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ABSTRACT 

The Braer storm of January 1993 was the deepest ever recorded cyclone outside of the Tropics 

with a minimum core pressure of 914 mbar, but due to its track between Scotland and Iceland it 

ensued little damage and was never intensively examined. Here we present a study on the 

dynamics of the storm using modern re-analysis data from the European Centre for Medium-

Range Weather Forecasts (ECMWF) and sensitivity studies with the Weather Research and 

Forecasting (WRF) model to quantify influences of diabatic heating and Greenland’s topography 

on the track and rapid deepening of the storm. 

 

1.  INTRODUCTION 

In a 24-hour period between 9 and 10 January 1993, a storm system in the North Atlantic 

(Fig. 1a) underwent explosive cyclogenesis, deepening 78 mbar and setting a record minimum 

central sea level pressure of 914 mbar (Fig. 1b). The 24 hour deepening rate, 3.25 Bergerons1, is 

the largest on record for an extratropical cyclone (see Lim and Simmonds, 2002). The storm is 

named after the oil tanker MV Braer, which was travelling from Bergen, Norway to Quebec, 

Canada. On the morning of 5 January 1993 the ship lost power and began to drift helplessly in 

the rough seas to the north of Scotland. It later ran aground at Garths Ness, 25 miles south of 

Lerwick on the Shetland Islands. The Braer storm produced wind gusts in excess of 100 knots 

(kn) over the Shetland Islands, which finally broke up the MV Braer and released 85,000 tonnes 

of light crude oil into the North Sea. Fortunately, no human lives were lost, however ca. 1,500 

sea birds died. In contrast to heavier North Sea oil, the light crude oil the MV Braer contained 

was broken up quite easily by the turbulent sea and after 21 January there was no visible oil left 

on the sea surface. Further impacts included blizzards in Scotland and heavy rain and gales for 

the rest of Britain, however, the storm caused minimal other damage.  

Two analyses of the Braer storm were published in Weather shortly after its occurrence (Burt, 

1993; McCallum and Grahame, 1993). Both are mostly descriptive accounts of the storm, 

detailing observations from ships, buoys and land. Until now, however, an analysis of the state of 

the atmosphere at this time and how it conspired to produce a storm of such record breaking 

intensity has remained absent from the literature. This is probably mostly the result of the lack of 

damage wrought, owing to the storm’s track between Iceland and Scotland (Fig. 1b). The 20
th

 

anniversary of the Braer storm in January 2013 motivated us to revisit this highly unusual 

cyclone using modern re-analysis data from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) ERA-Interim dataset and high-resolution simulations with the Weather 

Research and Forecasting (WRF) model. In this article, we will focus on the main dynamical 

factors contributing to the rapid deepening of the cyclone (Section 2). We will then present 

results of sensitivity experiments to investigate the influence of orographic forcing by Greenland 

                                                           
1
 1 Bergeron corresponds to 24 mbar of mean-sea level pressure fall in 24 hours at 60 

o
N 
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and latent heat release within the cyclone’s frontal cloud bands on the storm’s track and intensity 

(Section 3). A short summary and conclusions will be given in Section 4. 

 

2. SYNOPTIC EVOLUTION 

a) Mean-sea level pressure, upper-level jet and baroclinicity 

January 1993 was characterised by a very active storm track over the North Atlantic, leading to 

exceptionally mild, wet and windy conditions in the UK (Meteorological Office, 1995). During 

the first two weeks of the month, a succession of cyclones crossed the North Atlantic, three of 

which had minimum central pressures below 960 mbar (Fig. 2). They brought heavy rains, snow 

and gales to northern Britain. These deep baroclinic depressions formed in association with a 

sharp thermal gradient and strong upper-level jet streak over the western North Atlantic and 

north-eastern North America as further discussed below. This zone is located close to the 

northern edge of the Gulf Stream, where strong sea surface temperature gradients enhance lower-

tropospheric baroclinicity and heat fluxes from the warm ocean surface aid destabilisation of the 

boundary layer, creating an environment favourable for cyclone development. The Braer storm 

was initiated in this region on 8 January and tracked rapidly north-eastward while deepening 

explosively (Fig. 3). It reached peak strength just south of Iceland on 10 January 1993, attaining 

what is the deepest core pressure of an extratropical cyclone ever recorded in the North Atlantic 

