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Abstract 21 

Precipitation episodes in tropical West Africa (7–15°N, 10°W–10°E) during the dry 22 

season from November to March are rare, but can have significant impacts on human 23 

activities reaching from greening of pastures to spoiling harvests and health implications. 24 

Previous work has shown a link between these unseasonal rainfalls and extratropical 25 

disturbances via a decrease of surface pressure over the Sahara/Sahel and a subsequent 26 

inflow of moist air from the Gulf of Guinea. This paper supports the previously stated 27 

hypothesis that the extratropical influence leads to a high rainfall predictability through a 28 

careful analysis of operational 5-day forecasts from the European Centre for Medium-29 

Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS), which are 30 

evaluated using Global Precipitation Climatology Project (GPCP) and Tropical Rainfall 31 

Measuring Mission (TRMM) precipitation estimates for the 11 dry seasons 1998/99–32 

2008/09. The long-term regional average of ensemble-mean precipitation lies between the 33 

two observational datasets with GPCP being considerably wetter. Temporal correlations 34 

between the ensemble mean and observations are 0.8. Standard probabilistic evaluation 35 

methods such as reliability and relative operating characteristic (ROC) diagrams indicate 36 

remarkably good reliability, sharpness and skill across a range of precipitation thresholds. 37 

However, a categorical verification focusing on the most extreme ensemble mean values 38 

indicates too many false alarms. Despite the considerable observational uncertainty the 39 

results show that the ECMWF EPS is capable of predicting winter rainfall events in 40 

tropical West Africa with good accuracy, at least on regional spatial and synoptic time 41 

scales, which should encourage West African weather services to capitalize more on the 42 

valuable information provided by ensemble prediction systems during the dry season. 43 
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1. Introduction 44 

Tropical West Africa is characterized by a monsoon climate with the largest portion 45 

of the annual precipitation falling in the boreal summer months (Hastenrath, 1991; 46 

Buckle, 1996). The period from around the start of November to the end of March is 47 

dominated by the dry and often-dusty northeasterly Harmattan winds and very sporadic 48 

rainfall events, which contribute little to the annual total on average. Nevertheless, 49 

impacts of these events on the local population can be manifold and include: (A) Harvests 50 

such as cotton are often stored to dry outdoors and unexpected rain can cause them to rot 51 

(Buckle, 1996; Knippertz and Fink, 2008; 2009). (B) If damp, staple foods such as 52 

groundnut and maize can become contaminated by aflatoxins, fungal metabolites that can 53 

cause sickness or death in humans and animals (Hell and Mutegi, 2011). (C) Unseasonal 54 

rains can significantly improve grazing conditions, e.g. for the herds of kettle nomads, 55 

and facilitate agricultural work such as ploughing or building moulds for yam due to 56 

enhanced soil moisture. (D) Anomalously moist periods during the dry-season can help to 57 

prevent epidemics of meningococcal meningitis, which is widespread in West Africa 58 

(Sultan et al., 2005; Thomson et al., 2006). These examples show that reliable predictions 59 

of dry-season rainfall events in tropical West Africa on synoptic timescales have the 60 

potential to support decision-making processes for a wide range of mitigating actions. 61 

Particularly points (A) and (B) above would clearly benefit from the establishment of an 62 

early-warning system up to a week ahead. 63 

Given the predominance of summer rainfalls for the annual totals, rather little work 64 

has been dedicated to the dynamics and climatology of precipitation during the dry 65 

season, mostly in the form of case studies of extreme events (e.g. Knippertz and Martin, 66 
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2005; Fall et al., 2007; Knippertz and Fink, 2008; Meier and Knippertz, 2009). Most of 67 

these cases occurred over the western parts of tropical and subtropical West Africa, 68 

which are occasionally affected directly by very deep upper-level disturbances over the 69 

Atlantic Ocean (Fröhlich and Knippertz, 2008). Knippertz and Fink (2008; KF08 70 

hereafter) were among the first to analyze the dynamics of extreme unseasonal rainfall in 71 

southern West Africa. The mechanism they proposed is schematically depicted in Figure 72 

1. The presence of a pronounced, positively tilted upper-level trough over northwestern 73 

Africa leads to a shift of the subtropical jet (STJ) and a decrease of surface pressure over 74 

the Sahara and Sahel. In the particular case KF08 investigated, two low-pressure centres 75 

formed, one close to the base of the trough over Algeria associated with unusual 76 

precipitation over the northern Sahara and one over tropical West Africa. The latter can 77 

be regarded as an intensified and northward shifted wintertime continental heat low. This 78 

pressure configuration leads to a significant break in the Harmattan winds and the inflow 79 

of moist southerlies from the Gulf of Guinea, which shifts the Intertropical Discontinuity 80 

