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Introduction

The theory of linear systems has been developed over many years
into a unified collection of results based on the application of linear
mathematics. 1In the state space theory the properties of linear
operators have been used to obtain results in controllability, stability
etc., and in the frequency domain the spectral representation of such
operators can be used to generalise classical s-domain methods (see
Banks, 1983). When we come to study nonlinear systems then we are faced
with many types of problems which appear to have no unifying threads, and
consequently different methods of approach have been developed for‘
different types of systems. Why are nonlinear systems so difficult? Is
there a frequency-domain theory of nonlinear systems and can we even
define the spectrum of a nonlinear system?

In this paper we shall attempt to answer these guestions (at least
partially) for homogeneous systems of degree 2 (defined by the second
term of a Volterra series). It will turn out that the natural generalisa-
tions of the classical concepts of poles and zercs of linear systems are
varieties in two-dimensional projective space. We shall consider the
structure of such varieties and obtain a nonlinear 'root locus' which
begins on 'poles' and ends on 'zeros'. One of the main objects of this
paper is to demonstrate a strong connection between nonlinear systems
theory and algebraic geometry.

Algebraic geometry and algebraic topology have been applied to
linear systems theory; see Brockett, 1982 énd DeCarlo et al 1977.
Moreover, the theory of two dimensional systems in Hnmﬂm processing
has been developed using two dimensional Laplace and z-transforms, as in
Goodman, 1977, Fornasini and Marchesini, 1980, for example. In this

paper we shall be concerned with a quotient of polynomials p(sl,s2)



and q(sl,Sz) in two variables and we shall call the zeros and poles of
the system K = p/g the zero sets of the irreducible factors of p and q,
respectively. This is natural since these objects are irreducible in
a geometric sense, just as points in the complex plane are irreducible.
In this paper € will denote the complex plane and if a complex
l-space has coordinate s we shall write @S. The ring of polynonials is
two variables with coefficients in € will be denoted @[sl,sé] or
C[Xl,Xé] depending on the context . n-dimensional (affine) comPLQX
space is denoted " and n-dimensional projective space is denoted PC) .

Recall that an ideal in a commutative ring R is a subset I € R such that

RI = IR € I.

Other notations will be introduced as we proceed.

Homogeneous degree 2 systems

In this paper we shall be genterned with a scalar input and output

bilinear system of the form

It

% Ax + bu + ulx
Yy = €x (2.1)
nxn n . ;
where A, N € R , b,c € R and u is a scalar control. Then, as is

well-known (Bruni et al 1974), the input-output re¢ lation of the

equations (2.1) may be written

o t t t, . A(t-t.) A(t_-t,)
y(t) = ceAtx+ E f f l,...f e lce 1 N(e L4 R 5 mmns
i=l o o o
A(t l—t_) At .
e HE % N(e x)u(t|))...u(tl)dt, dti
o T B A(t-t_) Alt. -t.)
o 7 f ft e e e 12w
i=l o o fo)
A (ti-'l o " )

e b u(t)).... ule)de ....at, (2.2)



where % is the initial value of x(t).
We shall consider the special case of homogeneous systems of degree 2,
with zero initial wvalues § = o i.e. where all terms except for i=1 in

the second sum of (2.2) are zero. Then, we have

ol A(t-t_ ) At -t)) (2:3)
v(t) =f fl ce 1 N(e L2 L“(tl))u(t,.}ﬂttlt{t]
o o©
It is easy to show that this may be written in the form
t t ATl AT2
yv(t) = f f ce N e b u(t—Tl)u(t—Tz)dTl de (2.4)
o o
and so we may define a two-dimensional system by
t t AT At
1 2 1 2
t = = _ .
Y, (€ ot,) [ ] ce "me bu(t,-t,)ult -t,)dr, dr,  (2.5)
o o
so that (2.4) and (2.5) are related by
y{t) = Yz(t,t) s (2.6)

We can now define the two-dimensional Laplace transform of (2.5) in

the usual way and we obtain

-1 -1
Y2(Sl’52) = c(slI—A) N(sZI—A} b U(sl)U(sz)

and we define the transfer function of the system toc be

Y (s.,8.)