(Lim and Simmonds, 2002). Pressure at sea level was 914 mbar, something more typically found 

at the top of a 900 m (2950 ft) mountain. The path taken by the Braer storm was similar to that 

of the two intense cyclones crossing the North Atlantic in the first week of January 1993 

(Figs. 2a and b) and close to the mean storm track of explosively deepening cyclones identified 

by Wang and Rogers (2001; see Fig. 3a). During the afternoon of 10 January and the morning of 

11 January the Braer storm was almost stationary. The cyclone then filled slowly and drifted 

north-eastwards into the Norwegian Sea, where it lasted several more days. 

Figure 4 shows the evolution of the upper-level jet and low-level baroclinicity between 7 and 10 

January 1993 based on ECMWF ERA-Interim re-analysis data. On 7 January, large parts of 

eastern Canada, the Labrador Strait and Greenland are covered by cold Arctic air, while a warm 

subtropical air mass is found over the south-eastern USA (Fig. 4a). A jet maximum of over 140 

kn is located to the east of Newfoundland. A secondary maximum, most likely associated with 

the subtropical jet (labelled ‘s’ on Fig. 4a), is found over the eastern USA. There is considerable 

upper-level divergence associated with the right entrance regions of both jet maxima (dashed 

lines in Fig. 4a). By 8 January 1993, the two jet streaks have merged, forming a short, linear 

feature with a maximum speed of more than 200 kn and impressive zonal and meridional wind 

speed gradients (Fig. 4b). The temperature difference at 850 mbar between Newfoundland and 

Nova Scotia is nearly 40 °C over 1150 km (715 miles), roughly the distance between the north 

coast of Scotland and south coast of England. The Braer storm initially appeared at the surface 

on the morning of 8
 
January under the strong upper-level divergence associated with the right 
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entrance region of the intensifying jet streak (blue ‘B’ in Fig. 4b). The surface cyclone crossed 

the upper-level jet in the early morning hours of 10 January, into the area of strong upper-level 

divergence associated with the left exit region of the jet (Fig. 4c). This is a well-documented 

characteristic of many explosively developing cyclones (Riviere and Joly, 2006). Initially, two 

separate surface circulations were evident in the ECMWF data; these merged early on the 10 

January into one much stronger circulation. It was at this time, between 0000 and 0600 UTC on 

the 10 January that the core pressure of the Braer storm deepened most rapidly, falling 26 mbar 

in 6 hours (Fig. 3b) or more than 4 mbar hr
-1

. 

b) Potential vorticity perspective 

An alternative perspective on the storm evolution can be gained through the use of potential 

vorticity (PV), which combines aspects of vertical stability and absolute vorticity (Hoskins et al., 

1985). PV is a conserved variable for adiabatic motions in the atmosphere and is therefore very 

useful when tracking a disturbance. For example, if a developing cyclonic system crosses high 

topography, the air column is squashed, which causes a rapid reduction in relative vorticity and 

can mask the original disturbance. The pressure field is also distorted and it becomes difficult to 

track the depression until it reaches the lee side of the topography. PV, however, will not change 

in this situtation and therefore the disturbance can be followed more easily. As shown by Hoskins 

et al. (1985), positive PV anomalies can occur at upper levels and lower levels in the 

troposphere. When they favourably align in the vertical, the cyclonic circulation exerted by each 

anomaly can act to mutually amplify each anomaly. The lower anomaly is generated by a warm 

air moving polewards and the upper anomaly is produced by intrusions of stratospheric air 

(characterised by high PV) down into the troposphere. The upper anomaly can increase the lower 

anomaly by advecting more warm air from the south at low levels and the lower anomaly advects 

high PV air from the north into the upper anomaly. As the anomalies interact and phase lock, the 

cyclone intensifies and will deepen until they become vertically stacked and the cyclone begins 

to weaken.  

Figure 5 shows upper-level PV (averaged between 250 and 450 mbar) together with the 

geopotential height of the 1000 mbar surface. Before 0600 UTC 9 January subsidence in broad-

scale northwesterly flow forces the tropopause to descend on the downstream side of a strong 

North American ridge. As a result, upper tropospheric PV increases in a trench-like fashion over 

the east coast of Canada (purple ‘PV+’ in Fig. 5a). At this time, the Braer storm is forming to the 

southeast of Newfoundland, well south of the main upper-level PV gradient (‘B’ in Fig. 5). 