(ITD), the surface boundary between moist maritime and dry continental air, northwards 81 

and feeds the unseasonal rainfalls. 82 

A follow-up study by Knippertz and Fink (2009; KF09 hereafter) contains the first-83 

ever statistical analysis of dry-season rainfall events over southern West Africa (7–15°N, 84 

10°W–10°E), based on pentad precipitation from the Global Precipitation Climatology 85 

Project (GPCP) and 5-day forecasts made as part of the European Centre for Medium-86 

Range Weather Forecasts (ECMWF) ERA-40 re-analysis project (Uppala et al., 2005) for 87 

the period 1979/80–2001/02. The main conclusions from this work are that (A) the 88 

schematic shown in Figure 1 is representative for many of the identified events, (B) the 89 
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ECMWF model shows skill in predicting event occurrence on a regional scale up to a 90 

week ahead and (C) predictability appears to be enhanced in cases of a clear connection 91 

to the extratropics. The latter is typically manifested through a well-defined and persistent 92 

upper-level trough or the succession of two troughs, accompanied by an elongated 93 

southwest–northeast oriented band of upper- and midlevel clouds stretching from the 94 

Tropics to the subtropics along the equatorward side of the STJ. Such bands are often 95 

referred to as “Tropical Plumes” (see Knippertz, 2005 and references therein). 96 

This study builds on those by KF08 and KF09, and expands them in the following 97 

ways: (A) In order to test the hypothesis of enhanced predictability formulated in KF09, 98 

operational ensemble predictions from ECMWF are investigated instead of ERA-40 data. 99 

This allows a combination of conventional and probabilistic verification measures to be 100 

used. (B) KF09 amongst other authors have demonstrated problems with the old pentad 101 

product of the GPCP (Xie et al., 2003) over data-sparse West Africa. The present study 102 

uses a new daily version of GPCP (1DD) together with rainfall estimates from the 103 

Tropical Rainfall Measuring Mission (TRMM), which includes information from space-104 

born rainfall radar, to assess aspects of observational uncertainty. These improvements in 105 

the data quality come at the expense of reduced data availability, which limits this 106 

analysis to the 11 dry seasons 1998/99–2008/09. Section 2 provides more information on 107 

the datasets used in this study. The results are presented in sections 3 and 4 focussing on 108 

evaluation of the ensemble mean and probabilistic analysis, respectively. Section 5 109 

provides a short discussion of the results and gives the main conclusions. 110 

 111 

 112 
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2. Data 113 

Most analyses presented in this paper are based on gridded datasets of estimated 114 

and forecast precipitation, respectively, as detailed in the following sections 2.1 and 2.2. 115 

Following KF09, these fields are averaged spatially over 7–15°N, 10°W–10°E and 116 

accumulated over 5 days to give a regional precipitation index. As shown in KF09, the 117 

ECMWF model is generally capable of forecasting accurately at much finer scales, but a 118 

grid-point based verification of the predominantly convective rainfalls is generally 119 

difficult, which has motivated several authors to develop object-based methods, all with 120 

their different advantages and problems (e.g. Wernli et al., 2008). Such an approach is 121 

beyond the scope of this paper. Instead this study focuses on the question whether the 122 

ECMWF model can accurately predict moist episodes during the dry-season on a regional 123 

scale, which in our view is sufficient for many of the applications discussed in the 124 

Introduction, particularly for early-warning systems. The time period covered is the entire 125 

dry-season from 1 November to 31 March. 126 

 127 

2.1 Observational data 128 

Daily precipitation estimates used in this paper are from the GPCP 1DD and 129 

TRMM 3B 42 Version 6 datasets. The former is largely based on a monthly combined 130 

satellite-gauge product, which is used to calibrate daily estimates derived from 131 

geostationary and polar-orbiting infrared sensors (Huffman et al., 2001; Roca et al., 132 

2010). Microwave and gauge estimates are not used explicitly owing to sampling 133 

limitations. It is provided with a spatial resolution of one degree. The TRMM daily 134 

product is derived from a combination of TRMM microwave imager, radar and visible-135 
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infrared scanner data and other satellite infrared observations (e.g. Meteosat; see 136 

Huffman et al., 2007). Among other things, the TRMM data are used to produce monthly 137 

infrared calibration parameters, which are then applied to 3-hourly precipitation estimates 138 

from the other satellite infrared datasets. The daily totals are estimated from the 3-hourly 139 

precipitation data between 00Z and 21Z. Finally the daily totals are scaled so that the 140 

monthly total matches that of the satellite-gauge TRMM Combination 3B 43 Version 6. 141 

These data have a spatial resolution of 0.25 degrees. Both datasets are averaged 142 

regionally as explained above and accumulated over five days starting at 0000 UTC each 143 

day. This results in 147 pentads for one entire dry season with the first ranging from 1–5 144 

November, the second from 2–6 November and so on, the last covering 27–31 March.  145 

