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Local mechanical response in semiflexible polymer networks subjected to an axisymmetric prestress
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Analytical and numerical calculations are presented for the mechanical response of fiber networks in a state
of axisymmetric prestress, in the limit where geometric nonlinearities such as fiber rotation are negligible. This
allows us to focus on the anisotropy deriving purely from the nonlinear force-extension curves of individual
fibers. The number of independent elastic coefficients for isotropic, axisymmetric, and fully anisotropic networks
are enumerated before deriving expressions for the response to a locally applied force that can be tested against,
e.g., microrheology experiments. Localized forces can generate anisotropy away from the point of application,
so numerical integration of nonlinear continuum equations is employed to determine the stress field, and induced
mechanical anisotropy, at points located directly behind and in front of a force monopole. Results are presented
for the wormlike chain model in normalized forms, allowing them to be easily mapped to a range of systems.
Finally, the relevance of these findings to naturally occurring systems and directions for future investigation are
discussed.
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I. INTRODUCTION

Many materials of industrial and biological importance
are fibrous in nature, including paper [1], carbon nanotube
assemblies [2], and a range of protein fiber networks such as the
eukaryotic cellular cytoskeleton [3–5], some pathological and
functional amyloids [6–9], self-assembled peptide networks
[10–13], and some scaffolds used in tissue engineering
[14–17]. There now exists substantial literature relating the
macroscopic viscoelastic properties of such networks to their
underlying microscopic architecture [18–21] that has been
verified for actin networks in particular [22,23], but also
other protein fibers such as vimentin [24]. This theoretical
framework, however, is not exhaustive and noticeably the
issue of anisotropy has received little attention to date, despite
visualization of the actin cortex frequently demonstrating a
preferred orientation [4,5,25]. This morphological anisotropy
has been investigated in the context of coarse graining,
highlighting relevant perturbations to the isotropic case [26],
and coupling to the environment leading to the alignment of
stress fibers [27].

However, there is another form of mechanical anisotropy
that arises, not from the geometric microstructure of the
network, but rather from the nonlinear response of individual
fibers. Consider applying an anisotropic prestress to an
isotropic fiber network. This prestress can emerge sponta-
neously due to intracellular mechanisms [28] or from the
sustained uniaxial strains employed to check the nonlinear
properties of nanofiber scaffolds in tissue engineering [29,30],
for example. If the magnitude of the stress is sufficient to
place some fraction of fibers into the nonlinear regime of their
force-extension curves, the stiffness of individual fibers with
respect to perturbations about this prestressed state will depend
on their orientation, as schematically represented in Fig. 1.

*d.head@leeds.ac.uk

The material response will therefore become anisotropic.
Typically this prestress will also induce fiber rotation, but
there is an important class of fiber networks for which this
induced geometrical anisotropy can be argued to be small.
Many protein fibers have been found to be well described by
the wormlike chain model, in which changes to the equilibrium
end-to-end separation of fiber nodes induce an entropic
restoring force [18]. For physiologically relevant parameters,
such networks have been shown to strongly strain stiffen
for modest strains of around 5–20 % [23]. The geometrical
anisotropy will thus remain small, even though the mechanical
anisotropy is significant. This corresponds to geometrically
linear elasticity with a nonlinear constitutive equation, also
known as hypoelastic elasticity (as opposed to hyperelastic
elasticity where in addition the strains are finite) [31].

The purpose of this article is to describe analytical
and numerical calculations that quantitatively predict the
mechanical response of fiber networks that have become
anisotropic due to an axisymmetric prestress or prestrain.
Changes to network geometry are entirely neglected, allowing
the consequences of this form of anisotropy to be highlighted
while still generating results of relevance to many fiber
networks. The primary assumptions are hypoelasticity, as
described above, and also affinity, i.e., the strain field on fiber
length scales is just a scaled-down version of the corresponding
macroscopic strain. This assumption (the validity of which is
discussed below) allows us to easily bridge the discrete and
continuum representations. We also assume quasistaticity, i.e.,
all calculations correspond to the elastic plateau regime of the
network in question [18,19].

Two key results are presented. First, response functions
relating the displacement caused by a locally applied force are
derived and reduced to a form that can be quickly integrated
numerically, given network parameters and a prestress or
prestrain. This can be employed in, e.g., active microrheology
experiments, where a probe particle is perturbed using an
optical or magnetic trap [32], allowing unknown parameters to
be extracted via curve fitting to data. Second, the spatial stress
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FIG. 1. Schematic of prestress-induced anisotropy. (a) The axes
of principal stresses define Cartesian coordinates with the z axis
aligned with the maximum stress. (b) Fibers aligned parallel to this
axis are placed in a tension τ ‖. (c) Those in the transverse direction
have a tension τ⊥, where τ⊥ < τ ‖. If the force-extension curve is
nonlinear, the network will thus become mechanically anisotropic,
while potentially remaining (to a good approximation) geometrically
isotropic.

field due to a force monopole is derived using a numerical
procedure and this is combined with the first result to derive
predictions for the mechanical anisotropy induced by the
force at a location directly in front or behind. This predictive
procedure can again be employed to fit microrheology data
and is also relevant to networks with naturally occurring force
generators present, such as molecular motors in some fiber
protein networks.

