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1. Introduction (Lo “T] -

In this paper we continue our investigation of the general theory of
root locus for distributed parameter systems which we began in Banks and
Abbasi-Ghelmansarai (1.983a,1983b). In the latter paper we considered the
root locus of systems whose defining operator had a spectrum which did not
cluster at any point of the plane, and we obtained a generalisation of the
classical theory by considering 'generalised poles and zeros', The motivation
for the present work is to remove the restriction on the clustering of
singulatities of the transfer function. In doing this we shall see that the
general theory of root locus is intimately connected with the theory of uP spaces.,

The basic theory of HP spaces is therefore presented in section 2,
together with two important approximation theorems for H . In section 3 we
shall consider systems whose transfer function is a Blaschke product and show
that, if D denotes the unit disk in the s plane and 3D its boundary, then the
root locus of the system clusters around 3D, Then in section 4 we shall
consider systems whose transfer function G is singular (that is, G is defined
via the integral of an expontential function with respect to a singular measure
on 3aD). This will lead to a rather surprising example of a simple system
with a bounded defining operator whose transfer function behaves (at s=1) like
a pole and a zero of infinite order at the same time, When the output of the
system is fed back with a gain k, this singularity splits up into an infinite
number of root locus branches which all converge back at the point s=1 as
ke, These branches leave the singularity from outside D and return to s=1
from inside D.

The case of a general H function is dealt with in section 5 using the
fact that Blaschke products generate H as an algebra. We shall again give
a simple example of a system with bounded defining operator such that the

transfer function has an infinity of separated poles which cluster at s=%fi,
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However the points s=+i again behave like infinite order zeros and attract
all the root locus branches,

We shall finally show that systems whose spectrum is not bounded in
the finite plane may be included in this theory by interpreting the root
locus on a Riemann surface and regarding the point at infinity as just another
point on the surface. Many systems whose singularities are not bounded may
therefore be regarded as systems defined on a surface in which the singularities

cluster at some point; the fact that the point is labelled « is irrelevant.



Diln Hp Spaces

In this section we shall review the theory of P spaces which we shall
need in this paper. Proofs of the results can be found, for example, in
Garnett (1981). Let us first recall definition of an HP space.

Definition 2.1 i 5 D={2:|zf<1} denotes the open unit disc in €, then HP

is the set of functions £ analytic on D such that

sup 1 fle(e™[Pas = [|£]|Bp <® ,  if ocpee

r 27
and for which

£, = suplf(@) <= , ifp=w=

zeD
In this paper we shall be particularly interested in H°® functions which

are the transfer functions of some systems. The importance of n? spaces in
realisation theory has already been pointed out by Baras and Brockett (1975).
We are mainly concerned here with the root locus of systems which have cluster
points in their spectra, and later we shall see some particularly surprising
behaviour in the case of H transfer functionms.

Definition 2.2 Let {zn} be a sequence in D such that

L-lz |) < - (2.1)

Then the function
B(z) = 2" - I ( Ty AfETRE (2.2)
Iznl#o y ‘an l4€nz

is called a Blaschke product.

It is easy to see that B(z) has m zeros at the origin and also zeros at
zn(#o). The condition (2.1) implies that if an infinite number of the z;s
are distinct, they must accumulate at the boundary, 8D, of D. If E denotes
the subset of 3D consisting of the accumulation points of {zn}, then B(z)

extends analytically to Q\\(Eu{1/5h2n=1,2,...}).



-y -

Definition 2.3 A singular function on D is a function of the form
.'e
S(z) = exp(}j(fl + z ) du(8) 5 (2.3)
16
e -z

where dy is a positive measure which is singular with respect to the usual
Lebesgue measure d8 on 3D. If E<3D is the closed support of u, then S(z)
extends analytically to €\E.

o P ; v ; : i9
Definition 2.4 An inner function 1is a function festuch that If(el )|=1

almost everywhere.
It can be shown (Duren, 1970) that every inner function f may be written
in the form
f(z) = eia B(z)S8(z) ,
where o is real, B is a Blaschke product and S is a singular function.
Finally, in order to characterise HP spaces, we must introduce the notion

of outer function.