This gives 1617 pentads for the 11 dry seasons under study here. Note that for the sake of 146 

simplicity, 29 February was ignored for the leap years during the study period 1998/99–147 

2008/09. 148 

A scatter plot of all GPCP pentad precipitation values against their TRMM 149 

counterparts (Figure 2) shows a clear positive bias in the GPCP data. Such discrepancies 150 

between rainfall estimates illustrate the challenge in evaluating short-term forecasts in the 151 

light of large observational uncertainties. Intercomparison studies at 10-day and monthly 152 

scales over West Africa (Nicholson et al., 2003a, b; Ali et al., 2005; Lamptey, 2008; 153 

Jobard et al., 2011; Paeth et al., 2011) have also found substantial differences between 154 

the two datasets. For more details, see the recent comprehensive review by Parker et al. 155 

(2011), which also includes daily products. Despite the bias, the correlation between 156 

TRMM and GPCP is 0.92. In interpreting this value, however, it should be kept in mind 157 

the data points in Figure 2 are not independent due to the overlap of adjacent pentads. 158 
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In addition to the precipitation data discussed above, ECMWF ERA-Interim re-159 

analysis (Dee et al., 2011) and Meteosat infrared satellite images are used in section 3 for 160 

the discussion of example case studies (e.g. Figure 8).  161 

 162 

2.2 Ensemble predictions 163 

The forecast dataset under investigation comes from the operational ECMWF 164 

ensemble prediction system (EPS; Buizza et al., 1997; 2007). It was designed to cope 165 

with uncertainty in initial conditions and is now also taking into account uncertainties in 166 

model physics (Buizza et al., 1999). The EPS became operational in 1992 and has had 50 167 

members since 1996. As a fully operational system, it went through a number of model 168 

and configuration changes in the course of our investigation period 1998–2009, so that 169 

the forecasts studied here are not a homogeneous dataset in the strictest sense. It is, 170 

however, one of the longest and arguably best available EPS datasets to study 171 

predictability today. The EPS is currently run twice daily at 0000 and 1200 UTC, but as 172 

this was not the case during the first part of our study period, we restrict the analysis to 173 

the latter time only. In order to match the TRMM and GPCP pentad data, differences 174 

between total precipitation accumulations (convective plus large-scale) at +132h and 175 

+12h are considered for each day and then averaged over 7–15°N, 10°W–10°E. 176 

 177 

3. Analysis of the ensemble mean 178 

It has been shown that for forecast ranges beyond three days predictions based on 179 

the mean of a well-calibrated EPS outperforms a deterministic forecast with the same 180 

model after about 3 days (e.g. Buizza et al., 1997). Therefore, this section concentrates on 181 
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assessing forecast quality based on the ensemble mean only, while section 4 will focus on 182 

probabilistic measures. Section 3.1 analyzes the mean seasonal cycle and correlations 183 

between the observational and EPS data, while section 3.2 focuses on an event-based 184 

verification. Finally, section 3.3 discussed exemplary cases of subjectively selected 185 

successful and unsuccessful forecasts.  186 

 187 

3.1. Mean seasonal cycle and correlations 188 

Figure 3 shows the seasonal cycle for the EPS, TRMM and GPCP datasets 189 

averaged over the 11 dry-seasons 1998/99 to 2008/09. All three datasets show the 190 

characteristic decrease from above 2 mm per pentad in early November to very small 191 

values in late December and then a gradual increase to values above 3 mm per pentad at 192 

the end of the period in late March. Although the overlapping pentad accumulation 193 

causes a smoothing of the curves, single significant events still stand out from the 11-year 194 

background as for example a period in mid-February. Overall, GPCP shows considerably 195 

higher values (on the order of 50%) during the early and late parts of the dry season, 196 

while agreement with the other two datasets is better during the middle part. TRMM 197 

agrees remarkably well with EPS during the first half of the dry season and shows some 198 

tendency for lower values than EPS later on. Averaged over the entire dry season and all 199 

years, differences between EPS and TRMM (GPCP) are 0.12 mm (–0.41 mm) per pentad. 200 

An analysis of the reasons for these discrepancies is beyond the scope of this paper. They 201 

show, however, that there is a considerable uncertainty in the observations, which pose a 202 

significant problem to evaluation and model development. Part of this problem is 203 
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certainly related to the sparse network of surface stations that hampers the calibration and 204 

evaluation of satellite retrievals (see also the discussion at the end of section 2.1).  205 

Despite the biases discussed above, the temporal behaviour found in the 206 

observational datasets is overall well reproduced by the EPS with linear correlation 207 

coefficients reaching a remarkable 0.80 for both observational datasets (Figure 4). Part of 208 

this strong relation is certainly associated with the general moistening in February/March 209 

(Figure 3), but as we will show below there are significant events that stand out well from 210 

the background during all parts of the dry season, which are mostly well reproduced by 211 

the ensemble mean. Correlations with positive and negative lags show consistently lower 212 

values, indicating that the model does not tend to trigger precipitation too late or too early 213 

in a systematic way. It is interesting to note that the regression lines in both panels of 214 

