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Abstract

The paper relativizes the method of ordinal analysis developed for Kripke-
Platek set theory to theories which have the power set axiom. We show
that it is possible to use this technique to extract information about Power
Kripke-Platek set theory, KP(P).

As an application it is shown that whenever KP(P) + AC proves a
ΠP

2 statement then it holds true in the segment Vτ of the von Neumann
hierarchy, where τ stands for the Bachmann-Howard ordinal.

Keywords: Power Kripke-Platek set theory, ordinal analysis, ordinal
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1. Introduction

Ordinal analyses of ever stronger theories have been obtained over the
last 20 years (cf. [1, 2, 3, 20, 21, 24, 25, 27, 28, 29]). The strongest theories
for which proof-theoretic ordinals have been determined are subsystems of
second order arithmetic with comprehension restricted to Π1

2-comprehension
(or even ∆1

3-comprehension). Thus it appears that it is currently impossible
to furnish an ordinal analysis of any set theory which has the power set axiom
among its axioms as such a theory would dwarf the strength of second order
arithmetic. Notwithstanding the foregoing, the current paper relativizes
the techniques of ordinal analysis developed for Kripke-Platek set theory,
KP, to obtain useful information about Power Kripke-Platek set theory,
KP(P), culminating in a bound for the transfinite iterations of the power
set operation that are provable in the latter theory. It is perhaps worthwhile
comparing the results in this paper with other approaches to relativizing
the ordinal analysis of KP. T. Arai [4] has used an ordinal representation
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system of Bachmann-Howard type enriched by Skolem functions to provide
an analysis of Zermelo-Fraenkel set theory. In the approach of the present
paper the ordinal representation is not changed at all. Rather than obtaining
a characterization of the proof-theoretic ordinal of KP(P), we characterize
the smallest segment of the von Neumann hierarchy which is closed under
the provable power-recursive functions of KP(P) whereby one also obtains a
proof-theoretic reduction of KP(P) to Zermelo set theory plus iterations of
the powerset operation to any ordinal below the Bachmann-Howard ordinal.1

The same bound also holds for the theory KP(P) + AC, where AC stands
for the axiom of choice. These theorems considerably sharpen results of H.
Friedman to the extent that KP(P) + AC does not prove the existence of
the first non-recursive ordinal ωCK1 (cf. [12, Theorem 2.5] and [17, Theorem
10]).

Technically we draw on tools that have been developed more than 30
years ago. With the pioneering work of Jäger [14] on Kripke-Platek set
theory and its extensions to stronger theories by Jäger and Pohlers [15] the
forum of ordinal analysis switched from subsystems of second-order arith-
metic to set theory, shaping what is called admissible proof theory, after
the standard models of KP. We also draw on the framework of operator
controlled derivations developed by Buchholz [23] that allows one to express
the uniformity of infinite derivations and to carry out their bookkeeping in
an elegant way.

The results and techniques of this paper have important applications.
The characterization of the strength of KP(P) in terms of the von Neu-
mann hierarchy is used in [32, Theorem 1.1] to calibrate the strength of the
calculus of construction with one type universe (which is an intuitionistic
type theory). Another application is made in connection with the so-called
existence property, EP, that intuitionistic set theories may or may not have.
Full intuitionistic Zermelo-Fraenkel set theory, IZF, does not have the ex-
istence property, where IZF is formulated with Collection (cf. [13]). By
contrast, an ordinal analysis of intuitionistic KP(P) similar to the one given
in this paper together with results from [31] can be utilized to show that
IZF with only bounded separation has the EP.

1The theories share the same ΣP1 theorems, but are still distinct since Zermelo set
theory does not prove ∆P

0 -Collection whereas KP(P) does not prove full Separation.
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2. Power Kripke-Platek set theory

A particularly interesting (classical) subtheory of ZF is Kripke-Platek
set theory, KP. Its standard models are called admissible sets. One of the
reasons that this is an important theory is that a great deal of set theory
requires only the axioms of KP. An even more important reason is that
admissible sets have been a major source of interaction between model the-
ory, recursion theory and set theory (cf. [6]). Roughly KP arises from
ZF by completely omitting the power set axiom and restricting separation
and collection to set bounded formulae but adding set induction (or class
foundation). These alterations are suggested by the informal notion of ‘pred-
icative’.

