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ABSTRACT
The nonlinear variation of constants formula is generalized
to the case where the unperturbed operator has non-elliptic Fréchet

derivation and is applied to nonlinear controllability.



1. Introduction

The relation between the solution of the nonlinear ordinary
differential equation
x(t) = f(x,t) (1.1)
and that of the nonlinear perturbation
y(t) = £(y,t) + g(y,t) (1.2)
is known as the nonlinear variation of constants formula and can be

expressed in the form

t
y(t;to,xo) = x(t;to,xo) + i @(t,s,y(s;to,xo))g(y(s;toxoks)ds
where o
. A 3 fx(tst_,x )
o(t; to,xo) on[ o O]

is the fundamental solution of the variational system
i= fX [x(t;to,xo),t] Z.

Here, x(t;to,xo), y(t;to,xo) are the solutions of (1.1) and (1.2) (which
are assumed to exist) with initial condition X at t_. This formula
has been used successfully in stability studies (Brauer, 1966) and in
nonlinear observer theory (Banks, 1981). Moreover, it has recently been
generalized (Banks, 1984) to distribute&systems of the form

C\; =NLF+ MLp’ (1.3)
where N and M are nonlinear operators and ?fN(¢(t)) generates an evolution
operator, where ¢ is the solution of the equation

¢ = No.
We wish to generalize this result to the case where FN(¢(t)) may only
define a quasi-evolution operator (Curtain and Pritchard, 1978).

The nonlinear variation of constants formula will then be used to
generalize the nonlinear controllability results of Magnusson et al (1980)
to systems of the form

Y= Ny + My + Bu . (1.4)

These results may be summatised in the following way. For the system



% = Az + Nz + Bu (1.5)
where A and B are linear operators and N is a nonlinear operator, we
have the linear variation of constants formula

t t

z(t) = f T(t-s)Nz(s)ds + f T(t-s)Bu(s)ds (1.6)
) o

if A generates a semigroup T(t). Define the linear operators Lt by

t
th = £ T(t-s)x(s)ds ,

and G by

T
Gu = f T(t-s)Bu(s)ds
o

on appropriate spaces. Then on the space X ==lKG¥kerG we put the

quotient norm and define € by
é&ﬂ = Gu , ug Eg

where [q] is the image of u in D(G) /KerG. It can then be shown that

we can define a norm on the range of G (Q V) by
a1
ol y = 160 -
If we wish to control from O to v, then we define the control

T
u(s) =& '[v - [ T(e-pNz(prdp] (o) 1.7
0

-1
=& v - Lz] (s)
By (1.6), we have

-1
2(T) = LNz + LB " [v - LNz

LNz + 66 v - L ]

=V



The only difficulty now is to prove the existence of a solution
of (1.6) with the control given by (1.7); This can be done using a
variety of fixed point theorems.

In this paper, we shall illustrate this method using the contraction
mapping principle applied to the nonlinear variation of constants formula.

The only difficulty here is that the operator

T
Gu-= f d(t-s;P)Bu(s)ds
v )

now depends on the solution { on (1.4) and so we must show that the

various norms on & are independent of V.

2. Notation and Terminology

Throughout this paper, H will denote a Hilbert space while X,Bl,B2
etc denote Banach spaces. In particular HP(Q), HOP(Q), LP(Q) will
denote the usual Sobolev and-LebesT& spaces although we shall normally
not include reference to the domain @ and write, simply, Hp, Hop, P etc.

An operator N defined on a subset D of a Hilbert space H is called
dissipative on D if

Nx; = NXpp%; = %> < O , vV X, s%, € D

and strictly dissipative if

\i xl,xz € D

<Nx —Nxz,x =KpPz ST eI|xl-x2H i 3

il 1 "2 H

for some ¢>0. It often happens that, although N is a nonlinear operator,
it is defined on a linear subspace D(N) of H. However, the subset of
P(N) on which N is dissipative is usually strictly smaller than P(N).

For this reason we shall denote by ﬂd(N) the dissipative domain of Nj;

i.e. the set where N is dissipative.



The space of n times continuously differentiable functions defined
on the region @ is denoted by Cn(ﬂ), and the space of bounded operators

to a Banach space X

from a Banach space X is denoted.I(Xl,Xz) or

1 2

(0 if X =X, = X.