Figure 4 are below the diagonal despite the slightly lower mean values in TRMM. This 215 

indicates that the EPS shows a general tendency to underestimate the wettest events and 216 

overestimate low-intensity events. This finding is consistent with results by KF09 using 217 

ERA-40 data.  218 

 219 

3.2 Event-based verification 220 

Given the strong seasonal cycle displayed in Figure 3, an event definition based on 221 

absolute values (either total or anomaly thresholds) is problematic. To circumvent this 222 

problem, KF09 defined events as anomalies of more than 200% relative to the mean 223 

seasonal cycle. This method biases the event identification to the driest part of the season 224 

when such large values are reached with much smaller absolute precipitation amounts. To 225 
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avoid this effect, a new approach is proposed here that involves a moving block of 10 226 

pentads in the following way:  227 

• Identify the maximum of the first 10 pentad accumulations of the season (1–5 228 

November, 2–6 November, 3–7 November, and so on until 10–14 November) of all 11 229 

dry-seasons (110 values in total).  230 

• Shift by 5 days and identify maximum of the 110 pentads 6–10 November, 7–11 231 

November, 8–12 November and so on until 15–19 November of all dry-seasons.  232 

• Repeat shift by 5 days 26 times until the end of the dry-season. The last 10-pentad 233 

block contains 16–20 March, 17–21 March, 18–22 March and so on until 25–29 234 

March. This way the last two days, 30 and 31 March, cannot be considered. 235 

In principle this procedure finds 28 maxima evenly distributed across the dry 236 

season. However, the overlap between the 10-pentad blocks used to find maxima leads to 237 

double counting, giving 20 actual maxima in TRMM and 21 in GPCP and EPS. In 238 

addition, if identified maxima are four days or less apart from each other in time, they are 239 

considered part of the same meteorological event and only the pentad with the larger 240 

precipitation value is retained. This reduces the final numbers of events to 16 (TRMM) 241 

and 17 (GPCP and EPS), thus about one and a half event per dry-season (results are listed 242 

in Table I). The two dry-seasons 2000/01 and 2004/05 stand out as the ones without any 243 

events in any of the datasets. Remarkably, TRMM and GPCP only agree on 12 events 244 

(75% and 71% of all, respectively), underlining the substantial observational uncertainty. 245 

The definition of events as explained above enables the identification of forecast 246 

hits, missed events and false alarms. In matching events from two different datasets, a 247 

time shift of 1 or 2 days was tolerated. Table II gives the results of this analysis. 7 events 248 
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were found with all three datasets matching, while additional 2 had at least a match 249 

between EPS and TRMM (see shadings in Table I). Given the observational uncertainty, 250 

these can be regarded as 9 hits. 5 events are identified in both TRMM and GPCP, but not 251 

in the EPS data and therefore qualify as missed events. Interestingly these are 252 

predominantly during the early part of the study period (1998/99, 1999/2000, 2 in 253 

2001/02, 2008/09). It may indicate that improvements to the operational system in the 254 

course of the study period have led to a reduction of misforecasts. There are 7 situations 255 

in which only one of the two observational datasets shows an event. These could be 256 

interpreted as partial misses, but we would argue that they should be considered correct 257 

negatives in the light of the observational uncertainty. The biggest problem with the event 258 

forecasts is the high number of false alarms (8 during the 11 seasons). Some of these 259 

clearly stand out as significant outliers in Figure 4. Given the impacts of dry-season 260 

rainfalls as discussed in the introduction, it is probably tolerable to have more false 261 

alarms than missed events, but such a high number points to some fundamental problem 262 

in terms of predicting rainfall quantities.  263 

Given the relatively small number of events and the particular nature of the 264 

identification routine that is designed to give fairly equal numbers for each datasets, the 265 

authors decided not to take this analysis any further by computing standard verification 266 

measures such as frequency bias, hit rate, false-alarm ratio etc. However, it is interesting 267 

to view the results for the categorical evaluation of the ensemble mean in a more 268 

probabilistic sense. To do this, it is necessary to see to what extent the false alarms and 269 

missed events discussed above are consistent with the ensemble spread for the given 270 

period.  Situations where the observations lie outside of the spread are undesirable and 271 
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should occur rarely for a well-tuned EPS. Results show that four out of five missed 272 

events (all but that in 1998/99) fall inside of the ensemble spread with one even inside the 273 

interquartile range. This suggests that most of these cases are only ‘missed’ in the sense 274 

of the event definition based on the ensemble mean, but that they can still be considered 275 

successful forecasts in a probabilistic sense. Five of the eight false alarms fall inside of 276 

the spread with three inside the interquartile range. The remaining three can be 277 

considered as misforecasts. This simple analysis suggests that probabilistic measures as 278 

discussed in section 4 will most likely evaluate the performance of the EPS more 279 

positively than the event-based one presented here. 280 

 281 

3.3 Example cases 282 

To illustrate this further, Figure 5 shows time series of the three considered datasets 283 

for four selected example dry seasons. TRMM and GPCP data are plotted as lines with 284 

crosses; the EPS data is depicted with box-and-whiskers plots (see caption for more 285 

details). Identified events are marked with bold horizontal lines. There is a generally very 286 

low ensemble spread during many observed dry periods, which could be capitalized on in 287 

terms of impacts. 288 

The first season 2001/02 shows four conspicuous rainfall periods (Figure 5a): 289 