To be more precise, quantifiers of the forms ∀x ∈ a, ∃x ∈ a are called set
bounded. Set bounded or ∆0-formulae are formulae wherein all quantifiers
are set bounded. The axioms of KP consist of Extensionality, Pair, Union,
Infinity, ∆0-Separation

∃x ∀u [u ∈ x↔ (u ∈ a ∧ A(u))]

for all ∆0-formulae A(u), ∆0-Collection

∀x ∈ a ∃y G(x, y) → ∃z ∀x ∈ a ∃y ∈ z G(x, y)

for all ∆0-formulae G(x, y), and Set Induction

∀x [(∀y ∈ xC(y))→ C(x)] → ∀xC(x)

for all formulae C(x).
A transitive set A such that (A,∈) is a model of KP is called an admis-

sible set. Of particular interest are the models of KP formed by segments of
Gödel’s constructible hierarchy L. The constructible hierarchy is obtained
by iterating the definable powerset operation through the ordinals

L0 = ∅,
Lλ =

⋃
{Lβ : β < λ} λ limit

Lβ+1 =
{
X : X ⊆ Lβ; X definable over 〈Lβ,∈〉

}
.

So any element of L of level α is definable from elements of L with levels
< α and the parameter Lα. An ordinal α is admissible if the structure
(Lα,∈) is a model of KP.

If the power set operation is considered as a definite operation, but the
universe of all sets is regarded as an indefinite totality, we are led to systems
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of set theory having Power Set as an axiom but only Bounded Separation
axioms and intuitionistic logic for reasoning about the universe at large. The
study of subsystems of ZF formulated in intuitionistic logic with Bounded
Separation but containing the Power Set axiom was apparently initiated
by Pozsgay [18, 19] and then pursued more systematically by Tharp [34],
Friedman [11] and Wolf [36]. These systems are actually semi-intuitionistic
as they contain the law of excluded middle for bounded formulae.

In the classical context, weak subsystems of ZF with Bounded Sepa-
ration and Power Set have been studied by Thiele [35], Friedman [12] and
more recently at great length by Mathias [17]. Mac Lane has singled out and
championed a particular fragment of ZF, especially in his book Form and
Function [16]. Mac Lane Set Theory, christened MAC in [17], comprises
the axioms of Extensionality, Null Set, Pairing, Union, Infinity, Power Set,
Bounded Separation, Foundation, and Choice. MAC is naturally related
to systems derived from topos-theoretic notions and, moreover, to type the-
ories.

Definition 2.1. We use subset bounded quantifiers ∃x ⊆ y . . . and ∀x ⊆
y . . . as abbreviations for ∃x(x ⊆ y ∧ . . .) and ∀x(x ⊆ y → . . .), respectively.

The ∆P
0 -formulae are the smallest class of formulae containing the atomic

formulae closed under ∧,∨,→,¬ and the quantifiers

∀x ∈ a, ∃x ∈ a, ∀x ⊆ a, ∃x ⊆ a.

Definition 2.2. KP(P) has the same language as ZF. Its axioms are the
following: Extensionality, Pairing, Union, Infinity, Powerset, ∆P

0 -Separation,
∆P

0 -Collection and Set Induction (or Class Foundation).

The transitive models of KP(P) have been termed power admissible sets
in [12].

Remark 2.3. Alternatively, KP(P) can be obtained from KP by adding
a function symbol P for the powerset function as a primitive symbol to the
language and the axiom

∀y [y ∈ P(x)↔ y ⊆ x]

and extending the schemes of ∆0 Separation and Collection to the ∆0 for-
mulae of this new language.