This paper is arranged as follows. In Sec. II the key
analytical results and numerical procedures are described in
detail. The basic equations are presented in Sec. II A, along
with an enumeration of the reduction of independent elastic
coefficients due to the specific microscopic picture assumed.
Equations for the local response due to a point force are
derived in Sec. II B for axisymmetric prestrain or prestress.
The numerical procedure for deriving the spatial stress field in
response to a localized force monopole is explained in Sec. II C
and the expected domain of applicability of our assumptions is
discussed in Sec. II D. Applications are presented in Sec. III,
where the wormlike chain model is used throughout, allowing
results to be presented in normalized forms common to all
fibers that obey this model. The elastic coefficients as a
function of anisotropy and magnitude of either prestrain or
prestress are presented in Sec. III A and the corresponding
local response functions are described in Sec. III B. The
mechanical anisotropy induced by a localized force is given
in Sec. III C. The relevance of our results to real networks and
future directions are discussed in Sec. IV.

II. THEORY AND NUMERICAL METHOD

In this section, analytical results for the mechanics of
axisymmetric fiber networks are derived, including the local
response to a point force. The numerical procedure for deriving
the nonlocal stress field due to a point force is also explained.
The notation used throughout is as follows. The line density
(length of fibers per unit volume) is denoted by ρ, the
persistence length of the fibers by #p, and the distance between
cross-links by #c. Where relevant, fiber orientation is denoted
by the unit vector n̂.

A. Anisotropic linear network elasticity

The linear constitutive equations for fiber networks under-
going affine deformation are now well established [18,33]. The
assumptions here are that the unstrained network is isotropic,
i.e., there is no net fiber orientation n̂, and that the strain uij

remains small throughout. The stress σij is then given by

σij = ρ〈n̂i n̂jτ (#cn̂kn̂lukl)〉n̂. (1)

Here δ#c ≡ #cn̂kn̂lukl is the extension of a fiber segment of
length #c and orientation n̂ in the small-strain limit, τ (δ#c)
is the corresponding tension, and 〈· · ·〉n̂ denotes averaging
over all orientations n̂. Equation (1) can be derived, e.g., by
considering the total vector force F across an arbitrary plane
with unit normal ŝ and using the definition of the stress tensor
σij ŝj = Fi .

The differential response to small changes in the strain
uij + δuij follows from expanding (1) to linear order in δuij ,
giving a change in stress

δσij = #cρ〈τ ′(δ#c)n̂i n̂j n̂kn̂l〉n̂δukl ≡ Cijklδukl, (2)

which defines the fourth-rank elastic stiffness tensor Cijkl .
Contributions due to fiber rotation are assumed to be subdom-
inant and are ignored. In (2), τ ′(δ#c) denotes the gradient of
the force-extension curve at the prestrained fiber extension
δ#c, which depends on its orientation. If there is no prestrain,
i.e., uij ≡ 0, it is customary to drop the δ’s from (2), giving
a more familiar expression relating σij to uij . However, (2)
still holds for perturbations about prestressed states uij '= 0 if
the assumption of small strains remains valid, even though
the force-extension relation τ (δ#c) may become nonlinear.
This corresponds to the hypoelastic case described in the
Introduction. The limits of this and other model assumptions
are discussed in Sec. II D. Note that (2) predicts unphysical
negative moduli for force-extension curves with regions of
negative slope, but such relations were not employed here.

By its definition in (2), the stiffness tensor Cijkl is symmetric
in all perturbations of its indices. This automatically includes
all of the symmetries required of any elastic stiffness tensor,
i.e., Cijkl = Cjikl = Cklji = Cklij [34,35], but also additional
symmetries arising from the form of (2), in which only the
longitudinal filament response is present. If other modes such
as bending and orientation were relevant and included to give
a more complex stress tensor [19], these symmetries may be
broken. Here, however, Cijkl has 15 independent coefficients,
which we can choose to be (in Cartesian coordinates) Cxxxx ,
Cyyyy , Czzzz, Cxxxy , Cxxxz, Cxxyy , Cxxzz, Cxxyz, Cxyyz, Cxyzz,
Cxyyy , Cxzzz, Cyyyz, Cyyzz, and Cyzzz. This is a reduction from
the 21 independent coefficients admitted by an anisotropic
elastic body in general [34,35], which is due to the specific
microscopic picture employed in deriving (2). A similar
reduction arises for axisymmetric systems as discussed in
Sec. II B. In fully isotropic systems, where the Poisson ratio is
fixed at 1/4 [36,37], there is only one independent coefficient
(i.e., the shear modulus) rather than the usual two. It should
be stressed this assumes affinity, without which (2) is not
generally valid and the number of independent moduli may
increase.
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B. Local mechanical response with axisymmetry