Finally if N : B1 > B2 is a differentiable nonlinear operator we
denote by "§N(x) the (Fréchet) derivative of N at x. Note that, for
each x,

YN (x) €L (B},B,))

The remaining notation which we use is either standard or is introduced

as we proceed.

3. Nonlinear Systems and Variational Equations

In the theory of finite-dimensional differential equations
(Coddington and Levinson, 1959) it is well known that if we consider

a system

x=£(x,0) , x(£) =x (3.1)

and we know that x(t;to,xo) satisfies (3.1), then the function

4 3 ;
(st ,x ) = 3 [x(tse_,x )] (3.2)

is the fundamental solution of the 'variational equation’

7 = fx[x(t;to,xo)JJ Z (3.3)

For simplicity, we shall consider autonomous systems in this paper.
This result has been generalized recently by Banks (198%), to the case
of an infinite dimensional nonlinear system of the form

$ = N¢ (3.4)



where N generates a (nonlinear) semigroup and ?N@) (e LO(N) ,H)) exists
uniformly for each &;E.‘Dd(N) (the subset of P(N) on which N is a
dissipative operator). Note that it is assumed that N is defined on
a linear space D(N). In order to prove the generalization of (3.3)
we assumed,r essentially, that along a solution S(t)¢o of (3.4),
FN(S(D4 ) : DA » I e v el Vi operakor.

In this section we wish to generalize this result to the case where
'}N(S(t)(bo) is not an elliptic operator, but can be expressed as a sum
of an elliptic operator and another suiltable operator. We shall need

the following simple lemma, whose proof is elementary.

t n/2
; B s : :
Lemma 3.1: The value of the integral In(t) = f —T ds is given by
o (t=s)
n+l
- n(n-2) (n=-4)...2 2
L8 = 2{ 135, (-1 (atD) )t y 0 R
and
n+l
_ T (nln=2) (n~&)...1 2
L® =3 (G oD...2 /¢ W g B
+1
-
Let Y, = In(t)t
Theorem 3.2. Suppose that the operator A(t) is given by

ACt)d = A + B()d

where A is linear and D(A) =D(A(t)) = Hani for each t and
o+ 2
B(*) € L R ;4(L7,L7)) .
Assume also that A generates a semigroup Tt for which

IEA] < Me
e ad



and

Tl

i

ST 5
R g

Then the equation

t

for some >0 .

U(t,t)¢ =T ¢ + / T B(s)U(s,t) ¢ds

is soluble for U

T

(ty1)¢ for all ¢ € L2.

I A

o (t—s)2

t
-at, .2 1
e M [ —=
o (t-s)?

=18 M " ol , ds
L

ds -lle || ,
L2

(3.5)

HUO(S,O)¢|IL2 ds

Proof. For simplicity we shall take 1 = 0; the general case is
similar. Define
U (t,00¢ =T ¢
t
U (£,0)¢ = £ T, _B()U _;(s,0)¢ds n>1
Then,
=t
[ Kesodwlk 5 =i e I 2
ot
Me
||Uo(ts0)¢||L2 i —F [l [l a+e
Hence,
t
o, (e,00¢]1 5 < [ [lT,_B()U (5,008 , ds
L o L
[l I3
< T, B(s)
o tzalih - J i
£ Me-u(t—s)



- 1
- 2™ o |
L
where

B= B
L @?, 1)

Similarly,

t

HU (t,0)0]] <
2 L2

I I gpteim, es0db] 4 s

L

t .. —a(t-s) _ i '
<) X g2 as? o]l , ds
o (t-s)? L
3 2 —at s%
=2'g’e [ ——Tds-lo ][,
o (t-g)? L
3.2 —oat
= 2M B"e Y t||¢||
1 2
L
Generally, we have
+1 m =ot m/2
lu_(e,008 5 < 246%™ (v ey D 0],
L L
It is easily shown that
(m-1) /2
= i m odd
Yo Y1 Teh 173 2 o1l ’
L (m=1) /2
2.4.6...m » W even
and so
T, (m-1) /2 ml, ,
-1
2 (g)m/Z / (%bl 5 m even