Another marked upper-level PV anomaly is generated by flow over Greenland’s orography 

(shown by the green ‘GPV+’ in Fig. 5a). The surface depression (‘B’) has a low-level PV 

anomaly associated with it (see figure 6). As discussed in Section 2, the surface cyclone ‘B’ 

tracks northeastward, crossing the upper jet during 9 January while the ‘PV+’ anomaly is 

advected zonally along the poleward side of the upper-level jet. At 1800 UTC on 9 January, the 

Braer storm is located just downstream of the descending upper PV anomaly, while ‘GPV+’ is 

almost stationary (Fig. 5b). Between 1800 UTC 9 January and 0600 UTC 10 January, ‘PV+’ acts 
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as the central anomaly with ‘GPV+’ and the surface anomaly rotating cyclonically around it 

(Figs. 5b and c). The ‘GPV+’ anomaly splits into two, smaller anomalies (‘GPVa+’ and 

‘GPVb+’, Fig. 5c). ‘GPVa+’ is wrapped into ‘PV+’, intensifying the overall upper-tropospheric 

anomaly. The circulation associated with the surface cyclone, which is located poleward of the 

upper PV at 0600 UTC on 10 January (Fig. 5c), can help to advect high PV air into the 

developing anomaly from upstream as discussed earlier in this section. This idea will be returned 

to below. Rotating around each other and becoming a singular, tropospheric-deep cyclonic wave, 

the upper and lower anomalies (‘PV+’ and ‘B’, respectively) become super-posed vertically by 

1800 UTC 10 January (Fig. 5d). Concurrently, strong latent heating at the thermal ridge (see Fig. 

4c) produces a low PV tongue that begins to cut off the ‘PV+’ anomaly from the supply of high 

PV air upstream (black arrow, Fig. 5d). This is found to occur in the post-mature phase of many 

strong winter cyclones (see Posselt and Martin, 2004).  

Three-dimensional analysis of the PV field during 10 January 1993 reveals that indeed the 

surface cyclone ‘B’ and the upper anomaly (‘PV+’) do interact and phase lock (Figs. 6a and b). 

Whilst still out of phase vertically at 0600 UTC on 10 January (Fig. 6a) the circulation associated 

with the low level anomaly (‘B’) advects high PV air from the northwest (upstream) into the 

upper anomaly (‘PV+’). Simultaneously, warm air is advected from the southeast into the lower 

anomaly by the cyclonic circulation associated with ‘PV+’, leading to mutual amplification. 

Notice how the isentropes (lines of constant potential temperature) bow toward each anomaly, 

characterised by higher stability (Fig. 6). Conversely, a weakly stratified environment exists 

around the anomalies, allowing for a deep penetration depth of their circulations and explosive 

mutual amplification (see Fig. 5). At the peak of the Braer storms intensity (1800 UTC 10 

January) the two anomalies formed a continuous vertical tower of PV throughout the depth of the 

troposphere (Fig. 6b). This has been shown to occur at the peak strength of many intense 

cyclones, e.g. the European windstorm Lothar (Wernli et al. 2002; Čampa and Wernli, 2012). As 

in many other cases, the lower-level PV anomaly was probably significantly enhanced by 

diabatic heating, without which a weaker interaction between upper and lower PV anomalies 

would have likely resulted. 

3.  MODEL SENSITIVITY EXPERIMENTS 

To better understand the rapid intensification and why the storm took the track it did, like the 

majority of other explosively deepening cyclones over the North Atlantic (Fig. 3a), sensitivity 

experiments using the WRF model were conducted. The WRF model is a terrain-following, non-

hydrostatic numerical model applied widely in atmospheric research. WRF was run at a 4 km 

grid spacing over a domain between 90 
o
W – 20 

o
E and 20 

o
N – 80 

o
N. WRF was initialised at 

0000 UTC 7 January 1993 in each simulation and ran for 144 hours ending at 0000 UTC 13 

January. This set-up was chosen after a number of tests with other configurations, as it showed 

the best reproduction of the evolution of the storm compared to ERA-Interim data. Three 

simulations were designed: (a) A Control experiment to show that WRF can reproduce a realistic 

storm of similar intensity and track. (b) A ‘No Latent Heat’ (NOLH) experiment, in which the 
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energy released through phase changes of water was set to zero and in which the convection 

scheme was deactivated, to quantify contribution of diabatic processes to the Braer storm’s 

depth. (c) A ‘No Greenland’ (NOGL) experiment, in which all grid points over Greenland were 

set to land points at 1 m elevation, to test the sensitivity of the Braer storm to effects of 