• The event in mid-November qualifies as a miss, but at least the EPS forecasts 290 

unseasonal rainfall around the right time with all members above 2 mm per pentad and 291 

TRMM estimates well within the ensemble spread. The quantitative disagreement 292 

between GPCP and TRMM is remarkable.  293 
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• The weaker event in late November is only flagged by GPCP, while TRMM is well 294 

within the interquartile range of the EPS, which starts precipitation too early in this 295 

case, possibly related to problems with representing shallow stable layers (see KF09).  296 

• The event in early January is a clear hit with remarkable agreement between the three 297 

datasets. This case brought heavy rainfall across large parts of West Africa and severe 298 

flooding in Senegal and Mauritania (outside of our study region; see Knippertz and 299 

Martin, 2005; Fall et al., 2007). Figure 6 shows the horizontal distribution of rainfall 300 

for the three datasets. The overall spatial agreement is good, but GPCP tends to extend 301 

very light rainfall far into the Sahel and Sahara and smears out the localized maximum 302 

over the Ivory Coast (Figure 6b). The ensemble-mean forecast (Figure 6c) is 303 

expectedly rather smooth and shows the advance of the rainfalls into the southwestern 304 

part of the domain very clearly. Meier and Knippertz (2009) also noted the high 305 

predictability of this case in their model sensitivity experiments.  306 

• The event in the first half of March qualifies as a miss. This event brought unusual 307 

early rains in central Benin between 9 and 11°N (Fink et al., 2006). Again, there is a 308 

large disagreement between GPCP and TRMM, which falls just inside the interquartile 309 

range of the EPS. An underestimation of March rainfalls is not observed for most 310 

other years, which might be connected to a soil moisture or vegetation bias after the 311 

unusual rainfalls in January. 312 

The dry season 2003/04 had four wet events (Figure 5b). The first (early 313 

November), third (late January) and fourth (early March) are classified as hits, despite a 314 

significant underestimation for the former two (recall that event identification occurs 315 

relative to each dataset). This is clearly a disadvantage of the event identification 316 
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proposed here, suggesting that it should only be used in combination with other, more 317 

continuous measures. The event in mid-January (Figure 7) is the case discussed in detail 318 

in KF08, which first instigated research into this phenomenon. TRMM clearly shows 319 

very unusual, heavy precipitation reaching from Ivory Coast into Nigeria (Figure 7a). 320 

GPCP shows a coarse-grained and somewhat weaker pattern, again with light rains 321 

spreading far away from the main rainfall event (Figure 7b). The ensemble mean gives a 322 

clear indication of a general northward shift of the rain zone, but fails to reflect the full 323 

detail and magnitude (Figure 7c), largely consistent with the ERA-40 forecasts in KF08. 324 

The event in mid-November 2003 (Figure 5b) and the very last pentad of this dry season 325 

(not identified as an event) show a remarkable disagreement between GPCP and the other 326 

two datasets..  327 

The dry season 2005/06 (Figure 5c) again shows large disagreement between the 328 

two observational datasets over longer periods, particularly in November, December and 329 

March. The first event in late January is remarkably well forecast, but the second one in 330 

mid-February is the most significant false alarm of the study period with both 331 

observational datasets well below the driest ensemble members. The synoptic situation 332 

during this event was characterised by a very pronounced, strongly tilted upper-level 333 

trough located over northwestern Africa and the adjacent Atlantic Ocean, which is 334 

associated with an area of low surface pressure reaching from Burkina Faso to 335 

southwestern Algeria (Figure 8a). As a consequence the ITD shifts northward (thick line 336 

in Figure 8a). The satellite image on 17 February 2006 (Figure 8b) shows a subtropical 337 

cyclone-like cloud structure over the Sahara with some patchy convection to the south of 338 

it in the Tropics, which locally brought precipitation exceeding 50 mm (e.g. on 15 339 
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February 2006 around 9.5°N, 2°E; Pospichal et al., 2010). According to TRMM there are 340 

two separated areas of rainfall of moderate intensity: one associated with the cyclonic 341 

feature (mostly outside the study area) and one associated with the northward shifted ITD 342 