Now we define

U(t,0)¢ = ) U (£,000 ,

m=0
and note that
luce,00ll , < ¥ llu_(t,0)4]
L2 " m=o o L2
e (!
o /2 :
-at +1 . m (m=1)/2 ™
+ mzl 2e BmMm (’E‘) .-_((m—l)/Z)'. ”¢ ”L2
w odd
Yoo 1 -4 2 {2
+ mz 2e uthMm+ m 4 (';T‘)m/ Emlz)[ ”¢ ”LZ
m even

= 1 -
{Q - 3,—)Me ot 4 2ete *pnlexp Q{zgz zlt—)
,".2

2
v 2 e ™ esp (128 nt)}”q: I,
L

2
Moot {(1 E _2%_§ + 2(t%BM + -n_%)exp (EZ*BZ—TT'E)}”‘P I .2

Hence, U(t,0) is a bounded operator for each t>0. Similarly, we could
show that U(t,s), defined in the obvious way, is a bounded operator for
each t>s. It is now a simple matter to show that U(t,s) satisfies (3.5).0
It is easy to show that theorem 3.2 may be generalised as follows:

Corollary 3.3. Suppose that

A(t)¢ = Al(t)¢ + B(t) ¢
where B(°) is as in theorem 3.2 and Al(t) is now time—-dependent and

generates an evolution operator V(t,s) such that



[v(e,9) | < M0 (E7)
x el

LY)

Me—a(t-s)
[|v(t,s) || l4e 2. S—T— , for some e>0 ,
' I(L »L ) (t—s)z
Then the equation
t

U(t,t)¢ = V(t,T)d + f V(t,s)B(s)U(s,T)¢ ds
T

is soluble for U(t,T)¢ for all ¢€L2. In|

Example 3.4. Consider the nonlinear heat equation

2
o N 4 K(d) 28 , 0<x<1 (3.6)
ot 2 . s
IX
where the coefficient X depends on the temperature. It is well known

that this equation has a solution. Suppose that ¥ satisfies the

condition

x(xl)-K(xz)

X, X

<K, <o |K(x1)| <K for all x;,x, .
1 72

-d

Then, for ¢1,¢2€. HolnH2n02 s we have

2 2

d ¢1 0 ¢2
<K(¢1) ;;5— = K(¢2) ";;?' s ¢1_¢2> L2
2 2 2
1 30, 974 1 9
- [ xp) (-—é— - -——%) (b6 )dx + [ (K(b)=K(b,) (——%)wl—«bz)dx
o] 9x X o 9X

1' aq;l(aq;l a¢2) 1 (a(pl a¢2)1
- i'x (4;) 5% (6,70,) dx = g K@\ 5 " 5] &

X ox

2
1 x($,)-K(s,) (3¢
v 1 2 ( 2 ) (¢1—¢2)2dx

o %1% 3>
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K 0 s B PO
§Ry maxm fense | flome — gt b=
d xE[O,l] ox X X LZ 1 72 L2
3 3., |[2 2
~ %, [ |2+ Ka e 2—2—|I¢—¢ |;2
L xelo,1]| 2 "*17%20 2
K 3¢ % 9 d 2
d 1 1 ¢y W
= | A P ; 3% 3% 2
x€[0,1] x€[0,1]] ox £
e Y
m X X L2
34 3. ||2
) 2 2 1 2
(Since 7° [[¢g-¢, © < ’ 5% Tax |2
2 L
L
) 2 2
Now, if CE [0,1] denotes the set of ¢&C [O,l:l such that
K 2
Km-?d(max -g% +%max i—gi ée>0
xEI:O,lj xe[_O,l] ax
then,
32¢1 32¢2 5 2
w(9)) =5 = K9,) —5 5 8;70,> 5, < - em [Jo-o,
9x X - I L

1 2 2
for ¢1,¢2e H0 nH r\C8 .

Hence, A is a dissipative operator on Dd(N) g Holn}lzn CE2 and 1t follows

that A generates a nonlinear contraction semigroup S(t) on :Dd(N) (cf.