Greenland’s steeply sloped topography. The importance of latent heat release (diabatic heating) 

on the intensification of a developing cyclone has been well documented in the literature (e.g. 

Stoelinga, 1996; Wernli et al., 2002). The effects of Greenland’s topography on the evolution of 

individual cyclone developments and the northern hemispheric stormtracks have also been 

investigated in a number of studies (e.g. Kristjansson and McInnes, 1999; Petersen et al., 2004). 

The results are not clear-cut and show both damping and enhancing effects on cyclone 

development over the North Atlantic. 

In the Control experiment, surface pressure began to fall in a broad area off of the east coast of 

the USA on the morning of 8 January with a closed 1012 mbar isobar evident by 0900 UTC. The 

subsequent track and deepening rate follows closely that of reality through 8 and 9
 
January 

(compare Figs. 3 and 7). Crossing the upper jet the depression deepened to 998 mbar by 0600 

UTC 9 January (Fig. 7). The deepening rate steadily increased during 9 January but lagged 

slightly behind the observed rate. By 0000 UTC 10
 
January, the Braer storm is at 972 mbar, 

weaker than the 960 mbar found in ECMWF data at this time. In the next 6 hours, however, the 

core pressure falls 32 mbar (more than 5 mbar hr
-1

), with a marked drop of 20 mbar between 

0300 UTC and 0600 UTC 10 January (Fig. 7). This is the time when the upper and lower PV 

anomalies discussed in Section 2b phase-lock at approximately 55 
o
N/ 20 

o
W. This is well 

reproduced by WRF, which, as is the case in reality, merges two surface circulations at this time 

corresponding to the two initially separate waves. Progressing almost due north, the Braer storm 

in Control reaches peak intensity of 915 mbar at 1800 UTC just south of Iceland (Fig. 8a), very 

similar to ECMWF data (Fig. 3a). A lee cyclone (see explanation further down in this section) 

with a minimum pressure of 956 mbar occurs just east of Greenland throughout the development 

of the Braer storm in Control and appears to interact with the storm at peak intensity during 10 

January as was shown for the associated PV anomalies in Section 2b. The track of the Control 

cyclone between 10 and 11 January deviates slightly from the observed path. Remaining south of 

Iceland it does a loop on itself before progressing east on 12
 
January, tracking closer to Scotland 

than in reality (Fig. 7a). Overall the reproduction of the Braer storm in WRF is satisfactory with 

a maximum depth within 1 mbar of the re-analysis data and closely correlated path across the 

North Atlantic until 10 January, which gives confidence that the sensitivity experiments are 

meaningful. 

The track of the NOLH cyclone is very similar to Control although displaced slightly to the north 

throughout (Fig. 7a). Despite a slower start, the deepening of the Braer storm in NOLH during 8 

and 9 January is comparable to Control, with a central pressure at 0000 UTC 10 January of 974 

mbar (Fig. 7b). It is in the next 6 hours that the depression in NOLH deepens considerably less 

than Control and ECMWF, such that by 0600 UTC the NOLH Braer storm is only 961 mbar, 
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significantly weaker than the 940 mbar Control. This offers support for the hypothesis that the 

lower-tropospheric PV anomaly was significantly enhanced by diabatic heating. With a weaker 

lower level anomaly, the circulation near the surface would have been weaker and the 

amplification of the upper anomaly would have been suppressed. In addition, a lack of 

condensational heating of the middle troposphere would keep the stability higher and reduce the 

strength of the coupling between the two waves. A maximum intensity of 946 mbar is reached by 

the Braer storm in NOLH slightly further north (over the southern coast of Iceland) than the 

Control. This suggests that diabatic processes contribute about 30 mbar to the overall deepening 

of the Braer storm. 