We now turn to consider axisymmetric (also known as
transversely isotropic [35]) systems that are rotationally sym-
metric about a fixed axis. Without loss of generality, Cartesian
coordinates (x,y,z) are used with the z axis taken to be the axis
of symmetry. The elastic stiffness tensor Cijkl now has fewer
independent coefficients than the generally anisotropic case:
Cijkl is invariant under changes x ↔ y, Cijkl ≡ 0 if there is an
odd number of x’s or y’s in the indices, and Cxxxx = 3Cxxyy

as seen from performing the part of the integral (2) around the
z axis. Taking these additional constraints into account, there
remain three independent elastic coefficients, here taken to be
Cxxxx ≡ C0, Cxxzz ≡ C2, and Czzzz ≡ C4. This is a reduction
from the five independent moduli for elastic bodies with the
same symmetry [35], again reflecting the specific microscopic
picture assumed. A similar reduction (of five to three) occurs
for nematic liquid crystals but for different reasons [38].

To determine the local mechanical response, a virtual point
force fvirt is applied at the origin, giving the force balance
equations [34]

∂iδσij + f virt
j δ(x) = 0, (3)

where the δ function localizes the force at the origin. Here
and below, δσij and δuij denote small changes to the stress
and strain tensor about their prestressed or prestrained values
σij and uij , respectively. The ∂jδσij in (3) can be written
in terms of the first derivative of the strain fluctuations δuij

using (2) (assuming constant Cijkl) and hence the second
derivatives of the displacement fluctuations δui using standard
formulas [34]. This is then Fourier transformed as per δũi(q) ≡∫

e−iq·xδui(x)dx to give the matrix equation

fvirt = Mδũ, (4)

where using the notation q = (qx,qy,qz),

M =




C0q

2
x + 1

3C0q
2
y + C2q

2
z

2
3C0qxqy 2C2qxqz

2
3C0qxqy

1
3C0q

2
x + C0q

2
y + C2q

2
z 2C2qyqz

2C2qxqz 2C2qyqz C2(q2
x + q2

y ) + C4q
2
z



 .

In order to obtain the spatial response field due to fvirt, M is inverted and inserted into (4), which would properly then be
inverse Fourier transformed to give δu(x); however, this inverse transform is not straightforward to perform. Instead we restrict
attention to the displacement uprobe = (uprobe

x ,u
probe
y ,u

probe
z ) of a sphere of radius a at the origin to which the force fvirt is applied,

which allows an approximate solution to be readily attained [39]. In this procedure, the q modes are truncated at a maximum
magnitude |q|max = π/2a and the reverse Fourier transform is performed with x = 0. This reverse transform cannot be performed
analytically for arbitrary C0, C2, and C4, but can be reduced by standard techniques to two one-dimensional integrals that can be
easily performed numerically,

uprobe
x = f ext

x

4πa

∫ 1

0
ds

2
3C0C2 +

[ 2
3C0C4 − 4

3C0C2 − C2
2

]
s2 +

[
C2C4 − 2

3C0C4 + C2
2 + 2

3C0C2
]
s4

A(s)B(s)
,

uprobe
z =

f ext
z

12πa

∫ 1

0
ds

C0 + (C2 − C0)s2

B(s)
, (5)

where

A(s) = C0 + (3C2 − C0)s2,

B(s) = 1
3C0C2 +

[ 1
3C0C4 − C2

2 − 2
3C0C2

]
s2

+
[ 1

3 (C2C4 − C0C4 + C0C2) + C2
2

]
s4. (6)

The u
probe
y equation is similar to that of u

probe
x , with f virt

x

replaced by f virt
y . It is conventional to express results in

terms of the response functions in directions parallel and
perpendicular to the axis of material symmetry,

α‖ = uprobe
z

/
f virt

z ,

α⊥ = uprobe
x

/
f virt

x . (7)

For an isotropic material, C0 = 3C2 = C4 = 3G with G the
shear modulus, and (5) and (7) can be evaluated analytically,

α‖ = α⊥ = 7
36πaG

, (8)

matching real-space calculations [40] for an isotropic elastic
body with the Poisson ratio of 1

4 expected for affinely
deforming networks in three dimensions [36,37].

C. Anisotropy and nonlinearity induced by a force monopole

Section II B explains how to calculate the response given
the differential stiffness tensor Cijkl , which in turn depends
on the prestress σij or prestrain uij . Here we explain how
to calculate numerically σij and uij for a force monopole
applied to an initially isotropic network. If the material is
deformed at any given point that obeys axisymmetry and
the fiber force-extension relation τ (δ#c) is known, then C0,
C2, and C4 can be evaluated using (2) and inserted into (5)
to determine the local response functions α‖ and α⊥ (7) at
that point. This procedure is here applied to determine both
response functions at various distances in front of and behind
an external force monopole fext along the axis of symmetry, for
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which, assuming there is no spontaneous symmetry breaking
induced by, e.g., elastic instabilities, axisymmetry will hold.
Even assuming hypoelasticity, it is difficult to solve the full
problem analytically if τ (δ#c) is nonlinear, hence the spatial
response due to fext is here determined numerically.