Definition 2.5  An outer function for the space 4P is a function of the
form
ig AT
F(z) =e " exp) 1l [ [e "4z \log{yr(t)dt
2m o eit—z

where B is real, y(t)>o, log ¥ eLl[o,Zﬁ] and ng[§,2ﬁ].
Then we have,
Theorem 2.6 (Duren, 1970; Garnett, 1981). Every function f$o in HP
(o<p<w) has a unique factorisation of the form f(z)=B(z)S(z)F(z), where B is
a Blaschke product, S(z) is singular and F(z) is outer. [

This is a fundamental factorisation theorem for HP functions. Since it can
be shown that § and F have no zeros in D it follows that the zeros of any P
function are contained in the Blaschke product factor, However, the behaviour
of a function f£e¢HP on 8D can be very complex. Consider, for example, the

singular function



S(z) = exp (Eil) . zeD |
z=-1
obtained from (2.3) by taking u to be the Dirac measure at the point 1.
Then S and all its derivatives have the nontangential limit O at z=1,
(By a nontangential limit we mean that the limit is approached from inside
a cone with vertex at the limit and contained in D). However, if we extend
S analytically to Q\il} then, if x is real, lim+ exp(ﬁiik) = ®
x>1 x-1
Hence the point z=1 is an isolated essential singularity of S, and moreover,
we shall see that in system theory terms, S behaves like an infinite order
zero inside D and like an infinite order pole outside D.
The following two results are important in the particular case of 0
functions, in view of the simplicity of the structure of Blaschke products
compared with singular and outer functions.

Theorem 2,7 (Garnett, 1981). The set of Blaschke products is dense (in the

topology of Hm) in the set of inner functioms.
Theorem 2.8  (Marshall, 1976). H is generated by Blaschke products.
(since H is an algebra, by generated we mean that any H function can be
uniformly approximated by a finite sum of products of finitely many Blaschke
functions).

The last two theorems make the space Hm particularly attractive for the
study of the distributed root locus as we shall see later,

35 Root Locus of Blaschke Products

In this section we shall consider the root locus of a system whose transfer
function is a Blaschke product, The definitions of transfer function and root
locus for distributed systems have been given in a previous paper (Banks and
Abbasi-Ghelmansarai, 1983b) and, as in the finite-dimensional case, we must
solve the equation

1 +kB(s) =0 , kelo,>] (3.1)
m -5 -5

where B(s) = s i is a Blaschke product,

n %
|snf#0 Wén]' 1 5 s
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Let E denote the accumulation points of B on 3D and let X be the set
Xx=C\ (Eu{lf‘s‘n : n=1,2,...1). (3.2)
and denote by A(e) the annulus of width 2¢ about 3D dly€s
Ale) ={se@ : l-e<|s|<l+e}
Then we have

Lemma 3.1 If a system has transfer function B(s) (a Blaschke product),

-

then the root locus of the system begins in the set P={1/§£ :n=1,2,0007 ,

ends in the set Z ={sn: n=1,2,...} and is such that, for any e€>o, has only
a finite number of branches in E\A(s).
Proof  Consider the function
% . B(s),

Then, if sedf\z, it follows that d(s,Z)>o0 (since Z is ¢losed; d denotes the
distance from s to Z). Since B(s)# o it follows that B(s) #-1/k for
suificiently large k. Hence the root locus en&snnqhsiﬁilarly, the root
locus begins on P,

To prove the final part note that, on the set X defined in (3.2), the
function f(s)=1 + kB(s) , for any ke[b,m),is analytic and is not identically
zero on any open subset of X, Hence f cannot have a limit of zeros in X.

(The root locus is compact with any limit points included). Since f clearly
does not have any zeros in {l/En : n=1,2,...} the result follows. [J

Remark 3.2 In particular, it follows from the lemma that all but a finite
number of branches of the root locus lie arbitrarily close to the unit circle

aD. In fact, if any e>o0 is given, then outside the annulus A(e) the root locus
approximates that of a rational function corresponding to the first few terms

of the Blaschke product, since the last terms of the product must be arbitrarily
close to 1 in E\A(g). (cf. fig.3.1)

Remark 3.3 We have taken P and Z as the closures of the singular and zero sets

of the Blaschke product since the limit points in 3D are also singularities of B(s).
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4, Systems with Singular Transfer Functions

Having described the root locus of systems whose transfer function is a
Blaschke product, we shall consider now those systems with any inner transfer
funcfion; i.e. products of singular functions and Blaschke products, In
particular we shall be interested in the behaviour of singular systems.