Lemma 2.4. KP(P) is not the same theory as KP+Pow. Indeed, KP+
Pow is a much weaker theory than KP(P) in which one cannot prove the
existence of Vω+ω.
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Proof : Note that in the presence of full Separation and Infinity there
is no difference between our system KP and Mathias’s [17] KP. It follows
from [17, Theorem 14] that Z + KP + AC is conservative over Z + AC
for stratifiable sentences. Z and Z + AC are of the same proof-theoretic
strength as the constructible hierarchy can be simulated in Z; a stronger
statement is given in [17, Theorem 16]. As a result, Z and Z + KP are of
the same strength. As KP + Pow is a subtheory of Z + KP, we have that
KP + Pow is not stronger than Z. If KP + Pow could prove the existence
of Vω+ω it would prove the consistency of Z. On the other hand KP(P)
proves the existence of Vα for every ordinal α and hence proves the existence
of arbitrarily large transitive models of Z. ut

Remark 2.5. Our system KP(P) is not quite the same as the theory KPP

in Mathias’ paper [17, 6.10]. The difference between KP(P) and KPP is
that in the latter system set induction only holds for ΣP

1 formulae, or what
amounts to the same, ΠP

1 foundation (A 6= ∅ → ∃x ∈ A x ∩ A = ∅ for ΠP
1

classes A).
Friedman [12] includes only Set Foundation in his formulation of a formal

system PAdms appropriate to the concept of recursion in the power set
operation P.

3. A Tait-style formalization of KP(P)

For technical reasons we shall use a Tait–style sequent calculus version of
KP(P) in which finite sets of formulae can be derived. In addition, formulae
have to be in negation normal form (cf. [33]). The language consists of: free
variables a0, a1, · · · , bound variables x0, x1, · · · ; the predicate symbol ∈; the
logical symbols ¬,∨,∧, ∀, ∃. One peculiarity will be that we treat bounded
quantifiers and subset bounded quantifiers as quantifiers in their own right.

We will use a, b, c, · · · , x, y, z, · · · , A,B,C, · · · as metavariables whose
domains are the domain of the free variables, bound variables, formulae,
respectively.

The atomic formulae are those of the form (a∈b),¬(a∈b).
The formulae are defined inductively as follows:
(i) Atomic formulae are formulae.
(ii) If A and B are formulae, then so are (A ∧B) and (A ∨B).
(iii) If A(b) is a formula in which x does not occur, then ∀xA(x), ∃xA(x),

(∀x∈a)A(x), (∃x∈a)A(x), (∀x ⊆ a)A(x), and (∃x ⊆ a)A(x) are formulae.
The quantifiers ∃x, ∀x will be called unbounded, whereas the other quan-

tifiers will be referred to as bounded quantifiers. A ∆P
0 –formula is a formula
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which contains no unbounded quantifiers. The ∆0–formulae are those ∆P
0 -

formulae that do not contain subset bounded quantifiers.
The negation ¬A of a formula A is defined to be the formula obtained

from A by (i) putting ¬ in front of any atomic formula, (ii) replacing
∧,∨, ∀x, ∃x, (∀x ∈ a), (∃x ∈ a), (∀x ⊆ a), (∃x ⊆ a) by ∨,∧,∃x,∀x, (∃x ∈
a), (∀x∈a), (∃x ⊆ a), (∀x ⊆ a), respectively, and (iii) dropping double nega-
tions. A→ B stands for ¬A ∨ B.

~a,~b,~c, · · · and ~x, ~y, ~z, · · · will be used to denote finite sequences of free
and bound variables, respectively.

We use F [a1, · · · , an] (by contrast with F (a1, · · · , an)) to denote a for-
mula the free variables of which are among a1, · · · , an. We will write
a = {x∈b :G(x)} for (∀x∈a)[x∈b ∧G(x)] ∧ (∀x∈b)[G(x)→x∈a].

a = b stands for (∀x ∈ a)(x ∈ b) ∧ (∀x ∈ b)(x ∈ a). a ⊆ b stands for
(∀x∈a)(x∈b). However, as part of a subset bounded quantifier (∀x ⊆ a) or
(∃x ⊆ b), ⊆ is considered to be a primitive symbol.

Definition 3.1. The sequent-style version of KP(P) derives finite sets of
formulae denoted by Γ,∆,Θ,Ξ, · · · . The intended meaning of Γ is the dis-
junction of all formulae of Γ. We use the notation Γ, A for Γ∪{A}, and Γ,Ξ
for Γ ∪ Ξ.