To perform the numerical calculations, cylindrical coordi-
nates (r,θ,z) were employed with the z axis aligned parallel
to the direction of the applied force fext and variation with θ
suppressed following the expected axial symmetry of the solu-
tion. Displacement vectors were defined at regular (r,z) lattice
nodes and the corresponding strains uij were interpolated
onto an interpenetrating staggered mesh by first-order finite
differencing. The local strains were then converted to changes
in fiber segment length δ#c by assuming affine deformation,
i.e., δ#c = #cn̂i n̂j uij for an orientation n̂. This was then
converted to a longitudinal tension τ (δ#) using the chosen
single fiber model. For this calculation the extensible wormlike
chain model was used, which generalizes the inextensible
model by the inclusion of a contour modulus K [23],

δ#c = #2
c

#p

(
1 + τ

K

)
uinext

(
τ#2

c

κπ2

[
1 + τ

K

])
+ τ

K
#0, (9)

where uinext(φ) is the dimensionless inextensible wormlike
chain expression

uinext(φ) = 1
6

− 1
2π2φ

[π
√

φ coth(π
√

φ) − 1]. (10)

Here #0 = #c − #2
c/6#p is the natural end-to-end distance and

κ = kBT #p the bending rigidity. The inextensible model is
recovered in the limit K/τ → ∞, i.e.,

δ#c = #2
c

#p

uinext
(

τ#2
c

κπ2

)
. (11)

For φ < −1, (10) is undefined and we assume such fibers
have buckled and no longer contribute to the mechanical
response of the network. We employed a high contour stiffness,
K = 500 pN for vimentinlike network parameters and K =
3000 pN for actinlike networks, but varying K made little
difference to the predictions and was primarily employed to
remove the singularity at u = 1

6 in the (inextensible) force-
extension curve, aiding numerical convergence.

Numerically inverting (9) and (10) gives the tension τ as a
function of extension δ#c and hence strain uij , which is then
integrated over all orientations to give the stress field σij using
(1). The equations of mechanical equilibrium in cylindrical
coordinates with θ variation suppressed are [35]

0 = ∂rσrr + ∂zσrz + σrr − σθθ

r
+ f ext

r W (x),
(12)

0 = ∂rσrz + ∂zσzz + σrz

r
+ f ext

z W (x)

at each node and our goal is to find the displacement field
corresponding to global equilibrium. Here the external force
is localized at the origin by the function W (x), which integrates
to one and decays to zero for large |x|. However, we do
not use a δ function as this introduces sharp gradients and
numerical difficulties. Instead a smooth Gaussian profile was
used, W (x) = 1√

2πσ 2
e−(r2+z2)/2σ 2

, with σ = 1 µm.

To solve (12), Newton’s method was used as follows. The
displacements at each interior node was written as a combined
vector U, where U contains the radial and axial components
of each nodal displacement. The internal forces ∂jσij were
rewritten as a nodal force vector Fint arranged identically to
U. Matching Fint was a constant vector Fext giving the external
force [combined with W (x)] for each node. Each component of
Fint was determined from the relative displacements of nearby
nodes and was therefore a smooth function of U that can
be expanded about a given U0, giving the global equilibrium
equation

0 = F ext
α + F int

α (U) = F ext
α + F int

α (U0) + AαβδUβ + O(δU 2),

(13)

where U = U0 + δU and the α and β subscripts refer to
coordinates in the U and F vectors. Here Aαβ = ∂F int

β /∂Uα is
a large, symmetric stiffness matrix. Neglecting the quadratic
and higher terms in δU in (13) gives a linear equation that can
be solved via matrix inversion,

δUα = −A−1
αβ

[
F ext

β + F int
β (U0)

]
. (14)

The full nonlinear equations are then relinearized about this
new point U1 = U0 + δU and inverted once more, producing
a succession of estimates U2, U3, etc., that obey equilibrium
in their corresponding linearized systems. Iteration continues
until the largest change in any single component of U changes
by less than some small threshold value, which is taken to be
10−5 µm here.

Dirichlet boundary conditions corresponding to the known
linear solution [34] for a point force fext are imposed. Varying
the linear system size by a factor of 2 has only slight
effects (roughly 1%) on the stress field, so our findings are
not sensitive to this choice of boundary condition. Results
presented here correspond to 0 ! r ! 80 µm and −80 µm !
z ! 80 µm, with a mesh size of 0.4 µm in both directions. The
matrix inversion (14) is solved using the conjugate gradient
method [41].

D. Domain of validity

Here we clarify the assumptions underlying our modeling
approach and their expected domain of validity. First, it
is assumed throughout that the network geometry without
prestrain is isotropic, in keeping with our aim of quantifying,
and hence elucidating, the effects of anisotropy induced by
internal or external perturbations alone. It will not immediately
apply to networks that are anisotropic in their unstressed state.