Lemma 4,1 Let S(s) be a singular function in Hm(D) and suppose that Bn(s)
is a sequence of Blaschke products such that

B »§ in H (D).

n
Then the root locus of the system with transfer function S(s) is the limit in
the Hausdorff metric of the root loci of the systems with transfer functions
Bn(S).
Remark 4.2 The Hausdorff metric is defined on the set $ of closed subsets

If A,Bet then define

) as follows:

of a wormed space (N,

§(A,B) = max{sup (inf |la-b]| ), sup (inf |[a-b|| )}.
beB acghA acA  beB

Then (€,68) is a complete metric space,

Proof of lemma 4.1 Note first that it is easy to see that the root locus

of S(s) does not contain «. For, if

1 + kS(») =0 , some finite k
then S(=) = =1/k and since Bn+S (by analytic continuation) it follows that
there must exist a sequence sn such that

1+ an(Sn) = 0

and sn+m. However, B (w) is either « or
n



s T8 oo
where (smn) are the zeros of Bn' Hence Bn(m) must be bounded away from
-1/k.

The root loci of the Blaschke systems are therefore compact and it
suffices to prove that the zeros of l+an(s) converge uniformly for k in
compact subsets of [o,w) to those of 14kS(s) and similarly the zeros of
1/k+Bn(s) converge uniformly for k in compact subsets of (o,&ﬂ to those of
1/k+S(s). However, from lemma 3.1 it is clear that the zeros and poles of
the Blaschke products Bn(s) converge to the support of the singular measure
of S(s) and so we need to show on that the zeros of 1+an(s) converge to
those of 1+kS(s) uniformly for ke[g,l/é] for any e>o. ﬁowever, it is easy
to see that, by the definition of Hm, the zero sets of 1+an(s) , for
ka[%,l/e] form a Cauchy sequence in (6,6) (which is complete) and the result
follows. &

Example 4.3
Consider the system governed by the equation

0 - 3¢ = 3¢ + ¢, XE|0,%) (4.1)

with boundary condition ¢(o,t) = 1 , and suppose the observation is

y = ¢(1,t)

Then we may also write the system in the form

=i,
B¢_8 - .?i =
#-Go) (Hee) - o

where
=1
A"(—a —1) .
3% 9x
which can be extended to a bounded operator on Lzlb,aﬂ. The transfer function

is easily seen to be

G(s) = exp (\s+l
s-1

(i.e. a singular inner function with a single singularity at s=1),.

The root locus is given by



1 + kG(s) =0

and so, if s

r
K

and since the imaginary part

2y
(X_1)2+y2

niw .,

x + iy, we have

2 2
exp(x ~1+y ) ( cosi 2y
2 _2 2
(x~1)"+y )

2y ‘%
(x—1)2+y2

j ool

of the left hand side is zero we must have

(e=1) 24y

(4.2)

However, for k»>o , the left hand side is negative and exp is always positive
so n must be odd to make cos negative, Hence,

exp x2~1+z2 ) = 4

(x—1)2+y2 k

and so

2 2

X +2a0a x+y = l+o . a # 1. (4.3)

e 1-a
where o = log 1 |
k

From (4.2) we have

x* - 2x 41+ yz - 2y = 0 (4.4)

n

From (4.3) and (4.4) it now follows easily that

ol 1-a)3

W

and so

XZ(.1+ nzwz + 2% ( o = nzwz + nzwz = 1+a =0

;. (l"u)z \}mu (1"&)2 (l—a)z 1-a

Therefore,

x =1 or x = nzwz = 1+a ) // ( 1+ nzﬂz ’) “

- 2
(1=a) " & . (1-a)
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Alternativelv, (4.3) and (4.4) may be written respectively as