A
H (s 6,s.) = Lo 2

27172 U(Sl)U(Sz)

-1 -1,
= C{slI—A) N{szl—A) b

Conversely, given a function HZ(Sl'SZ) which is recognisable in the sense

that there exist polynomials P,Ql,Q2 such that

P(sl,sz)
H(s.,8.) = ——————— (2.7)
2L 8 Ql(sl)Q2(52)

(i.e. the denominator is separable), then it can be shown (Mitzel et al,

1979) that H has a bilinear realisation of the form (2.1). In this case



the input-output stability of the system is simple and one can easily
invert the Laplace transform in (2.7).

However, if H_ is not recognisable then the study of a transfer

2

function of the general form

P{S ¢S )
1" 2

H (s.,s5,) = =—————T— (2.8)
271772 Q(sl,s2}

is not such a simple matter, although many stability results have been
discovered in the theory of two-dimensional filters (see, for example
Reddy et al, 1981). 1In this paper we shall take a different view and
relate the general transfer function H2 in (2.8) to elementary algebraic

geometry by studying the 'singularities‘of H2 given by

Q(sl,s2) =0 (2.9)

Such an equation defines curve C in C2 and we shall classify our systems
in the next section according to the topological nature of the 'irreducible'
components of C.

Before considering systems from this abstract viewpoint let us first
indicate a general feedback system which is not, in general, recognisable.
Suppose that the system (2.1) is included in the feedback system shown in
fig. 2.1. Then we have

t t AT At

f f ce lNe 2
o O

I

yv(t) bu{t—rl)u(t—12)dtldT2

t t At AT 1
f j Kce ‘ne 2b(G*e%) (t—Tl) (G*e %) (t-Tz)dt art (2.10)
(@] O

It

1 2

where we regard kG as a (linear) compensator. Then, as above

.2 =] . -1 L L
Yz(sl,sz) =k c(sqI-A) N(szi"A) b G(sl)G(sz)E (sl)E (52)

where Elz(sl) - i.(eli}'(sl). (.Z, denobes LQF[QQ@ tPanS{;anJ‘



- B

However,
e(t) = r(t) - y(t)
and we may write
e%(t)e%(t) = r(t) - y(t)
or e%(t )e%(t ) = r_(t_,t.) - (t.,t.)
1 2 51t b6 A R
where rz(t,t) e P o
Hence

5 L :
E (sl)E (52) = R2(sl,s2J - Y

and so, denoting
K2(sl,52)

we have

YZ(Sl'SZ}

The feedback svstem

Note, however, that

although it is easy

(s

5 (878,

-1 =i
c(slI—A) N(s2I—A) bG(sl)G(SZ)

. 5 L
=k K2(51'52)E (sl)E (52)

It

2
k K2(51'82)(R2(Sl'52) - Y2(sl,52).

therefore has the transfer function

2
Y (S S ) k K {S S )
e kn ha L T A T

- 5
R,(s,/s8,) 14k K, (s, 45,)

1

the system in fig. 2.1 is not a real system if e < o,

to see that the real system in fig.2.,2 has the same

input-output relation from zero initial conditions provided e does not

change sign. (For,

identical and if e is always negative, then from

e
0
Il

ft

1l
1
T
b
Q
@®

if e is always positive the systems are trivially

(2.10)

t Atl AT2 L L
fo ce “Ne ‘bi(c*|el )(t—Tl)i(G*!el )(t—Tz)dTldT2

At 1
1ye 2b(G*Ie|%)(t—Tl)(G*|e|€)(t—T2)dTldT2



which is the output of the system in fig. 2.2). If e does change sign,
then we can use the translation invariance of the systems to make them
equivalent on interval of constant sign although we must now consider
non-zero initial conditions. This will make the transfer function (2.11)
depend on the initial values.

In this paper we shall study the simplest case of a general transfer
function such as (2.11) which we assume is independent of the initial
values. In order to do this we shall devote the next section to an intro-
duction to the algebraic geometry of curves in the projective space
Pz(c) which we shall need in the sequel.

Algebraic Geometry of Projective Curves

In this section we shall digress somewhat to summarise the basic
results of the algebraic geometry of projective curves (see, for example,
Kendig 1977). This will be necessary, since it will turn out that the
tpoles' and 'zeros' of our two-dimensional system are just such irreducible
curves. These objects are then the natural generalisations of the eigen-
values or spectra of linear operators. We begin by reminding the reader
of the definition of the complex projective 2-space P2(m).

2!
Definition 3.1 The projective space P (C) is defined by

3
c /~
. : : 3 .
where ~ is the equivalence relation on € given by

X = [%l,xz,xéj -~y = Eyl,yz,yé] iff x = ¢y

for some c¢ e €\{o}. P2(C) has the induced topology.