Barbu, 1976). Moreover, we have

2
Is()ll <e ™" F |lsll for all € D M .
Now, the Fréchet derivative of N is given by

7 2
FNW) (@) = ) 5+ x' W) heo

ox X



= 11 o
for ye .'Dd(N). Consider the linear operator

2 2
A4 = xp(0) L3+ ) LXD

9X X

for :p(t)e.'Dd(N) for all t>0. Then

satisfies the condition of theorem 3.2; for it is well known that

-ot
M
1e

|| “ -1 2. 27T s some Ml>0

Y@ ,uh T el

and since H c L(1 e) /e (by the Sobolev embedding theorem) we have, by

duality, L(1 €) c H—l. A simple limiting arguwment now shows that

2
Al(t) g X)) -8——2- satisfies the condition of corollary 3.3.
90X
Also,
B(t)¢ &t (p(e)) 2 ‘“t) "
BX
satisfies
22y ()
K STt .
LICT IR ‘ e %

where & = (1+g)/(l-e). However, if y(t) = S(t)y(o) for some y(o)€
2
— P(t)
X

_€L7(0,x).

LZE

J)d(N), then S(t)rp(o)€1)d(N) for all t and so

Hence,

(e L@z,



i §D

Returning to the general system
¢ = N¢
(cf. (3.4)) we can now easily generalise theorem 3.2.4 in Banks (1984)

to obtain

Theorem 3.5f Let N : D(N) » H be a nonlinear operator which generates

a contraction semigroup S(t)¢ on ﬂ)d(N) , and suppose that FN(¢) (e £ @D(N) ,!-1))
exists uniformly for each cpEJDd(N). Suppose that JIN(S(t)¢) satisfies

the conditions of corollary 3.3, i.e. it is of thé form Al(t)+B(t).

Then S(t)¢ is differentiable with respect to ¢ and satisfies the

relation

¥, 5(0e, = U(t,0)

where U is the quasi-evolution operator which is the solution of the

equation
(&
U(t,m)¢ = V(t,T) + [ V(t,s)B(s)U(s,T)¢ ds (3.7)
T

and V is the evolution operator generated by Al(t).E]

We now define

0 (t,9) = F [Bwre JeL@w,m
Note that we have

a = e —
3;; S(t—to)¢>O = =o(t to,¢0)N¢o a.e, (3.8)

For, we have

i +
(EE) S(t—to)¢0 = NS(t-to)¢0

+ & i i "
where (d/dt) denotes the right derivative. However NS(t—tO)¢0 is

differentiable from the right with respect to ts since



- 13 -

+
B = e
g;) NS (t-t )4 = FN(S(t=t ) o )

+
d S(t—to) ¢°

ot
o

+
and so <é%f)8(t—to)¢o is also differentiable from the right with respect

to t and
o

+

+ + \
d d - [4 9 -
(W} (a—t_) S(t_’to) ¢o - (dt) (Bto) Bk to)d)o

e}

+
P
=?N(sct—to)¢0) e S(t=t )¢

+ +
_ - 9 . - 9 o=
= Al(t to) Bto S(t to)cb0 + B(t to) £ S(t to)¢o

Thus,

3 4
(“a"f"\ s(t-t )¢,
8]

t
-V(t-t_,0)N¢_ + { V(t-t_,s-t )B(s-t )
8]

|

a+
X a—t' S(S-to) ¢ods

+

3 3
g s(t-
since ato (t to)cbO

—N¢o when t = t. The asserted relation (3.8)
now follows by uniqueness of the solution of (3.7).

We may now consider the perturbation

=Ny + MDY (3.9)
of equation (3.4) for some nonlinear operator M(t). Suppose that the
equations (3.4) and (3.9) both have solutions which exist for all t for
initial conditions in some subset C € H, and that these solutions, say

o(t30.), ¥(t;y ) satisfy
¢(t;¢o),w(t;wo) e C for ¢0,¢0 € C.

Then we can state the following result which says that the solutions

of (3.4) and (3.9), starting from the same initial condition ¢O are
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related by the nonlinear variation of constants formula. (The proof

is the same as in the finite-dimensional case if we take account of

(3:8))

Theorem 3.6. Under the above assumptions we have
t
(eso) = oCe30) = [ o(t-s;u(s;0 )M(s)y(s50 )ds . 0
(8]

Example 3.7. Returning to example 3.4, we consider the nonlinear
perturbation

2oy 2L -y 0<xs<l, ¥ =¥ (3.10)

At 2 ? - -7 o ’
of equation (3.6), on the time interval ELI]. For each positive integer

n consider the sequence of approximations of equation (3.10) defined as

follows:

First subdivide the interval I thﬂ into n equal parts, i.e.