( X +'-_(}__ ) 2 + yz = 1 (4.5)
3 1-a (l-u)z
and
2 2
(x-1) +-(\— “};;) = 1 (4.6)
i 2 2
o

and so the root locus of the system consists of the loci of the intersection
of these two circles as o changes from « to - (i.,e, as k increases from

0 to =), These circles and their intersections are shown in fig 4.1 and

the root locus of the system (4.1) is shown in fig. 4.2. From fig. 4,2 we
see that the root locus i§ the union of a set of cirzles with centre at 1/an
and touching the point s=1, Hence for the system (4.1) the singularity at
s=1 splits intc an infinity of zeros when k>0 which are all outside the disk
!s|5 1 until a=o (i.e. k=1) at which point the zeros move inside the unit disk,
and are eventually attracted back to s=1, Hence the point s=1 behaves like a
infinite order open loop pole for low k and as an infinite order open loop
zero for large k, which is to be expected, since the nontangential limit of

an inpner function inside the unit disk is zero as shown above. However, the
nontangential limit of a singular function outside the unit disk towards a
support point of the measure is +o,

5. Systems with Transfer Functions in H

We shall now consider systems which have transfer functions which are
oo s
elements of H and which are analytic on some arc T of Bﬁi, From theorem

2.8 we know that, as a function algebra, H is generated by Blaschke products.

[e)]
Hence if a system has the transfer function G(s)sH , then we may write

P, (s) 5 |s] <1 (5.1)

a3
o~
w
Neger”
fl
Ho~18

i This condition is required to ensure that the outer factor of G(s) has an

analytic wentinuation outside D; see Garnett, 1981, p.78.
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where

and each Bij is a Blaschke product. The sum in (5.1) converges in the topoclogy
of H . Let SLstE be  the set on which G(s) has an analytic continuation,

and let 32 be the set on which all the Blaschke products Bij have an =malvtic
continuation, Then we can extend {(5.1) to 51”52'
Temma 5.1 The root locus of the system with transfer function G(s)eH”, which
is analytic across some arc ' of 3D, and which when extended analytically
outside D has only finitely many singularities in C\{DUA(E)} for any &30,
has only a finite number of branches outside any neighbourhood of 8DuS_ [and
so behaves, in such a neighbourhood, essentially like a finite dimensional
system) .

Proof The proof is very similar to that of lemma 3.1, and therefore
only an outline will be given. Clearly the poles of the Blaschke preducts
Bij must cluster around Q\Sl and so outside any neichbourhood N of aDUS1 we

may write (5.1) in the approximate form

n.

m ¢ %)
G(s) = il B..(s
IEENEY ))7§

1._ J:‘
and we may write each Blaschke product Bij(s) in the form
i
B,.(g) = . ..
T s) ulj(s)BlJ(s)
f . | . .
where Bij(ﬁ) ig a Blaschke product with only finitely many zeros and a.,=1l.

1]

Hence, in E\N ,» 1+kG(s) has the form

< 9

m ]
14G(s) = Ltk - ) j I ( ij(s))%

i=1 =1

which is rational. 0
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Example 5.2 Consider the system

84 ¢ _ _ a2
8t28x2 sz

¢ (5.2)

defined in the interval [b,l] with boundary conditions
$(0,t) =0, ¢(1,t) = u(t) (control)

and with the observation
y = ¢(z,t)

Then (5.2) can be written

ﬁ=<i '1(-_8__@ + 9
8t2 sz . 3X2
and the operator

oy

A.=(32 )‘"1 / ~ 3" +.1), D (L) = {¢€H2[0’1J:¢(0)=Ds¢(1)*u}

L)

X N oX

v

can be extended to a bounded operator on Lz[b,lj. The stability of the
system is therefore determined by o(4).