It is possible to be precise regarding the hypoelastic
limit assumed in Sec. II A, i.e., adopting the geometrically
linear (small-strain) limit while allowing the mechanical
properties to become nonlinear. The characteristic stress at
which networks of wormlike chains exhibit nonlinearities is
estimated as σc = ρkBT #p/#2

c [24]. Coupled with the linear
shear modulus Glin = 6ρkBT #2

p/#3
c , this suggests the strain at

which mechanical nonlinearities arise is approximately

γc ≡ σc

Glin
= #c

6#p

. (15)

The hypoelastic assumption is applicable to strains γ obeying
γc " γ - 1. For typical actin networks, #c ≈ 1 − 3 µm and
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#p ≈ 17 µm, suggesting γc is of only a few percent, consistent
with experiments [23] and confirming the validity of the
hypoelastic assumption for a broad range of strains. For
vimentin [24], γc is larger, around 10%, giving a reduced,
but still finite, range of validity.

Conservative limits on the validity of the affine assumption
come from two sources. First, theoretical and experimental
studies suggest that uniform strains are affine when the fila-
ment length L exceeds an intrinsic length λ = #c

3
√

#c/#b with
#b a length related to the filament diameter [20,42]. This is cer-
tainly realizable in actin and vimentin systems [22,24]. How-
ever, when strain gradients are present, affinity is not expected
to apply when the strain significantly varies between cross-
links. This situation is discussed (with quantitative estimates)
in Sec. II C, where it is estimated that affinity would break
down within 1 µm of a 10-pN force for typical actin networks.
However, this estimate is likely too conservative as it ignores
strain stiffening. Furthermore, recent experiments on vimentin
networks have shown how the range of validity of these cal-
culations can be extended to give quantitative agreement with
the data, as explained in detail elsewhere [43]. Further inves-
tigation is required to rigorously delineate the limits of these
predictions, possibly via microscopic numerical modeling.

III. APPLICATIONS

Here we present predictions of the calculations of Sec. II
for fibers obeying the wormlike chain model. This model
was chosen since the only alternatives in common usage, i.e.,
elastic beam models [20,21,26,37,44], exhibit no nonlinearity
in their force-extension curves and hence no anisotropy in
the hypoelastic limit. The moduli and response functions for
a predefined prestress are considered first, before combining
these calculations with the spatial response field generated by
a force monopole.

A. Moduli for a given prestress or prestrain

Although in many applications the perturbation will be an
applied force, thus generating a prestress, it is also insightful
to consider prestrains. For an axisymmetric prestrain with no
transverse normal stresses, the strain tensor can be written (in
Cartesian coordinates, with the axis of symmetry along the z
axis) as

uij = γ diag(−ν, − ν,1), (16)

where the dimensionless ν parametrizes the anisotropy (for
linear response, ν is simply the Poisson ratio). Assuming
affinity and taking ν = 1

4 [36,37], filaments aligned at an angle
θ to the axis of symmetry will be extended by a relative amount

δ#c

#c

= γ

(
cos2 θ − 1

4
sin2 θ

)
. (17)

This can then be inserted into (2), along with a specific choice
of τ (#c), to determine the elastic moduli. For the wormlike
chain model, the tensions and extensions can be expressed
in normalized forms by scaling the prefactor to γ #p/#c =
(δ#c/#c)(#p/#c), which then fully specifies the magnitude of
the prestrain as per (11). Figure 2 shows the independent elastic
coefficients for varying γ with fixed ν = 1/4, showing the

FIG. 2. (Color online) Independent elastic moduli C0, C2, and
C4 as a function of the normalized prestrain magnitude γ #p/#c for
a Poisson ratio ν = 1

4 . Each modulus has been scaled to its zero
prestrain values C0

ijkl , which obey C0
0 = 3C0

2 = C0
4 . The vertical

dashed line is at γ #p/#c = 1
6 . The thin horizontal and vertical solid

lines are to guide the eye to the γ = 0 solution.

expected stiffening along the z axis with γ > 0, with C4 >
C2 > C0. For γ < 0, the order becomes C0 > C2 > C4 and
transverse modes now become stiffer due to their extension
(for ν > 0). Also note the divergence at γ #p/#c = 1

6 that arises
when the end-to-end distance of fiber segments aligned with
the z axis equals their contour length and can extend no more
without contour stretching.

For prestresses rather than prestrains, it is necessary to write
down the tension of a filament as a function of its orientation, in
analogy to the extension relation (17). Here we follow the same
method and the same notation as Morozov and Pismen [33].
Two parameters are employed, a characteristic tension τ0 and
a dimensionless quantity β that parametrizes the degree of
anisotropy in the prestress. Then the tension in a fiber aligned
with an angle θ to the axis of symmetry is [33]

τ (θ ) = τ0

(
cos2 θ + 1 − β

1 + β
sin2 θ

)
, (18)

where τ (θ ) > 0 corresponds to tension and τ (θ ) < 0 to com-
pression. Assuming |β| < 1, βτ0 > 0 corresponds to a more
positive stress in the z direction and βτ0 < 0 to more positive
stresses in the transverse plane. The prestress is isotropic or
absent if βτ0 = 0. Note there is no simple relationship between
(17) and (18), even in linear response, as each has been chosen
to conform to simple forms to facilitate interpretation of the
results and comparison to previous work.