Alternatively, we can visualise Pz(c) as the complex 2 space C
with a 'point at infinity' added to each complex line through (0,0).
Note that each such complex line with the one-peint compactification is

just the Riemann sphere or pl@.



Linear systems are defined naturally on Pt(c) (see Banks and
Abhassi-Ghelmansarai, 1983) and this space has just a single point 'at
infinity' as pointed out above. We are now going to study our two-
dimensional system on PZ(C) which has a complete sphere Pi(c) 'at
infinity'. This makes the behaviour of 'poles' and 'zeros' at infinity
much more difficult than in the linear cq$%e as we shall see.

Let m[xl,x2] dencte the ring of polynomials in the indeterminates

Xl and X2' We define for pi € C{Xl,xg], i=1l,...,k the affine variety

V({Pi}) = {(xl,x ) e C2 : for each i, pi(x

2 rxz) = O}

1

If k=1 we have the affine hypersurface V(pl).

The projective variety (or projective curve) affined by p is the

closure of the affine wvariety V(p) in Ez(m). We shall now describe the
basic structure theory for projective curves; the proofs of all the
following statements may be found, for example, in Kendig (1977). First
recall that @EXl,XZ] is a unique factorisation domain, so any

P & C[Xl,X2] may be factorised in the form

a o ")
1 2 m

= iuwe <

1% Pl P2 Pm ( )

where each P, is irreducible (i.e. pi = qi-ri, for a, s ri € E[Xl’xé]
implies q; € C or r, e €) and the expression (3.1) is unique up to the

order of factors and multiplication by elements of €. The multiplicity

of the factor p. is a. -
i i

Note that

and a variety V is irreducible if V = VltJ V2 implies V = Vl or V = V2.

V(q) is irreducible iff g & c[xl,x21 is irreducible. Hence, by (3.2)



we may study irreducible varieties. The topological nature of each
irreducible variety is then given by

Theorem 3.2 If p ¢ C[?I,Xé]\c is irreducible and of degree n (i.e. the
maximal monomial degree of p), then V(p) € PZ(C) is topologically a
compact, connected, orientable manifold of some genus g with a finite
number of points (possibly zero) identified with a finite number of
points. [

Mypically, an irreducible projective curve will have the topological
structure shown in fig. 3.1. (Here the genus g = 2 and there are three
pairs of identified points.) A curve V(p) defined by the polynomialL
p € C[-Xl'XZJ is said to be nonsingular at the point P g V(p) if

9p(P) # O or ?B}P) # 0

’8)(1 DXy
For simplicity, we shall assume that all irreducible projective curves in
this paper are nbnsingular. We shall consider singular varieties in a
future paper. In the case of nonsingular varieties we can prove the

genus formula

_ (n-1) (n-2)

for the curve V(p) where deg p = n.
Now, to obtain the topological structure of a general variety

m
Vip) = U V{pi) (by 3.2)) where the p, are irreducible and relatively

i=1
prime we use Bézout's theorem which states that
m
v E— = .
deg ( (pi) N n V(pm)) ijl deg P

where the value on the left is the total number of points of intersections
of the V(pi)'s in PQ(C) counted with multiplicity. Hence V(p) consists

of a set of m compact orientable manifolds which touch each other at a
finite number of points . (Recall that we are assuming that each V(pi)

is nonsingular.)



Example 3.3 It is easy to see that

A 2 2 2
= - - c
V(pi) V(X2 xl(xl 1) € P (€
is topologically a torus and that
A
V(p2) = V(Xl)

is a sphere. Now deg Py = 3 and deg p, = 1 so that

v(p) & Vipp,) = Vip) U VB,

B2
is topologically a torus and a sphere which touch at three points
(by B€zout's theorem). V(p) is shown in fig. 3.2.

We have now summarised the elementary theory of projective variéties
in PZ(C) and for varieties with nonsingular irreducible components we see
that there is a particularly nice topological classification in terms of
Riemann surfaces whose genus satisfy (3.3). When we return in the next
section to nonlinear systems theory, we shall interpret the irreducible
components of p and g (€ c[xl,Xé]) in the transfer function H, = p/q as
the 'zeros' and 'poles' of the system. In the case of linear systems
theory, when we have a transfer function of the form G(s) = p(s) /q(s)
where deg p = m, deg g = n (n > m), then we say that there are n-m zeros
at infinity; i.e. when we extend G to P!(€) (which is topologically a
sphere) then G(s) has a zero of order n-m at c0€PL(C). We are faced

with the same problem in two-dimensions with H, = 9(51’52)/q(31’52);

2

2
however, in this case the part of P (€) 'at infinity' corresponds to a

projective one-space Pl(c). Hence, to determine the behaviour of H2 at

infinity it will turn out that we must look at sphere coverings of pl(o).