The axioms of KP(P) are the following:

Logical axioms: Γ, A,¬A for every ∆P
0 –formula A.

Extensionality: Γ, a=b ∧B(a)→ B(b) for every ∆P
0 -formula B(a).

Pair: Γ, ∃x[a∈x ∧ b∈x]
Union: Γ, ∃x(∀y∈a)(∀z∈y)(z∈x)
∆P

0 –Separation: Γ, ∃y(y = {x∈a : G(x)}) for every ∆P
0 –formula G(b).

Set Induction: Γ, ∀u [(∀x ∈ u)G(x) → G(u)] → ∀uG(u)
for every formula G(b).

Infinity: Γ, ∃x [(∃y ∈ x) y ∈ x ∧ (∀y ∈ x)(∃z ∈ x) y ∈ z].
Power Set: Γ, ∃z (∀x ⊆ a)x ∈ z.

The logical rules of inference are:
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(∧) ` Γ, A and ` Γ, B ⇒ ` Γ, A ∧B
(∨) ` Γ, Ai for i∈{0, 1} ⇒ ` Γ, A0 ∨A1

(b∀) ` Γ, a∈b→ F (a) ⇒ ` Γ, (∀x∈b)F (x)
(pb∀) ` Γ, a ⊆ b→ F (a) ⇒ ` Γ, (∀x ⊆ b)F (x)
(∀) ` Γ, F (a) ⇒ ` Γ, ∀xF (x)
(b∃) ` Γ, a∈b ∧ F (a) ⇒ ` Γ, (∃x∈b)F (x)
(pb∃) ` Γ, a ⊆ b ∧ F (a) ⇒ ` Γ, (∃x ⊆ b)F (x)
(∃) ` Γ, F (a) ⇒ ` Γ, ∃xF (x)
(Cut) ` Γ, A and ` Γ,¬A ⇒ ` Γ.

In the foregoing rules F (a) is an arbitrary formula. Of course, it is de-
manded that in (b∀), (pb∀) and (∀) the free variable a is not to occur in the
conclusion; a is called the eigenvariable of that inference.

The non–logical rule of inference is:

(∆P
0 –COLLR) ` Γ, (∀x∈a)∃yH(x, y) ⇒ ` Γ,∃z(∀x∈a)(∃y∈z)H(x, y)

for every ∆P
0 –formula H(b, c).

This rule is not weaker than the schema of ∆P
0 -Collection since side

formulae (those in Γ) are allowed: Using logical rules we have

` ¬(∀x ∈ a) ∃y H(x, y), (∀x ∈ a) ∃y H(x, y).

Thus if H(b, c) is ∆P
0 we can employ (∆P

0 –COLLR) to conclude

` ¬(∀x ∈ a)∃y H(x, y), ∃z (∀x ∈ a) (∃y ∈ z)H(x, y)

so that, by applying (∨) twice, we arrive at

` (∀x ∈ a)∃y H(x, y)→ ∃z (∀x ∈ a)(∃y ∈ z)H(x, y).

We shall conceive of axioms as inferences with an empty set of premisses.
The minor formulae (m.f.) of an inference are those formulae which are
rendered prominently in its premises. The principal formulae (p.f.) of an
inference are the formulae rendered prominently in its conclusion. (Cut) has
no p.f. So any inference has the form

(∗) For all i < k ` Γ,Ξi ⇒ ` Γ,Ξ

(0 ≤ k ≤ 2), where Ξ consists of the p.f. and Ξi is the set of m.f. in the i–th
premise. The formulae in Γ are called side formulae (s.f.) of (∗).

Derivations are defined inductively, as usual. D,D’,D0, · · · range as syn-
tactic variables over derivations. All this is completely standard, and we
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refer to [33] for notions like “length of a derivation D” (abbreviated by
|D |), “last inference of D”, “direct subderivation of D”. We write D ` Γ if
D is a derivation of Γ.