(Figure 8c). GPCP shows a coarse-grained version of this with very widespread light 343 

precipitation over the Sahel and Sahara (Figure 8d). Surprisingly, the main band over the 344 

Sahara is shifted eastwards in the GPCP data with respect to TRMM. In the EPS mean 345 

the two precipitation areas are connected, leading to too much and too widespread 346 

precipitation (Figure 8e). It appears that the model triggers convection too easily in this 347 

situation of enhanced low-level moisture and supposedly upper-level forcing for uplift. It 348 

is also conceivable that evaporation of precipitation in the dry desert air is not handled 349 

well in the model. The frequent occurrence of false alarms suggests that these problems 350 

are potentially systematic.  351 

The last example, the dry season 2008/09, was one of the most active seasons with 352 

5 identified events (3 hits, one missed event and one false alarm; Figure 5c). The latter 353 

underlines again the problems with the event definition, which can indicate a misforecast, 354 

although the absolute precipitation amounts agree rather well with each other. The most 355 

remarkable event in this season is the heavy rainfall in mid February 2009 (see Waliser et 356 

al. 2012). Other events mentioned in that paper are 5–6 December 2008 and 8–9 January 357 

2009.  358 

 359 

4. Probabilistic analysis 360 

In this section the full probabilistic information content from the EPS is explored 361 

with two standard evaluation methods, using the available TRMM and GPCP data for the 362 
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11 dry seasons 1998/99 to 2008/09 (as described in section 2.1) as the observed ‘truth’.  363 

This analysis complements the categorical evaluation based on extreme values in the 364 

ensemble mean presented in section 3. It is assumed here that each ensemble member 365 

carries the same probability of occurrence. 366 

The first method is the relative operating characteristic (ROC) diagram (e.g. Joliffe 367 

and Stephenson, 2003). It is constructed using a set of simple four-cell contingency 368 

tables. For the observations an event is defined through exceedance of a certain 369 

precipitation threshold. For the EPS, the event/no event decision is made based on a 370 

given forecast probability threshold (here 2, 20, 40, 60, 80 and 98%) for the chosen 371 

precipitation amount. The hit rate, H, is then defined as the ratio of the number of correct 372 

forecasts divided by the total number of observed events. The false alarm rate, F, is 373 

defined as the ratio of the number of false alarms divided by the total number of non-374 

events in the observations. In this way, a single point can be plotted on a graph of H 375 

against F. Plotting this for a set of probability thresholds creates a ROC curve, which has 376 

several important characteristics. The bottom left corner represents a situation of no 377 

warnings at all and therefore H = F = 0. The top right corner describes a situation of 378 

always warnings and therefore H = F = 1. Typically the area underneath the ROC curve 379 

is taken as a measure of skill (Buizza et al., 1999). A perfect forecast will have H = 1 and 380 

F = 0 and therefore a ROC area of 1. 381 

The reliability of an EPS is its ability to forecast accurate probabilities (Palmer, 382 

1999). This can be simply tested by plotting forecast probability against observed 383 

frequency, again for a given precipitation threshold. The diagonal in this diagram 384 

indicates perfect reliability. Circles of varying sizes represent the frequency of forecast 385 
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probabilities. Largest circles in the centre of the diagram indicate clustering around the 386 

climatological average and therefore low predictability. The property of an EPS to spread 387 

away from the climatological average is called “sharpness”. 388 

Examples of ROC and reliability diagrams for different thresholds are shown in 389 

Figure 9 for both TRMM and GPCP observations. For a threshold of 0.5 mm per pentad 390 

both datasets are relatively close to the diagonal indicating good reliability (Figure 9a). 391 

There is a general tendency to underestimate observed frequencies for low forecast 392 

probability, particularly in GPCP. This could be partly related to the spurious widespread 393 

low-intensity rainfall evident from Figures 6b, 7b and 8d. On the other hand observed 394 

frequencies are overestimated for high forecast probability. This might be a reflection of 395 

the EPS triggering convection too easily if the general conditions are favourable 396 

consistent with the high number of false alarms discussed in the previous section. The 397 

positive bias of GPCP with respect to TRMM leads to a general upward shift to higher 398 

observed frequencies in the diagram. The differences in behaviour between low and high 399 

observed frequencies do not make it possible to improve reliability greatly through a 400 

general bias correction. The distribution has good sharpness with largest circles in the top 401 

right corner, representing situations of successful forecasts where all ensemble members 402 

exceed the threshold. The corresponding ROC diagram (Figure 9b) shows good skill for 403 

both observational datasets with ROC areas of 0.90 (TRMM) and 0.91 (GPCP), with 404 

differences again reflecting the different biases as discussed previously.  405 

Figures 9c and 9d show the corresponding analyses for a precipitation threshold of 406 