Definition 3.4 An m-sheeted sphere covering of pl (@) is a triple

(M,PY(€C) ,m) where M is a locally compact space and m: M ~> pl(c) is

a continuous surjection such that



- 10 -

(1) If pe M,3 adisk D€ M such that p € D and each of the m
-1
components of ® ~ (D) is (homeomorphic) to a disk Da' l<g <m

: D » D is a homeomorphism.

(ii) ﬂlD ”
Yy

T is called the covering map.

The triple (E} Pi(C), ;} is called a near m sheeted cover of pl(e)

if these exist a finite number of points Pl,--,Pk € PI(C} such that

= -1 < =1
m\s ({pl,...,pk}),in(c)\({pl,...,Pk}),flm\f ({Bys-e /B, D)
is an m-sheeted cover of Pl(C)/({Pl,--.,Pk}).
; 2 ,

Then it can be shown that if C is a curve in P (€), C is either a
near m-sheeted covering of Pl(C) or the one-point compactification of
such a covering.

*

A final result which we shall need is the fact that the set C(xl)

. , - i/n
of all fractional-power series of the form E a, X

i=ig Tt
cally closed field (i.e. any polynomial in the ring C(Xl) [Xé] splits

is an algebrai-

*
i) ) and so we have
n

- - - i/mye
p(xl,x2) kZl(x2 (g aij(xl xo) )) (3.4)

completely in €(X

for any polynomial p ¢ @[Xl,Xé] of degree n and any X, € €, where we have

assumed that p has been written in the form

p(X.,X.) = X0 + a_(X T A (x)
172 2 117" n'1

with deg ai(Xl) < iox a; = 0. Moreover, each of the series in (3.4)
converges in a neighbourhood of X

On the inversion of the Laplace Transform

We shall now return to the freéguency domain study of homogeneous

degree 2 systems and suppose that we have a transfer function of the form

p(X. ,X.)
2ot (4.1)

H (X.,X.) = ——=
21D q(xl,xz)

Iet us write p and q as products of irreducible factors; then we have
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i
1 ....pmm
H2 = —§-—w——3—~— (4.2)
ql"....qnh
As we mentioned earlier, we shall assume that each of the polynomials
. . 2 .
pi'qj is nonsingular and so the zero set of each one in ® (€) is a

compact manifold of some genus depending on the polynomial.

Definition 4.1 ILet

2
L, ={(x,x) e p, (X

2
P = {(x;,%,) e € .qn(x

i ,X2)=o},liﬁin,

1
where the bar denotes projective completion (i.e. closure of the set in

2
P (C)). Then we say that.Zk;(l <k <m, Pg(l < 4 < n) are, respectively,

the open loop zeros and poles of the system (4.2), with multiplicities ik,j2

It is clear from the discussion above that these are the natural
objects to be considered as the nonlinear generalisations of the poles
and zeros of linear systems in p*(c). As we proceed we hope to demonstrate
that by considering projective algebraic curves in this way, we can extend
much of the classical frequency domain theory for linear systems. Let us
first consider the inversion problem of the two-dimensional Laplace
transform HZ(Xl’XZ) (we shall use X,,X, rather than the traditional 81,82).
In the linear case, the easiest method is to use a partial fraction exovan-
sion of the transfer function. We shall now see how we might generalise
this to H.. The first thing to notice is that, for polynomials in a

2

single variable p(s), g(s) of degrees m and n, respectively, we may write

e
w

~13
e I—J-
>

I e~13
)_l

5+s .,
i

where each a; is a constant and q; is a linear irreducible component of

g (assuming g has no repeated root). If we try the same idea with
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= X X i i =] e o i
H2 P(Xl' 2)/q(xl, 2) by writing a=9q; q in terms of

irreducible factors (which we shall assume for simplicity are distinct)
then it is not in general possible to write

X
RN N
2 alxaX) g

H

even if we allow the ai's to be polynomials. For example,

%
¥ + (4.3)
- *
x“ - x 2y Ry Ay T

for any al,a.2 € C[Xl,x2]. In order to resolve this problem we must

consider the ideals generated by p and ql,..,qn.