4. A representation system for the Bachmann-Howard ordinal

Definition 4.1. Let Ω be a “big” ordinal, e.g. Ω = ℵ1 or ωck1 . By recursion
on α we define sets CΩ(α, β) and the ordinal ψΩ(α) as follows:

CΩ(α, β) =


closure of β ∪ {0,Ω}
under:

+, (ξ 7→ ωξ)
(ξ 7−→ ψΩ(ξ))ξ<α

(1)

ψΩ(α) ' min{ρ < Ω : CΩ(α, ρ) ∩ Ω = ρ }. (2)

It can be shown that ψΩ(α) is always defined and thus

ψΩ(α) < Ω.

In the case of Ω being ωck1 , this follows from [23]. Moreover,

[ψΩ(α),Ω) ∩ CΩ(α,ψΩ(α)) = ∅ .

Thus the order-type of the ordinals below Ω which belong to the set
CΩ(α,ψΩ(α)) is ψΩ(α). ψΩ(α) is also a countable ordinal. In more pictorial
terms, ψΩ(α) is the αth collapse of Ω.

Let εΩ+1 be the least ordinal α > Ω such that ωα = α. The set
of ordinals CΩ(εΩ+1, 0) gives rise to an elementary computable ordinal
representation system (cf. [14, 8, 23, 26]). In what follows, CΩ(εΩ+1, 0) will
sometimes be denoted by T (Ω).

In point of fact,

CΩ(εΩ+1, 0) ∩ Ω = ψΩ(εΩ+1).

The ordinal ψΩ(εΩ+1) is known as the Bachmann-Howard ordinal. Its
relation to KP is that it is the proof-theoretic ordinal of this theory as was
shown by Jäger [14]. Moreover it is the smallest ordinal such that LψΩ(εΩ+1)

is a Π2-model of KP (see [22, Theorem 2.1] or [30, theorem 4.3]), i.e.,
whenever KP proves a Π2 sentence C of set theory, then LψΩ(εΩ+1) |= C.

For later it is also worthwhile recording the following fact.

Lemma 4.2. For all α, CΩ(α, 0) = CΩ(α,ψΩ(α)).
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5. The infinitary proof system RSP
Ω

The purpose of this section is to introduce an infinitary proof system
RSPΩ . The letter combination “RS” is used for traditional reasons. They
stand for “ramified set theory”, following [14].

Henceforth all ordinals will be assumed to belong to CΩ(εΩ+1, 0).
The problem of “naming” sets will be solved by building a formal von

Neumann hierarchy using the ordinals < Ω belonging to this set (i.e., ordi-
nals < ψΩ(εΩ+1)).

Definition 5.1. We define the RSPΩ –terms. To each RSPΩ –term t we also
assign its level, |t|.

1. For each α < Ω, Vα is an RSPΩ –term with |Vα | = α.

2. For each α < Ω, we have infinitely many free variables aα1 , a
α
2 , a

α
3 , . . .

which are RSPΩ –terms with | aαi | = α.

3. If F (x, ~y ) is a ∆P
0 -formula of KP(P) (whose free variables are exactly

those indicated) and ~s ≡ s1, · · · , sn are RSPΩ –terms, then the formal
expression

{x ∈ Vα | F (x,~s )}
is an RSPΩ –term with | {x ∈ Vα | F (x,~s )} | = α.

The RSPΩ –formulae are the expressions of the form F (s1, . . . , sn), where
F (a1, . . . , an) is a formula of KP(P) with all free variables exhibited and
s1, . . . , sn are RSPΩ -terms. We set

|F (s1, . . . , sn) | = {| s1 |, . . . , | sn |}.

A formula is a ∆P
0 -formula of RSPΩ if it is of the form F (s1, . . . , sn) with

F (a1, . . . , an) being ∆P
0 -formula of KP(P) and s1, . . . , sn RS

P
Ω -terms.

As in the case of the Tait-style version of KP(P), we let ¬A be the
formula which arises from A by (i) putting ¬ in front of each atomic formula,
(ii) replacing ∧,∨, (∀x∈s), (∃x∈s), (∀x ⊆ s), (∃x ⊆ s), ∀x,∃x by ∨,∧, (∃x∈
s), (∀x∈s), (∃x ⊆ s), (∀x ⊆ s), ∃x, ∀x, respectively, and (iii) dropping double
negations. A→ B stands for ¬A ∨ B.