For the wormlike chain model the prestress magnitude τ0
can be normalized to τ0#

2
c/κπ2 as per (11). Determining the

elastic coefficients using (2) now requires converting each
tension τ to an extension and expanding the force-extension
curve about this point, which is straightforward to perform
numerically. The variation of the elastic moduli with τ0 for
a fixed anisotropy β = 1

3 is presented in Fig. 3. There is
a clear stiffening of all moduli for networks under tension
τ0 > 0 with C4 > C2 > C0 and a corresponding softening for
τ0 < 0 with C0 > C2 > C4. Also marked on this figure are
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FIG. 3. (Color online) Independent elastic moduli for an axisym-
metric prestress of normalized magnitude τ0#

2
c/κπ 2 for an anisotropy

parameter β = 1
3 . The moduli are scaled to their zero prestress

values C0
ijkl . The vertical dashed and dotted lines correspond to

τ0#
2
c/κπ 2 = −1 and −2, respectively. The thin horizontal and vertical

solid lines are to guide the eye to the τ0 = 0 solution. The inset shows
the same data plotted with both axes linear.

two special tensions: τ0#
2
c/κπ2 = −1, which is when fibers

aligned with the z axis become contracted beyond the range of
the wormlike chain model, which we interpret as a buckling
event beyond which the single-fiber response is identically
zero. There is, however, no clear signature of this buckling until
τ0#

2
c/κπ2 = (1 + β)/(1 − β) = −2 for this β, when all fibers,

including those oriented transversely to the z axis, buckle. All
linear elastic moduli equal zero at and below this point.

Also shown in the inset to Fig. 3 is the same data plotted
on linear axes, demonstrating approximate proportionality
between prestress and stiffness, which has also been observed
in isolated smooth muscle cells [28]. We note, however,
that there is a slight upturn to the model predictions when
crossing from linear prestress τ0#

2
c/κπ2 - 1 to nonlinear

τ0#
2
c/κπ2 / 1, which is not apparent in the experimental

data. It is possible that the experimental data are all in the
nonlinear regime. Alternatively, one of the model assumptions
may have broken down or some relevant feature is absent.
Measurements of well-controlled in vitro systems would help
clarify this deviation.

B. Local response in a predefined stress field

The local displacement u due to a point force f can be
quantified by the response functions α‖ = uz/fz and α⊥ =
ux/fx as described in Sec. II B, so higher α correspond to a
softer material. Continuing with prestresses (18), α‖,⊥ can be
numerically evaluated using (5). Examples for β = 1

3 and 1
are shown in Fig. 4. The trends observed are consistent with
the observations of the previous section, i.e., a stiffening for
τ0 > 0 with α‖ < α⊥ and both less than their zero prestress
values, with the opposite trend for τ0 < 0. The divergence of
both α‖ and α⊥ at τ0#

2
c/κπ2 = −2 (for β = 1

3 ) corresponds to
the vanishing of the elastic coefficients in Fig. 3. There is no
divergence for β = 1 since for this extreme anisotropy fibers
oriented perpendicular to the z axis never become prestressed.

FIG. 4. (Color online) Response functions in parallel and perpen-
dicular directions to the axis of symmetry versus normalized prestress
τ0 for β = 1

3 and 1 as denoted in the legend. The response functions
are normalized to their zero prestress α

‖,⊥
0 .

It is evident from Fig. 4 that, for all τ0, the degree of
stiffening or softening for β = 1 is reduced compared to
β = 1

3 , reflecting the lower net tension for a given τ0 in (18).
This effect is more clearly seen by plotting the variation with β
for a fixed τ0 > 0 as in Fig. 5, demonstrating that the material
is softer in both directions for β > 0, but more so in transverse
directions, with the opposite trend for β < 0. The vanishing
α‖,⊥ as β → −1 corresponds to a diverging pretension for
transversely aligned filaments as per (18).

C. Anisotropy due to a force monopole

Localized perturbations to the network, in whatever form
they take, that are of sufficient magnitude to generate a
nonlinear elastic response can induce anisotropy in a spatially
varying manner. For simplicity we consider here just the case
of a force monopole that can be generated, e.g., by perturbing
a probe particle with an optical or magnetic trap and focus

FIG. 5. Response functions versus anisotropy β for fixed
τ0#

2
c/κπ 2 = 1.
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(     )

( 
  

  
)

FIG. 6. (Color online) Displacement field for an applied force of
1 pN in Euler (prestrain) coordinates for #p = 0.5 µm, #c = 0.4 µm,
and ρ = 16.25 µm−2. The directions of material displacements are
given as white arrows and the magnitude given by the contours is
denoted by the calibration bar. The location and direction of the
applied force are denoted by the large, open black arrow at the center.

attention on points directly behind and in front of the force,
for which the axisymmetric theory developed here should be
valid. This protocol has been recently applied to vimentin
networks [43]. The methodology was outlined in Sec. II C.