Definition 4.2 If p ¢ C[Xl,Xé], then the principle ideal generated by

p is the set

I

(p) {r: r = r,p for some r, ¢ C[xl,X2 13

I

p.e[X X ]

Note that if p 1s irreducible then (p) is a prime ideal. Each prime

ideal (p) will generate the affine variety V(p) given by

{(Xl,X2) e € : §(xl,x ) =0 for all p e (p)}

Vi(p) 9

o}

o
{(xl,xz) e € p(Xl,X2)

We emphasize that we used the symbol V(p) earlier to be the projective
variety defined by p. This should not cause any confusion.
It is easy to show that (Kendig, 1977)
(i) (piPZ) = (pl).(p2) - (pl) f\(Pz}
(ii) V((pl)+ (p,)) = Vip;) 0 Vip,)
(1ii) vip) N (p,)) = Vip,) U V(p,)
(iv) (pl) c (p2) %V(pz) < V(pl) (4.4)

(v) V{pl) = v(pz)-& (pl) = (p2)

for any prime ideals (pl), (pz). We can now prove
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p(Xl'XZ)
Lemma 4.3 If r(X_ ,X ) = where each qi

wig X

is irreducible and p,ql,...,qn are relatively prime, then we can write

r(x,,X) = } {4.5)
1° 2 i q (Xl,X)
for some polynomials P, 1 <i<n, if and only if
< ol . e, !
(p) € (q)) +(q))
where qi = ¢ gq.. (If n=2 this is just (p) € (ql) + (qz))
j#
Proof If, This is trivial, since if p e (p) € (qi)+....+(q;) then there

must exist p; € m[xl,xé] such that

n

= M V.
p izl (j#lqJ P, ,

only if. Suppose that we may write r in the form (4.5) and let t(Xl,X ) € (p).

2

Then t = pt. for some polynomial t. and so

1 1

o+
1l
I ~—13

q;(tlpi} £ (qi)+...+(q£) N

i=1

Corollary 4.4, Under the assumptions of lemma 4.3, if

n
N Vvig,) € Vip)
; i
i=1
then we may write r in the form (4.5), and ccnversely.
Proof: This follows immediately from (4.4). O
In other words, in order to write r = p/(ql...qn) as a partial

fraction (4.5) it is necessary and sufficient that the affine wvariety

defined by p contains the intersections of the affine varieties defined

by the qi's. We now see why we cannot have equality in (4.3). In fact,
gince p = 1, V(p) = ¢ and v(xl—xz}rq V(Xl + X2) = 0. However, we have
n
" Corollary 4.5 1/(qi....qn) = izl pi/qi for some p; € C[Xl’x2]

(1 <i <n) if and only if



- 14 -
n
(1) = X (g*)
i=1  *

i.e. if and only of the ideals (qi) are comaximal. ¢
We can naturally ask how we should determine the polynomials By
in (4.5) if they exist. Let us note first that they are not unique,

for (in the case n=2) if

p _P1 B
r:—-———'—————‘l"——
49 4 9
then _ _
+ s
(pl plql) (p2 plqz)
r = 4

9, q,

for any 5& £ E[Xl,Xé]. However, if

then

o

s

n
lz&{pi - i)qf =0 . (4.6)

Consider qi. This occurs in all the terms in the sum of (4.6) except the
th = ; :
i . Hence {pi = pi) is divisible by q s since the qi s are irreducible
and relatively prime. Therefore
(p; = p,) e (a;)

and so P, is determined module the ideal (qi). Hence

p, € €[x,X,]/(q,) . (4.7)

The quotient ring in (4.7) is called the coordinate ring of the (affine)

variety V{qi) and is denoted by Cq [xl, 2], where
1

X, = Xl + (qi), x, = X, * (qi).

Since q; is determined by its wvalues on V(qi), then if

(4.8)



we have

Hence if we make the substitlfion X, = X

— T

1 X X2 > x2 we have

r(xi,xz)qi(xlrxz) = Pi(xl'x2)
= plx, ,x,)
= {? Y (4.9)
™ q.(x,.,x.)
s 3 %2

Note that if the partial fraction expansion (4.8) is valid, then the g

n
must be divisible by 7 g. in © [x.,xé].
J q, - 1

J#i=1

Example 4.6 Consider the transfer function

H2(X

Note first that

Now , pl

and similarly

Py

More generally

X
1 P

T2 2, q.d
- +
(%, =X,) (X, 2x2) i

L) =

17%5 , say.