1

T, =[Gy ] , 1<j<n

Now consider the system defined on I ., by

Btbnj L;_t,t*-) aztp (%, t)

” Dy —mi Ty 2
se— = %0, D) wamet TR MU

. . . - ,
with initial condition wnj(x,(J I)EJ # wn(j_l)(x,(J 1)n) for j>1 and

wnl(x,O) = wo(x). We can write each equation (3.11) in the form
M 1(x,k) 2
njvss -
-—EE“ = Anj ﬂJnJ (x,t) —'4[“1()(3&) (3.12)

where each operator Ahj is time-invariant and is clearly strongly elliptic.

1

If A = 82/8x2, then.D(Ahj) = D) = HO r\H2 for all n and j. Let Tnj(t)

denote the semigroup generated by Anj' Then it is well-known (Henry, 1981)
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that the equations (3.12) have a unique solution (for ¢.oe$(A))

given by
2
(x,t) =T .(t (x,(3-1)T/n)- T t-s .(x,s)ds 3.13)
b3 G0 = T () (6, (=D T/m) ; COMNCIOLI (
- 1JT
for tel 3 However, using the above notation it is easy to see from
n

example 3.4 that
2 N

1
. . G T A . 3 9 . .
(AnJ Vst iy 0 Yy T s Lz([o,lj)

KJ. ma.x 1 ’Bmp n(J“l) (x,(j—l)T/n)
1 9x

-]

- "" X€ 0 ax
< 2 1 2
= - en’| wnj - ‘i’nj >
2 g
for zpij ’wij € HinH?' ﬂCanCp g@cp&nj) where € is as before and

¢, = e ([0, : ye0 , ¥ xe[0,1])
Hence, on .‘2) (A .)gﬁ (A) (which is independent of n and j), (3.12) defines
a stable dynamical system with solution in C([o ) 3 J}d(A ).

Tt is now easy to see that the sequence @'n(x,t) defined by

q_fn(x,t) = VG el o, lsim and wl
is uniformly bounded and equicontinuous in C([Q,f];Lz). Hence, by the
Arzela—Ascoli theorem {I?n(x,t)} is precompact and therefore has a limit

g . : 2 v w ;

point in C({@,T]; L ([e,l]». The limit is clearly a solution of (3.10),
for any T.

Since equation (3.10) has a solution for w(o)Gzﬁ(A) it follows from
theorem 3.6 and example 3.4 that the solutions ¥(t) of (3.10) and %(t) of

(3.6) are related by



- Tl e

t
BCEso )= ¢ (E30) ==1 @(t-s5u(s38))-¥" (s34 )ds

o

where

o(t3g) = ':}E (¢ (t3E))

{4). Application ta Nonlinear Controllability

In this section we shall consider the controllability of a nonlinear
system of the form (defined on a Hilbert space H)

Y(E) = Np(t) + Mp(t) + Bu(t) R (4.1)
where N and M are nonlinear operators and B is a linear operator defined on a
Hilbert space U. We shall use the techniques developed by Magnusson et al
(1980). Consider the system

B(e) = No(e) ,  o(0) = ¢, (4.2)
Then if ¢(t;¢0) is the solution of this equation we define, as above
o(t30,) ='§¢o<¢(t;¢0)>

Using the nonlinear variation of constants formula, we may relate the

solutions of (4.1) and (4.2) by
£

p(e) = ¢(t;¢0) + [ o(t-s;y(s))My(s)ds

0]

t
+ J o(t=-s;y¢(s))Bu(s) ds (4.3)
)

Now the range of @(t-s;y(s)) will depend,in general, on ¥(s). However,
we can define the operator G¢ g Lp[b,T;U]+H(1<p<w)

by
T
J ®(t-s;y(s))Bu(s) ds (4.4)

(o]