Removing Greenland from WRF in the NOGL experiment allows cold air at low levels to cross 

the landmass and push further east across the North Atlantic Ocean. It also removes the lee 

cyclone from the eastern side of Greenland (Fig. 8b) that was seen in the Control simulation and 

therefore reduces the positive PV signature seen in Fig. 5 (not shown). The Greenland lee 

cyclone is a semi-permanent atmospheric phenomenon that exists because prevailing westerly 

flow is forced to subside along the eastern side of the ice sheet. Vortex stretching in the lee 

increases an air parcel’s vorticity and subsidence warms the parcel, creating a favourable 

environment for cyclogenesis. In a model study of the entire Northern Hemispheric circulation in 

which Greenland was removed, Petersen et al. (2004) found a significant reduction in the 

number of cyclones between Greenland and Europe. The effect of Greenland on depth and track 

of explosively developing cyclones is not fully understood. It is hypothesized here that the 

Greenland lee cyclone (and associated PV anomaly) might have been at least partly responsible 

for retarding the eastward propagation of the Braer storm, keeping it further north and therefore 

away from the British Isles when it was most powerful. 

The initial development of the NOGL cyclone is almost identical to Control. Forming around 36 
o
N just off the east coast of the USA, the storm tracks north-eastward along a similar line 

(displaced slightly to the south). WRF produces a cyclone with the same central pressure of 998 

mbar at 0900 UTC 9 January (Fig. 7a). Continuing to deepen at a similar rate to Control, the core 

pressure of the Braer storm is 970 mbar at 0000 UTC 10 January (Fig. 7b), at a similar position 

to Control of 53 
o
N and 24 

o
W (Fig. 7a). From this point forward through 10 and 11 January, the 

Braer storm has a faster evolution and deepens more rapidly in NOGL. The centre remains 

further south, doing a much smaller loop, and tracking almost due east by the end of 10 January 

(Fig. 7a). As the storm passes just to the south of the Faroe Islands at 0300 UTC on 11 January, 

the cyclone is still an unprecedented 918 mbar and is closer to Scotland than Control (Figs. 8c 

and d) or re-analysis data at this time. In addition, NOGL clearly has a broader and warmer core 

than Control, but has slacker gradients in temperature around the centre (Figs. 8c and d). Cold air 

comes from the northwest behind the NOGL cyclone as opposed to the west in Control. At the 

same time, warmer air is advected further poleward on the eastern side of the NOGL storm.  

The near surface (10 m) winds clearly demonstrate the southward shift of the Braer storm at its 

peak intensity (Figs. 8e and f). A clear wind maximum is visible on the southern side of the 
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cyclone centre with mean 10 m wind speeds exceeding 35 m s
-1

 (78 mph) and 30 m s
-1

 (67 mph) 

along the northern coast of Scotland in NOGL. Note the dramatic decrease of winds over land in 

Fig. 8e. Previous studies have indicated some issues with WRF to realistically represent high 

winds over land (Nawri et al., 2012), suggesting that the results presented here are likely to be an 

underestimation. As an illustration of the differences between Control and NOGL, Fig. 9 shows 

the evolution of the mean 10 m wind speeds at grid points closest to Edinburgh and Lerwick on 

the Shetland Islands. The change is more pronounced at Lerwick, where 10 m wind speeds peak 

5 m s
-1

 greater in NOGL at close to 30 m s
-1

 (Fig. 9a). Over the central belt and most densely 

populated region of Scotland the 10 m winds peak around 23 m s
-1

 and remain at or above 17 m 

s
-1

 for at least 24 hours between the afternoon of 10 January and morning of 11 January, as 

opposed to Control, in which winds exceed 17 m s
-1

 for less than 10 hours and peak at around 20 

m s
-1

 (Fig. 9b). In other words, Edinburgh would have experienced what is officially tropical 

storm category wind speeds for a full 24 hours, had the Greenland lee cyclone not steered the 

Braer storm away from the British Isles. 