Vip) 2 {0} = V(q1)11 V(q2) and so we may write

p, P
- 1,72
ql q2
_b - B
g _ 2 3
X =X
2 1. 2
_2 4
-

we know from (3.4) that at almost all points (yl,yz) of a

variety V(p) we may write

X
2

= + a_ (X, = ) + a (X, - )2 +
Yo gy T 1y 21 T B 4

for some coefficients a, - Then in (4.9) we may take

%y

to obtain

2
= -+ s - "
Vo tag g - y) aylxy -y 4

1

X
pi(xl.yz + Z Et.(x:L = Yl} )

which defines pi(X

l,x2) by analytic continuation ,
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We have now reduced the inversion problem to the inversion of terms
of the form p/g where g is irreducible and p ecq[xl,xz .  (Provided the

conditions of lemma 4.3 hold. If they do not then we have

BE. .. P
q ql"'qn
n
where V(qi) $ V(p). However, since the qi's are irreducible and
i=l n
relatively prime we know that N V(qi) consists of a finite number of

=1
. 2 +
points, say (qj,sj) g € for 1 < j < N. Hence, for example

N N
m(X u_)q jil(xl aj) p/(q1 qn) (4.10)

satisfies the hypothesis of lemma 4.3, and so we may write

N 3
=V - R (4.11)
i:

n
1 93

Qg

™ (X_-0,)

. 1 3

j=1

where, as before, qi is irreducible and pi £ Eq r%l,xz]. However, if we
i

can invert pi/qi to give fi(tl't ), say, then the inverse transform of

2
oo
N a; is Just
m (Xl—u_)
Gl
N o.t
1 j 4.12
(o (el b s By bty 18yl = e
k=1 L
w (uk—a,}
j#k=1

where *t denotes the tl convolution.)

1
The inversion problem of the quotient p/q, for g irreducible can be

further reduced to the inversion of 1/q. For, if

-
X = X
p(X),X,) = Ja, ¥ X
then

-1 _ (1) (3) -
i,xl’x2p = Eaija ()87 (£,) = F(t,,t,), say (4.13)
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(k) th . ) :
where § denotes the k derivative of the delta function. (Of course,
F is a distribution, of Schwartz, 1950). Then,

1
1’x

z}{ (p.U(Xl)U(X2)) F(tl't2)*t "

(w(t,) w(t,))
2 12 £ 5

V(tlltz) ]

say, where *t & denotes the double (tl,tz)— convolution and u is the
1 2
input to the system. Now,

p(X, X))

12
U(X )U(X2)

V(XX = e

is equivalent to the partial differential eguation

i} n 8i+j
by . —ug—éijf = vt .t,) (4.14)
i=1 §=1 *J dt, At

with zero 'initial' conditions

i
2Y (6,t)) =0, for 0 < i < m-l
Btl
Bjy
4 (t_,0) =0, for 0 < j < n-1 (4.15)
Bt] 1 e S s
2
where m n i3
q(x,,Xx) = Yy } b,, XX
17720 T L) jh i T

Let G(tl,al;tz,gz) be the Green's function for the equations (4.14) and
(4.15); i.e.
E E b, . giiiqu G(t, & ;tz.az) = 5(tl-£l) (tz-az) (4.16)
i=1 =1 7 o] et 3
Then we have,

y(e t) = [ Gt g it,.6)) ulg ,£,)aE,dE,

1

Hence the inversion problem can be solved completely if we can find a
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Grein's function for any two-dimensional differential operator with zero
initial conditions and an irreducible characteristic polynomial.Consider
the following simple example.

Example 4.6 Suppose a system is defined by

U(Xl)U(X2)
- X
, =%
Then we must solve
9G 82G
2 - i = (e, = E )8k, = EL)
oty ’a{:% 1 1 2 2

However, it is well known (Friedman, 1956) that this equation has the

solution
. _ B ~% - _ “L. g
Gle, /By 7ty E,) = (4n(t] ~£)) 77 exp[-(a(e)-€))) T (x,-E,)"]
and we have
y(tl'tZ) =G ¥ . u(tl)u(tz)
172
tl t2
= [ [ e e ity 8 u(E ulE)) dE dE)
(@] 0]
and so
t L
v(t) = jo jo G(t,E 5, E,)u(g,ulg,)de, dE,