Examples of the displacement fields induced by small
(1-pN) and large (300-pN) applied forces are presented in
Figs. 6 and 7 respectively, for material parameters representa-
tive of the vimentin networks of [43]. For the smaller force,
the displacement field is symmetric behind and in front of the
force and indeed can be shown to obey the linear solution
except near the point of force application. By contrast, for the
larger force there is a marked fore-aft asymmetry in which the
displacements behind the probe exceed those in front. This
is a consequence of the strain stiffening under tension and
softening under compression that is inherent to the wormlike
chain model.

(     )

( 
  
  
)

FIG. 7. (Color online) Same as Fig. 6 but for an applied force of
300 pN.

r
σzz

f

(  m)

pN
pN

pN
pN

pN
pN

FIG. 8. Stress focusing for #c = 0.55 µm, #p = 0.5 µm, and
ρ = 16.25 µm−2. The normal component of the stress tensor parallel
to the force and 10 µm behind it, as denoted in the inset, is plotted
scaled to the corresponding linear solution. The six applied forces are
shown in the legend in the same order as the center of the response
curves from top to bottom.

The nonlinear force-extension curve of the wormlike chain
model is responsible for the phenomenon of stress focusing,
where the stresses directly behind the force are enhanced.
As evident in Fig. 8, the normal stresses across a plane
normal to the direction of the force, and directly behind it,
are increased manyfold with respect to the equivalent linear
solution. Conversely, stresses decrease and fall below the linear
solution at greater lateral distances. Since the net force on any
closed surface enclosing the monopole must balance fext, an
increase in stress in one region is expected to be compensated
for by a corresponding decrease elsewhere. What is not trivial
here is the location of the increase, which is a consequence of
the marked strain stiffening under tension.

Examples of α‖,⊥ are given in the inset of Fig. 9, which
shows plots of the response functions 10 µm from the applied
force for network parameters chosen to be representative of
actin [19] and vimentin [24]. The softer vimentin network is
clearly much more strongly affected for any given force f than
the stiffer actin network, as expected. It is convenient to present
these results in normalized forms that can be generalized to
a broader range of networks. To this end, note that, for the
wormlike chain model (11), the affine, hypoelastic constitutive
equation (1) can be rewritten in terms of the normalized tension
and extension as

σ ∗
ij = 〈n̂i n̂jφ(n̂kn̂lu

∗
kl)〉n̂, (19)

where the normalized tension φ is the inverse of the normalized
extension u in (11). Here the normalized and dimensionless
starred tensors are

σ ∗
ij = #2

c

ρκπ2
σij , (20)

u∗
ij = #p

#c

uij . (21)
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FIG. 9. (Color online) Local response functions at a distance
10 µm behind a force monopole f in parallel α‖ (closed symbols)
and perpendicular α⊥ (open symbols) directions. Negative forces
correspond to locations in front of the force. The response functions
are scaled by their respective f = 0 values and the force is scaled
by #2

c/ρκπ 2R2. The inset shows the same data plotted versus the
unscaled force. The parameters are #p = 17 µm, #c = 2.2 µm, and
ρ = 39 µm−2 for actin [19] and #p = 0.5 µm, #c = 0.6 µm, and
ρ = 5 µm−2 for vimentin [24].

Then the (Cartesian) force balance equations for a force
monopole ∂iσij + f ext

j δ(x) = 0 become

0 = ∂iσ
∗
ij + f ext

j

#2
c

ρκπ2
δ(x), (22)

which suggests a partial normalization for the external force.
To make it dimensionless, we incorporate the distance R from
the applied force monopole to the point at which the response
functions are measured,

f ∗ = f ext#2
c

ρκπ2R2
. (23)

Replotting the response functions for the different network
parameters (but the same R) against this quantity shows
clear collapse as demonstrated in the main figure of Fig. 9,
confirming the validity of (22). This means that it is only
necessary to provide curves for different distances R from the
applied force; once the response functions are normalized to
their zero prestress values α‖,⊥, which are given in (8) (using
known expressions for G [24]), and the force scaled as just
described, the response functions are fully specified. Varying
R therefore generates a family of curves that can be used
for fitting purposes to estimate unknown parameters. To this
end, we present in Fig. 10 curves for R = 5, 10, and 20 µm.
The shapes of these curves depend on the nonlinearity and
we have not been able to derive a simple scaling with R that
collapses them. Some empirical observations are mentioned in
the following section.

