk are to a as in MPP.

To see the crucial part ⊇ of
√
a = p1 ∩ · · · ∩ pk it suffices to observe that√
b + 〈r〉 ∩

√
b + 〈s〉 ⊆

√
b

whenever b is a label of a node with two childs labelled by b + 〈r〉 and b + 〈s〉.
With an appropriate strong primarity test in place of SPT, and an otherwise analogous

termination proof, also the primary decomposition à la Lasker–Noether can be accom-

plished in any FD-Noetherian ring. To verify this along the lines of (Perdry 2004) is left

to the reader. Last but not least, proofs as the ones of Proposition 5.1 and Corollary 5.1
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above have, among other things, inspired a technique of proof by induction for not nec-

essarily Noetherian rings (Schuster 2012); see also (Hendtlass and Schuster 2012). This

technique is based upon Open Induction (Raoult 1988), a specific form of which (Berger

2004; Coquand 1992) has been used in one of the other constructive proofs (Coquand

and Persson 1999) of the Hilbert basis theorem mentioned before.
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