Spectral Theory of Homogeneous degree 2 Systems

We have shown above that for:systems defiped by a quotient of two
polynomials p{Xl'XZ) and q(Xl'XZ)' the natural generalization of poles
and zeros of a linear system are the irreducible varieties defined in
PZ(C) by the irreducible components of g and p, respectively. An obvious
question is to ask how such objects change under changes in the system

structure. In particular we shall consider the feedback system in

section 2 (e¢f,(2.11)) given by
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k K (s, ,s,.)
2 1+k2K %s 28 ) (5.1)
27172

~

instead of xl,x to conform with the

(We shall again use the symbels 51,52 5

usual system theory notation, and we have replaced k by k which we can

clearly do). Suppose that

p(slrsz)

K (S S ) e e
2 12 q(SlrS2)

p.(s.,8.)u...D (5. ,8.)
_ By Wy m*Sq 1Sy 5,53

ql(sl,sz)....qn{sl,sz)

where {pl} and {qj} are the irreducible factors of p and g, respectively,

which we are assuming are distinct, for simplicity. Then

k p(s_,s.)
L_2 (5.3)

K_ =
2 q(51,52)+kp(sl,s2}

Let us recall the basic topological structure of the root locus of a

linear system defined by th% transfer function

T (s—zi)
i

- (5.4)

el = p(s) _
qgl(s)

n
™ (s-p,)
j=1 7

where n > m. Then interpreting

=i kp
¢ = 3o

On Pi(t) (i.e. the Rienann sphere) we know that the locus of g + kp = O

for k ¢ [o,w] is a connected directed graph in P! (€) with n branches

starting at the open loop poles and n branches ending on the open loop

zeros (with n-m open loop zeros at infinity). A typical situation is

shown in Fig. 5.1 when n=4, m=2. As we have shown,some of the n branches

may coalesce at finite isolated points, when g + kp has multiple roots.
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However, the number of poles is always equal to the number of zeros on the
compact surface (counting multiplicities) and there are never less than n
poles (again counting multiplicities). The next example shows that such
simple behaviour will not generally occur for degree 2 systems.

Example 5.1 Suppose we have the system

52 + s
K2 =—l-s—'§—2— (5450
12
Then
= 52 + 52 = =
o | P9y T Sy By T Sgr

and the 'root locus' is specified by

2
+ =
slsz k (Sl+s2) 0 (5.6)

Clearly the root locus begins on open loop poles and ends on open loop
zeros. Now each of the polynomials p,ql,q2 is irreducible and clearly
each defines a variety in PZ(C) which is topologically a sphere. Moreover,
these three 'spheres' intersect each other at 0. (The intersections of
p,d, and p,q2 at O is of multiplicity 2). Now consider (5.5) for positive
k. Then sls2 + k(si + 52) (k > o) is clearly irreducible and is also
nonsingular.

Hence, by the genus formula (3.3), the irreducible wvariety in PZ(G)
defined by this polynomial is of genus O; i.e. it is also a sphere. Hence
our system has two open loop poles but only one closed heppole for k > o.
As k + © this pole tends to the open loop zero. The root locus is shown
in fig. 5.2. (We can only show the topological structure of the poles on
the root locus, of course; picturing (even visualising!) their embedding
in PZ(C) is much more difficult). Note that the three dimensional embed-
dings of the projective curves in R3 must intersect at points other than
zero. The sphere corresponding to the closed loop pole can only tend

towards the open loop zero sphere with intersection just at O in four

dimensions.
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We may naturally ask 'what happens to the system (5.5) at infinity?'
As we remarked earlier 'infinity' in PZ(C) is a one dimensional projective
space (i.e. PL(C)) which we add to Cz to form the completion P2(¢). In
order to determine the number of 'poles' and 'zeros' there are at infinity
we shall count the sphere coverings of Pi(C) generated by p and g. We
mentioned earlier that Pz(c) can be defined as the union of €2 and the set
of points added to each complex l-space of Cz to form a P!(€), together

; 2
with the obvious topology. Now each l-subspace of € 1is given by
s. —as. =0 , ae €\ie}

(apart from the Sl-axis) and so the projective l-space pl(e) at infinity

2
in P (€) is parameterised by o= sl/s , apart from the point S, = 0.