 

4.  CONCLUDING REMARKS 

Here we have presented an investigation into the Braer storm of January 1993, the most 

explosively deepening extratropical cyclone on record. Deepening 78 mbar in 24 hours and 

attaining a minimum core pressure of 914 mbar, the Braer storm was a remarkable 

meteorological phenomenon. The Braer storm formed in the right entrance region of an 

exceptionally strong upper-level jet just off the east coast of the USA, near the northern edge of 

the Gulf Stream, and crossed the jet into the highly divergent left exit region. Interactions of two 

upper-level PV anomalies and diabatically generated PV at low levels contributed to the rapid 

storm intensification, ultimately creating a vertical PV tower during the mature phase. Many of 

these attributes are structurely similar to previous intense cyclones over the North Atlantic. 

Sensitivity experiments with WRF show that diabatic processes contributed more than 30 mbar 

to the deepening of the Braer storm and shifted the track slight southward. A removal of 

Greenland’s topography does not affect the storm’s intensity much, but the lack of a steering lee 

cyclone leads to a track closer to the British Isles, which would have potentially caused much 

more serious damage than the real-world storm. In the future we would like to carry out a piece-

wise inversion of the PV field to show the contribution from each PV anomaly to the circulation. 

In addition, we found unusually large geopotential height tendencies across large parts of the 

stratosphere that deserve further investigation.  

 

ACKNOWLEDGMENTS 

We gratefully acknowledge Jenny Owen for retrieving the ECMWF data used in this study, 

access to which is made possible through the UK Met Office. We would like to thank Tomek 

Page 8 of 19

http://mc.manuscriptcentral.com/weather

Weather

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Trzeciak and Richard Rigby for technical advice. We are grateful to two anonymous reviewers 

and the editor for their useful comments on the manuscript. 

 

REFERENCES 

Burt S. 1993. Another new North Atlantic low pressure record. Weather 48(4): 98–103. 

Čampa J, Wernli H. 2012. A PV perspective on the vertical structure of mature midlatitude 

cyclones in the Northern Hemisphere. J. Atmos. Sci. 69: 725–740. 

Hoskins BJ, McIntyre ME, Robertson AW. 1985. On the use and significance of isentropic 

potential vorticity maps. Quart. J. Roy. Meteorol. Soc. 111: 877–946. 

Kristjánsson JE, McInnes H. 1999. The impact of Greenland on cyclone evolution in the North 

Atlantic. Quart. J. Roy. Meteorol. Soc. 125: 2819–2834. 

Lim EP, Simmonds I. 2002. Explosive cyclone development in the southern hemisphere and a 

comparison with northern hemisphere events. Mon. Wea. Rev. 130: 2188–2209. 

McCallum E, Grahame NS. 1993. The Braer storm – 10 January 1993. Weather 48(4): 103–107. 

Meteorological Office. 1995. January 1993. Monthly Weather Report 110(1). Available at 

http://www.metoffice.gov.uk/media/pdf/q/2/Jan1993.pdf [accessed 10th January, 2012]. 

Nawri N, Petersen GN, Björnsson H, Jónasson K. 2012. Evaluation of WRF mesoscale model 

simulations of surface wind over Iceland. Icelandic Meteorological Office, Report VI2012-010, 

ISSN 1670-8261. Available at http://www.vedur.is/media/2012_010_web.pdf 

Petersen GN, Kristjansson JE, Olafsson H. 2004. Numerical simulations of Greenland’s impact 

on the Northern Hemisphere winter circulation. Tellus, 56A: 102–111. 

Posselt DJ, Martin JE. 2004. The effect of latent heat release on the evolution of a warm 

occluded thermal structure. Mon. Wea. Rev. 132: 578–599. 

Riviere G, Joly A. 2006. Role of the low frequency deformation field on the explosive growth of 

extratropical  cyclones  at the jet exit. Part I: Barotropic critical region. J Atmos. Sci. 63: 1965–

1981.  

Stoelinga MT. 1996. A potential vorticity-based study of the role of diabatic heating and friction in a 

numerically simulated baroclinic cyclone. Mon. Wea. Rev. 124: 849–874. 

Wang CC, Rogers JC. 2001. A composite study of explosive cyclogenesis in different sectors of 

the North Atlantic. Part I: cyclone structure and evolution. Mon. Wea. Rev. 129: 1481–1499. 

Page 9 of 19

http://mc.manuscriptcentral.com/weather

Weather

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Weather Log, 1993: January 1993. Weather 48(3): attachment to the print version. 