1 mm per pentad. Overall the results are very stable with only a slight shift to more 407 

frequent events of low forecast probability as expected for a higher precipitation 408 
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threshold. This general behaviour continues for higher thresholds, so that for 3 mm per 409 

pentad only few events in the top right corner of the reliability diagram are recorded 410 

(Figure 9e). However, ROC scores continue to remain above 0.9, even for these relatively 411 

extreme events (Figure 9f). Overall this analysis shows that EPS forecast of dry-season 412 

precipitation are in fact of high quality and usefulness.  413 

 414 

5 Discussion and conclusions 415 

Dry-season precipitation events in tropical West Africa are rare, but have important 416 

ramifications for the local population. This work extended previous studies on this 417 

subject by KF08 and KF09 in two ways: (A) Forecasts of these events considered here 418 

are from operational ECMWF ensemble predictions that allow an assessment of 419 

predictability. (B) More recent and high-resolution precipitation datasets are used for 420 

evaluation. The study region corresponds to that of KF09 and spans 7–15°N, 10°W–421 

10°E. The 11 dry seasons (November–March) 1998/99–2008/09 were investigated. EPS 422 

forecasts and observations were compared on the basis of pentads, using +132h minus 423 

+12h predictions. Evaluations are done both for the ensemble mean and using 424 

probabilistic methods. The most important conclusions from this work are: 425 

• There is a considerable observational uncertainty for this region during this time of 426 

year. GPCP has a substantial positive bias with respect to TRMM and tends to show 427 

widespread low-intensity rainfall. Although the overall temporal correlation is 0.92, 428 

deviations during single events can be remarkably high, practically impeding a 429 

forecast evaluation for some individual cases. 430 
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• The agreement of EPS is generally better with TRMM than with GPCP. This holds for 431 

the mean seasonal cycle, temporal correlations, event evaluation and ROC scores. 432 

• Temporal correlations between EPS mean and the observational datasets reach 0.8. 433 

• ROC scores are on the order of 0.9. Sharpness and reliability are satisfactory with a 434 

general tendency of too high (low) forecast probabilities for high (low) observed 435 

frequencies. 436 

• Categorical evaluation of extreme events identified from the ensemble mean is much 437 

more sensitive to small variations in precipitation amounts and therefore indicates less 438 

skill. There is a moderate number of missed events, but the biggest problems are too 439 

many false alarms and a tendency of the EPS to start precipitation too early. Both may 440 

indicate that convection is triggered too easily in the typical dry-season rainfall 441 

situation with upper-level forcing and high low-level moisture. 442 

Overall the results presented here indicate a general ability of the ECMWF EPS to 443 

provide reliably forecast information of dry-season rain events in tropical West Africa on 444 

the pentad timescale. It would be interesting to explore whether there is also some 445 

seasonal predictability, for example related to the influence of El Niño on upper-level 446 

troughs and tropical plumes over the eastern North Atlantic (Luise Fröhlich, University of 447 

Cologne, pers. comm., 2012). One of the important limitations of this study is the large 448 

observational uncertainty related to the disagreement of different precipitation products 449 

on daily timescales (see Parker et al., 2011). The evaluation of rainfall products is 450 

generally focused on the rainy season, such that biases during the dry season are 451 

particularly large (Adeyewa and Nakamura, 2003). More targeted efforts are needed to 452 

understand the origin of such biases and to explore retrievals designed for precipitation 453 
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outside of the main rainy season. Other research in the future should explore how the 454 

predictability found in this study can be used to inform decision makers in West Africa, 455 

particularly in the health, agriculture and water sectors. This will most likely require 456 

investigations on finer spatial scales than used in this study and include the identification 457 

of optimal forms of communicating uncertainty in ensemble predictions to a given end-458 

user community. 459 
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Tables 562 

Table I: List of identified extreme pentads in the three datasets considered. Light shading 563 

indicates agreement between TRMM and GPCP, intermediate shading between EPS and 564 

TRMM and dark shading between all three datasets. 565 

EPS TRMM GPCP 
14–18 MAR 1999  06–10 DEC 1998 05–09 DEC 1998 
17–21 NOV 1999 15–19 FEB 1999 30 DEC 1999–03 JAN 2000 
23–27 NOV 1999 25–29 NOV 1999 16–20 MAR 2000 
01–05 JAN 2000 31 DEC 1999–04 JAN 2000 11–15 NOV 2001 
05–09 JAN 2002 16–20 MAR 2000 23–27 NOV 2001 
03–07 NOV 2002 11–15 NOV 2001  06–10 JAN 2002 
06–10 DEC 2002 06–10 JAN 2002 07–11 MAR 2002 
07–11 NOV 2003 07–11 MAR 2002 13–17 FEB 2003 
19–23 JAN 2004 05–09 NOV 2003 05–09 NOV 2003 
01–05 MAR 2004 19–23 JAN 2004 16–20 NOV 2003 
26–30 JAN 2006 27 FEB–03 MAR 2004 19–23 JAN 2004 
13–17 FEB 2006 26–30 JAN 2006 26 FEB–02 MAR 2004 
07–11 FEB 2007 01–05 DEC 2008 22–26 DEC 2004 
03–07 DEC 2008 14–18 DEC 2008 26–30 JAN 2006 
15–19 DEC 2008 02–06 FEB 2009 20–24 MAR 2008 
16–20 FEB 2009 25–29 MAR 2009 13–17 DEC 2008 
16–20 MAR 2009  01–05 FEB 2009 