The predictions of this model have been compared to
cross-linked vimentin networks driven by a colloidal particle
in an optical trap [43], in particular the response curves (Fig. 9).
Qualitative agreement was found for increasing magnitude of

FIG. 10. (Color online) Normalized response curves for the
vimentin parameters of Fig. 9 and R = 5, 10, and 20 µm, with closed
symbols for α‖ and open symbols for α⊥.

the driving force, but the model was found to overestimate
the increase in stiffness by a factor of around 2.6, which was
interpreted as due to the breakdown of the affine assumption.
Interestingly, this factor was constant over the assayed range
and applying the same value consistently agreed with data for
independent metrics, suggesting nonaffinity may be amenable
to this model with minimal modifications. Both the data and
the corresponding model predictions are described in full
elsewhere [43].

IV. DISCUSSION

The relevance of our findings to actual networks will
depend on the likelihood that internal or external forces can
be of sufficient magnitude to place the constituent fibers into
their nonlinear response regime, which is problem dependent.
For microrheology experiments such forces can always (in
principle) be reached, but they may also occur naturally. As
an instructive example, taking typical actin parameters to be
#p = 17 µm and #c = 2.2 µm [19], the unit normalized
tension τ0#

2
c/κπ2 = 1, when nonlinearities will occur, corre-

sponds to an actual tension τ0 ≈ 0.14 pN. This is well within
the range of forces capable of being generated in physiological
conditions, such as by a single mysoin-II molecular motor [3],
confirming the relevance of nonlinear fiber response to acto-
myosin mixtures [45]. It is expected that similar arguments will
suggest the relevance of nonlinear mechanical fiber response
in a broader range of networks and problems.

Future work could aim to reduce the reliance of the various
assumptions that were made to close the equations, albeit at
the likely expense of an increase in complexity. Relaxing
the hypoelastic assumption to allow finite strains should be
possible following established methods [31,46] and would
allow direct comparison to data for collagen scaffolds used
in tissue engineering [29,30], which exhibit a characteristic
J-shaped curve for strains up to 100%. Fitting the model
to such curves will allow quantities related to the network
structure to be extracted. Relaxing the affine assumption is
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more problematic. Given the prohibitive number of degrees
of freedom required to simulate 3D networks spanning the
same length scales as presented here, an alternative analytical
framework is desirable, but so far none has yet been devised
even for the linear response, although there has been recent
progress [47].

Finally, we remark on an observation that we do not yet
have an explanation for. The induced response curves in
Figs. 9 and 10 were demonstrated to collapse after scaling the
external force as per (23). However, the factor R2 was chosen
purely to make the force dimensionless. It appears that, for
the range of R studied, these curves can also be collapsed by
scaling by R as f #2

c/R
5/3ρκπ2, but only for f > 0; the f < 0

regime remains distinct. This piecewise collapse, which may
well be approximate, presumably stems from the solution to
the nonlinear elasticity problem, but we have been unable
to discern any simple reason for the R exponent of ≈5/3
or what other length scale may be included to make the
final quantity dimensionless. Further work to elucidate this
observation would aid in the fitting of theory to numerical
data, as it would mean that only a single curve for one value
of R would need to be evaluated to determine the full range of
axisymmetric nonlinear response.

APPENDIX: ESTIMATE OF STRAIN GRADIENTS
DUE TO A POINT FORCE

To estimate the strain gradient at a given distance from an
applied force, we employ the known response due to a point
monopole in a linear isotropic body, in the understanding this

will likely be an overestimate if strain stiffening is present. The
rank-3 tensor ∂kuij evaluated at a point r = r r̂ relative to an
external point force f = f n̂ is found by twice differentiating
the displacement field [34],

∂kuij = f

16πµ(1 − ν)
1
r3

{δij n̂l[δkl − 3r̂k r̂l]

− 3n̂l[δik r̂j r̂l + δjk r̂i r̂l + δlk r̂i r̂j − 5r̂i r̂j r̂k r̂l]

− (1 − 2ν)[n̂j (δik − 3r̂i r̂k) + n̂i(δjk − 3r̂j r̂k)]},
(A1)

where the prefactor includes the shear modulus µ and the
Poisson ratio ν. To determine the characteristic magnitudes,
we consider all nonzero components at a point in front of the
force r̂ = n̂ and in the perpendicular direction with n̂ · r̂ = 0.
Explicit evaluation reveals that, of all these, the largest in
magnitude is ∂r̂ ur̂r̂ = f/2πµr3 evaluated in front of the
force.

The assumption of affinity is expected to break down
before forces f for which this largest strain gradient exceeds
the inverse cross-link length #−1

c , or f ∼ µr3#−1
c . (It may

of course break down much sooner than this, including in
the linear regime [44].) Taking values representative of actin
networks, i.e., #p = 17 µm, #c = 2.2 µm, and ρ = 39 µm−2

(so µ ≈ 25 Pa) [19], this estimate suggests a breakdown in
affinity by the time f/r3 ∼ 10 pN/µm3, or for forces of
10 pN at a range of 1 µm. The same calculations for vimentin
networks [24] suggest a lower force of just 1 pN for the same
distance.
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