Now the transfer function of (5.2) is easily seen to be

1
2cosh %- ot
s +1

and the root locus is given by

cosh(l 1\ + k =0 (5.3)
24 e 2

Now it is well known (Abramowitz and Stegun, 19(%) that

Gis) =

oo

sorh i = @ [j' (52+1)(2k"1)2H2+1;] (5.4)
2 Js%+1) k=1 (52T (T 131

and so G(s) has open loop poles at
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2
s = #i (’l + 1
K. (2k—1)2H2

which cluster at ti and intuitively it appears from (5.4) that G(s) should
have an infinity of zeros at +i. Note that G(S)EHm but is not an inner
function although we know that on D it must be the H ~ limit of a sum of
products of Blaschke functions, and by lemma 5.1 we expect 'most' of the
root locus to cluster near 3D. That this is so can now be seen by an

elementary calculation. In fact, from (5.3), if we put (=x+iy = “%?1?*‘

2¥sT 4]
we have
cosy cosh x = =k , siny sinh x = 0
2
and so x = 0 or y = am, For kg[b,%) we must have x = 0 and so
cosy = = k ,
2

For ke[%,m) we must have y = nt for odd n and then

cosh x = k
2

The solutions of these equations can easily be seen graphically as in fig 5.1.
If we transfer this information from the t-plane back into the s~plane, it is
easy to see that the root locus of (5.2) is as shown in fig. 5.2. {we have
shown only the roots clustering abo#t +i; there is a similar locus around 1)
As we saw above, the points s=+i behave like infinite order zeros which attract
all the open loop poles, Note also that, because of the square root in the
transfer function, this root locus should be interpreted on a Riemann surface
obtained by cutting the s—plane between +i.

6. Relation to systems with compact resolvent

In the previous sections we have been concerned with systems whose
spectrum is bounded in the finite complex plane. We shall now consider a

simple system whose spectrum is separated on the negative real axis and tends
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to infinity. Such a system is given by the heat equation

294 = 9 ¢

}

t ax LD ‘d'\'l\;:\lu
) E, T

$(0,t) = 0 SPEFTE (ENCE

ppPUED
$(1,t) = u(t), t>o Y LBR!
f,b(X,O) =0 " XS[:O,].:[,

together with the observation

v = ¢(&,t) , &elo,1]
(cf. Pohjolainen, 1981). Then the transfer function is

G(s) = sinhvsg (6.1)

sinhvs
The spectrum of the system consists of the eigenvalues
2 .2

s, = -n 1 ,
If we put
(6.2)

s =1 - 1
s

then we obtain the transfer function

G(s,) = sinh(/lfs, §) (6.3)
sinh{ | 1
( 1=-g’ )

(e}
in the new variable s’. It is easy to see that G(s')eH (s') and the previous

theory applies. Hence it is natural to consider the root locus of (6.1) as
clustering around s=e, (It is easy to see that the same argument applies to
any system whose defining operator has compact resolvent,)

This example and the preceding theory essentially confirm the suggestion
made in a previous paper (Banks and Abbasi-Ghelmansarai, 1983b) that it is
reasonable to consider the root locis of general distributed systems on a

Riemann surface, In the simplest case of a surface of genus 0 we obtain
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the Riemann sphere S shown in fig. 6.1, which is "symmetric' with respect to
each point seS, Hence if D is a disk on S (or even a topological disk DT)
as shown in fig. 6.1, we can define the space Hm(D) just as before, The
distinction between the systems with spectrum in the finite plane and those
whose spectrum clusters at « now essentially vanishes, and hence regarding
s=® as a well-defined point on the sphere S we can see that the change of
variables (6.2) is unnecessary. It merely corresponds to shifting equivalent
points on 8§,
7 Conclusions

In this paper we have seen that the root locus theory for distributed
systems may be extended to include systems whose transfer function is in H .
The examples which we presented show that the root locus of such systems
differ radically from the finite~ dimensional analogue although the classical
result that the number of zeros must match the numbep of poles carries over
provided we 'count' the zeros and poles in the correct way. By saying that
the zeros and poles match we mean, of course, that we include any open loop
zeros at «, so that the root locus of 1/s goes from s=o to s==, and the system
1/s has a pole at s=o and zero at sg=o, This simple system provides a clue that
even the root locus of a finite dimensional system is most naturally conceived
of on the Riemann sphere, since then the zeros or poles at '"infinity' are
counted in just the same way as at any other point. The classical result that
a finite-dimensional system with m zeros and n poles (in the finite plane) has
n-m branches of the root locus tending to « becomes simply that on the
Riemann sphere the system has precisely n zeros and n poles and n branches

(almost everywhere) which tend to the zeros as k3w,
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