 566 

 567 

Table II: Results from the event-based evaluation. Situations where the two observational 568 

datasets disagree can be interpreted in two different ways. For more details see section 569 

3.2. 570 

Event in All 

three 

EPS 

TRMM 

EPS 

GPCP 

EPS TRMM 

GPCP 

TRMM GPCP 

Number 7 2 0 8 5 2 5 

Interpretation hit hit / false alarm false alarm miss miss / correct neg.  

 571 
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Figures 572 

 573 

 574 

 575 

Figure 1. Schematic depiction of the mechanism of tropical-extratropical interaction 576 

responsible for many dry-season precipitation events (modified version of Figure 14 in 577 

KF08). Thin solid lines depict upper-level geopotential height with the subtropical jet 578 

(STJ) marked with a thick arrow. Thin arrows depict the predominantly northerly 579 

(southerly) low-level flow of dry Saharan (moist tropical) air masses. ‘H’ and ‘L’ mark 580 

high- and low-pressure centres, respectively. The thick dashed and solid lines show the 581 

climatological and the actual positions of the Intertropical Discontinuity (ITD). Areas of 582 

precipitation are shaded. 583 
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 584 

Figure 2. Comparison between GPCP and TRMM rainfall estimates. The scatter diagram 585 

shows pentad precipitation (mm) for each day during the 11 dry seasons (November–586 

March) 1998/99–2008/09 averaged over the study area (7–15°N, 10°W–10°E). The linear 587 

regression line (thick dashed), the diagonal (thin solid) and the linear correlation 588 

coefficient are also given in the plot. 589 

 590 

 591 

 592 

 593 

 594 
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 595 

Figure 3. Mean seasonal cycle in EPS ensemble means, TRMM and GPCP data. Shown 596 

are pentad precipitation values for each dry-season day (November–March) averaged 597 

temporally over 1998/99–2008/09 and spatially over the study area (7–15°N, 10°W–598 

10°E). The dates underneath the x-axis give the end date of the respective pentad.  599 

 600 

 601 

 602 

Figure 4. As Figure 2 but for EPS ensemble mean precipitation forecasts and (a) TRMM 603 

and (b) GPCP.  604 
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 605 

Figure 5. Time series of selected dry seasons (November–March): (a) 2001/02, (b) 606 

2003/04, (c) 2005/06 and (d) 2008/09. Shown are daily pentad precipitation values 607 
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averaged over the study area (7–15°N, 10°W–10°E) with the end dates given underneath 608 

the x-axis. EPS forecasts are depicted as box-and-whisker plots (the box indicates the 609 

interquartile range, the central line is the median, and ‘+’ represent outliers). Ellipses 610 

(rectangles) represent GPCP (TRMM) observations. The heavy horizontal lines represent 611 

pentad rainfall for extreme events, as further detailed in section 3.2.  612 

 613 

 614 

Figure 6. Example case I. Pentad precipitation (mm) for 5–9 January 2002 showing 615 

(a) TRMM, (b) GPCP and (c) EPS mean. The black boxes indicate the study area used 616 

for averaging in Figures 2–5. 617 
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 618 

Figure 7. Example case II. As Figure 6 but for 19–23 January 2004. 619 
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 620 

Figure 8. Example case III. (a) Geopotential height at 500 hPa (contours every 50m), 621 

mean sea-level pressure (hPa, shading) and the position of the ITD as indicated by the 622 

14°C contour of the 2m dewpoint (dashed line) at 0000 UTC 15 February 2006. ‘H’ and 623 

‘L’ mark high- and low-pressure centres, respectively. (b) Meteosat infrared satellite 624 

image at 1200 UTC 17 February 2006. (c)–(d) as in Figure 6 but for 13–17 February 625 

2006.  626 
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 627 

Figure 9: Probabilistic forecast evaluation. Reliability (left) and ROC (right) diagrams for 628 

TRMM and GPCP pentad precipitation values averaged over the study area (7–15°N, 629 

10°W–10°E) for the 11 dry seasons 1998/98–2008/09. Thresholds are (a), (b) 0.5 mm, 630 

(c), (d) 1 mm and (e), (f) 3 mm. The size of the circles in the reliability diagrams 631 

indicates the number of cases in each bin (e.g. 1088 for the largest circles in Fig. 9e). 632 

ROC areas are also given in the plots. 633 
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