G u

Let V = Range G As in Magnusson et al (1980), we define a space

v b°

X, LPlo,T;U] / ker G, (4.5)
with the quotient norm. Then we define the 1-1 map Cw: X¢+H by
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EWDJ = qu , u € Dﬂ (4.6)
and so
lle, Tllly < lle, 111 [u] ”X¢ (4.7)
Moreover, we can define a norm on Range © by |lv|]. = ||(E"1 vl o
- v, v Yy

and we may show that

oy sll g = Nl e

so that Gwez [Lp [O,T;U],Vw]. Finally, we can define a contro_l
u =G v
which will drive the origin to v for the system
B(B) = Np(e) + Bu(e) .
For the perturbed system
W8 = Ny(e) + My(t) + Bu(t) (4.9)

the control
- i
u(s) = G¢ [? - f @(t—r;¢(TﬁMw(T)df] (s) (4.10)
fo)

will drive the origin to v in time T.
We must now impose conditions so that the system (4.9) with the
control (4.10) is well-defined, i.e. soluble for ¥(t) in the mild sense.

Hence we require that the operator

t t
W@ = [ o(t-s;p(s))Mp(s)ds + [ @(t-s3y(s))Buls)ds , (4.11)
(o] [0}

with u given by (4.10) has a fixed point. Following Magnusson et al
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(1980) we shall illustrate this by using the contraction mapping
principle. The next theorem is proved in exactly the same way as

in Magnusson (op. cit.).
Theorem 4.1. Let Bl’BZ be Banach spaces and let pl,pz,q,r,s,a,w,R,K
be positive real numbers with

1
s

r21$PIEQE19%=%+%’_1’ +%=11P2>w

Assume that

(a) o(t;9) €L(B,,B)nL(B,,V) , t>0, peD W)

with

P
lleCtsw)x|| B, s g (B ||| B, g€ L 1[0,'1':[

P
loceswxlly < gy~ lixlly o gyt ?o,1]

(independent of ).

\ . \ 3 + +
(b) There exists a continuous mapping K : R xR -+ R such that

k(sl,sz) = k(SZ’Sl) 5 k(sl,O) +~0 as 5) 0

and M : Lrl:O,T;Bl] > LZ]:O,T;BZJ satisfies

||MX1—1"€X2H < k( ]|x1||
1°[0,t38,] L [0,T;8,] L*[0,T;B ]

< a N

(@ If |[lx | <a , x| <
£ Lr[:O,t;Bl'J ¢ LrEO,t;Bll

then

-+ Ye( |[x 5 [|%
® |lg, P g, |l o] k([ | L7 [o,135.] %, |l (5

1

Al ) [l =x, |l

) < K <1
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where
Il (B || < R ||ul]
Voot o, ] P[0, T;U]
and
t
L, (D)% = [ o(t-s;v(s))x(s)ds
(o)

@ lvlly < a

|

Then the operator (4.11) has a unique fixed point in Lr[O,T;Bl inside
the ball of radius a. [

Example 4.2. Consider the system

2
3 3 2
5—%= K('F)-—g’-— v+ u ,  PO,t) =y(l,t) =0 ,
ox
defined on the spatial interval [0,1:]. We can apply theorem 4.1 with
B1 = L4 [O,l] . 32 = L2 [0,1:]. The only problem remaining is to show that
o(t3y) (Y € ;Dd(A)) may be bounded independently of y. Now @(t;y) is

the fundamental solution of the system

2 2
.-ai = _a_¢. ' _,u
- %(ﬂ!f)axz PR e (4.12)

where Y € J)d(A) satisfies

However, by differentiating (4.12) with respect to X, it is easy to see

that the range R of ¢ is certainly contained in Hi[o,z]. Moreover,
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using the limit argument above in proving existence of (3.10), we can

express the solution of (4.12) as a sequence @n(t;w) each having range

H‘:;[O,lj. Hence the range of ¢(t;y) is Hg [0,1] independent of

) EJ)d(A) . The appropriate bounds on ||&(t;y)x]| 53[0;1] now follow

easily from corollary 3.3.

5.

Conclusions

In this paper we have extended the nonlinear variation of constants

formula to systems with an unperturbed operator has non elliptic Fréchet

derivative. Throughout the paper we have illustrated the results using

the heat conduction equation with temperature dependent thermal

conductivity. We have also extended a nonlinear controllability

result of Magnusson et al (1980) to such systems. Other fixed point

theorems have been applied by the latter authors and we could equally

well apply these here. However the general method is well illustrated

using the contraction mapping theorem and so we have only described this

method in detail.
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