2

Hence a system given by

p(s_,s,)

12
K (8. 48,) = —"Z+

behaves at infinity like the system

p(usz,sz) p P (u,sz)

= = '
C_{(OL_:2152) gq {0'.152)

K2 ((1,52) =

lLet pi,...,p&,and qi,...,q& be the irreducible components of p' and q',

regpectively. Then
Ky esy) = g

Consider any factor, say pé. Then if we project onto Ca along CS we
2

obtain either a trivial point (if pi(«,sz) is independent of 52) or a

sphere covering of Ca which corresponds to a 'pole' at infinity. The

topological properties of the pole are specified by the nature of the

covering.
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Returning to example 5.1 we have

2 2 2 2
o s_.+s (o s,+1)
2 2
Balamgl som = ¢
o 2' 2 O’.-S2

2
Now , p'(u,sz) =g s,tl is a one-sheeted covering of Ca and is therefore a

2
sphere. qi(a,sz) = o 1s trivial and does not represent a pole at infinity
and qé(a,sz) = s, is again a sphere covering of Cu' Hence the system
(5.5) has a pole and a zero at infinity which 'cancel' so that no branch
of the root locus approaches the projective l-subspace Pl (€) at infinity
which we have already seen above. Incidentally, if we parameterise pl (o)

at infinity by g = sz/sl instead of o then we obtain

2
+
s1 - 851 Sl B

Kg(sl,B) = = ——EE“EV
le i

and we arrive at the same conclusion as before.
We may now state the following result
Theorem 5.2 Let the homogeneous degree 2 system be defined by

pls.,s.)

K,(s,.8,) = (—-1‘5‘2‘) (5.7)
o R
and substitute Sl = asz. Then write Kz(usz,sz) in the form
] ]
K!'(a,8,) = Pl(a,s2) U pm,(u,s2)
27 q; (ars,) .oooal, (ars,)
where each pi and qé is irreducible has a polynomial in (u,sQ)) and the

Plﬁ' and qj’s are relatively prime. Suppose that no P, or qj is indepen-

dent of Sy Then there are m' poles and n' zeros of the system (5.7) at

infinity.
(Note that the factors pi correspond to poles at infinity while the

1 « g m
factors qé correspond to zeros. For example, if K2 = /Sl then at infinity

1
Ké = J/asz which gives a sphere covering of the X2 axis and corrresponds

to the zero of K2 when Sl = «),
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Example 5.3 Consider

s
J:

+1
)82

K2 (Sl 152) = (Sl

This system has two poles and one zerxo in the finite (affine) space €

and, putting s, = asz, we see that
o S
2
K!(a,s,) AT T
+
2 2 (as2 1)52

and so it has one zero at infinity. The root locus starts at the two
spheres given by

Sl + 1 =0, s, =20 :

and tends to the zero S, = O and the sphere covering of CS as k o,
il

To see this intuitively, note that the root locus is given by

(sﬁl)sz + ksl =0
and so
ks
2 7 7 5 +i
1

Now sl/(sl+l) can take on any complex value for s, € Pl(c) and so - k 51/(51+1)

can take on any arbitrarily large complex value as k + « . Hence
we obtain a simple covering of € at 8, = =
1
Conclusions

In this paper we have studied the spectral theory of homogeneous
degree 2 systems and we have seen that the classical notions of poles and
. . . o 2 C
zeros generalise to irreducible subvarieties of P (€). This is reasonable

1

since the irreducible subvarieties of P™(€) are just points and these
correspond to irreducible components of polynomials of one variable.

We have shown that the inversion problem for the two-dimensional Laplace
transform is equivalent to the problem of finding Green's functions for

irreducible linear partial differential operators with constant coeffi-

cients (when the dencminator has no repeated factors). The elementary
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theory of projective curves in Pz(m) has been applied to obtain a root
locus theory for homogeneous degree 2 systems.
We may, of course, ask to what extent we may generalise the theory
to systems of higher degree. For degree three systems we immediately
arrive at a problem, for the classification of the projective subvarieties
of PS(C) is not even known. Many topological invariants for projective
varieties have been discovered, but a complete classification of the topol-
logy of subvarieties of Pn(c) is at the heart of modern algebraic geometry
(see Iitaka, 1982 or Hartshorne, 1977), and is one of the fundamental
problems of contemporary mathematics.
In view of the above remarks, we can 'reduce' the general theory of
nonlinear systems to the study of partial differential operators and
algebraic geometry, which gives some further insight into why nonlinear
systems are so difficult to deal with in general. For, a classification
of nonlinear systems according to their spectral types is equivalent to
a classification of all subvarieties of Pn{c), which, as we have said,
is equivalent (essentially) to algebraic geometry.
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2+
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