Wernli H, Dirren S, Liniger MA, Zillig M. 2002. Dynamical aspects of the life cycle of the 

winter storm ‘Lothar’ (24-26 December 1999). Quart. J. Roy. Meteorol. Soc. 128: 405–429. 

 

Page 10 of 19

http://mc.manuscriptcentral.com/weather

Weather

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

The Braer storm near peak strength on 10 January 1993. (a) Infrared image taken from the AVHRR satellite 
on a westerly pass over the UK (courtesy of www.satdundee.ac.uk) at 0920 UTC. (b) Surface analysis chart 

at 1800 UTC taken from Burt (1993).  
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Surface analysis charts for 1200 UTC on (a) 3, (b) 7 and (c) 10 January 1993 (taken from Weather Log, 
1993). The extremely deep cyclone in (c) is the Braer storm.  
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Evolution of the Braer storm based on ECMWF ERA-Interim re-analysis data. (a) Track (blue line) super-
imposed over mean storm track of explosively deepening cyclones over the North Atlantic (black lines a - 
North West Atlantic and b - North East Atlantic) as found by Wang and Rogers (2001). Triangles mark the 

centre of the Braer storm at time shown. Core pressures are also given. (b) Core pressure evolution, labels 
are core pressure in mbar. The 12 hours of most rapid deepening are indicated by red lines in (a) and (b). 

Dates are all in January 1993.  
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200 mbar wind speeds (white contour every 20 kn from 80 kn) plotted over 850 mbar temperatures (colour 
fill) and divergence at 300 mbar (blue dashed contour every 2.10-5 s-1 starting from 2.10-5 s-1) for (a) 
0000 UTC 7 January, (b) 1800 UTC 8 January and (c) 0600 UTC 10 January 1993.  ‘s’ is the region of high 

winds likely part of the sub-tropical jet and the blue ‘B’ in panel (b) marks the location where the Braer 
storm first appeared at the surface. Maximum jet speeds exceed 200 kn in (b) and (c). The plots are based 

on ECMWF ERA-Interim re-analysis data.  
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Upper tropospheric potential vorticity averaged over the 250 mbar to 450 mbar layer (colour fill, in PVU) and 
1000 mbar height (contoured every 50 gpm) at 0600 UTC 9 January (a), 1800 UTC 9 January (b), 0600 UTC 
10 January (c) and 1800 UTC 10 January 1993 (d). Blue ‘B’ marks position of the Braer storm at the surface 

at each time, ‘PV+’ marks the location of the upper PV anomaly and ‘GPV+’ marks the upper PV anomaly 
generated by Greenland’s orography. Thin black lines in (c) and (d) are roughly the location along which the 
cross sections in Fig. 6 were taken. Black arrow indicates the developing low PV tongue. The plots are based 

on ECMWF ERA-Interim re-analysis data.  
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Cross sections through the centre of the Braer storm along the black lines marked in Fig. 5, showing 
potential vorticity (colour fill, in PVU with the same scale as in Fig. 5) and potential temperature (contours 
every 4K, dark blue) at 0600 UTC 10 January (a) and 1800 UTC 10 January 1993 (b). ‘PV+’ is the upper PV 

anomaly as in Fig. 5, ‘B’ is the centre of the surface cyclone as in Fig. 5. The plots are based on ECMWF 
ERA-Interim re-analysis data.  
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WRF sensitivity experiments. (a) Tracks and core pressures of the modelled Braer storm in the control, no 
latent heat and no Greenland experiments. (b) Corresponding evolution of the core pressure (in mbar).  
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Control (left side; (a), (c) and (e)) and No Greenland (right side; (b), (d) and (f)) sensitivity experiments 
with WRF. Panels (a) and (b) are 850 mbar temperatures (colour fill) and sea level pressure (contoured 
every 4 mbar) for 1800 UTC 10 January 1993; panels (c) and (d) are the same for 0300 UTC 11 January 

1993 and zoomed in over the United Kingdom. Panels (e) and (f) are 10 m wind speeds (colour fill) and wind 
vectors (black arrows) for 0300 UTC 11 January 1993.  
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Model time series of 10 m wind speed at two grid points close to (a) Lerwick and (b) Edinburgh. Blue is the 
control run and red dashed is the sensitivity experiment with Greenland’s orography removed.  
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