Remark 5.2. Note that in contrast to the infinitary system used for the
ordinal of KP (see [14, 8]) the terms of RSPΩ may contain free variables.
This will be crucial in proving the Soundness Theorem 8.1.

Observe that the impredicativity of Powerset is reflected in the formation
rules for RSPΩ -terms in that, owing to clause 3 of Definition 5.1, terms of
level α can be generated by referring to terms of higher levels.
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Convention: In the sequel, RSPΩ –formulae will simply be referred to as
formulae. The same usage applies to RSPΩ –terms.

We denote by upper case Greek letters Γ,∆,Λ, . . . finite sets of RSPΩ –
formulae. The intended meaning of Γ = {A1, · · · , An} is the disjunction
A1 ∨ · · · ∨An. Γ,Ξ stands for Γ ∪ Ξ and Γ, A stands for Γ ∪ {A}.

Definition 5.3. The axioms of RSPΩ are:

(A1) Γ, A, ¬A for A in ∆P
0 .

(A2) Γ, t = t.

(A3) Γ, s1 6= t1, . . . , sn 6= tn,¬A(s1, . . . , sn), A(t1, . . . , tn)

for A(s1, . . . , sn) in ∆P
0 .

(A4) Γ, s ∈ Vα if | s | < α.

(A5) Γ, s ⊆ Vα if | s | ≤ α.

(A6) Γ, t /∈ {x ∈ Vα | F (x,~s )}, F (t, ~s )

whenever F (t, ~s ) is ∆P
0 and | t | < α.

(A7) Γ,¬F (t, ~s ), t ∈ {x ∈ Vα | F (x,~s )}
whenever F (t, ~s ) is ∆P

0 and | t | < α.
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The inference rules of RSPΩ are:

(∧) Γ, A Γ, A′

Γ, A ∧A′

(∨) Γ, Ai
Γ, A0 ∨A1

if i = 0 or i = 1

(b∀)∞
Γ, s ∈ t→ F (s) for all | s | < | t |
Γ, (∀x∈ t)F (x)

(b∃) Γ, s ∈ t ∧ F (s)
Γ, (∃x∈ t)F (x)

if | s | < | t |

(pb∀)∞
Γ, s ⊆ t→ F (s) for all | s | ≤ | t |
Γ, (∀x ⊆ t)F (x)

(pb∃) Γ, s ⊆ t ∧ F (s)
Γ, (∃x ⊆ t)F (x)

if | s | ≤ | t |

(∀)∞
Γ, F (s) for all s
Γ,∀xF (x)

(∃) Γ, F (s)
Γ, ∃xF (x)

(6∈)∞
Γ, r ∈ t→ r 6= s for all | r | < | t |

Γ, s 6∈ t

(∈) Γ, r ∈ t ∧ r = s
Γ, s∈ t

if | r | < | t |

(6⊆)∞
Γ, r ⊆ t→ r 6= s for all | r | ≤ | t |

Γ, s 6⊆ t

(⊆) Γ, r ⊆ t ∧ r = s
Γ, s ⊆ t

if | r | ≤ | s |

(Cut) Γ, A Γ,¬ A
Γ

(ΣP -Ref) Γ, A
Γ, ∃z Az

if A is a ΣP -formula,

where a formula is said to be in ΣP if all its unbounded quantifiers are
existential.

Az results from A by restricting all unbounded quantifiers to z.
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5.1. H–controlled derivations
In general in RSPΩ we cannot remove cuts that have ∆P

0 cut formulae.
What’s more, the rule (ΣP -Ref) poses an obstacle to removing cuts in-
volving ΣP

1 formulae. Notwithstanding that, it will turn out that cuts of a
complexity higher than ∆P

0 can be removed from derivations of ΣP formulae
if they are of a very uniform kind.

For the presentation of infinitary proofs we draw on [8]. Buchholz devel-
oped a very elegant and flexible setting for describing uniformity in infinitary
proofs, called operator controlled derivations.

Definition 5.4. Let

P (ON) = {X : X is a set of ordinals}.

A class function
H : P (ON)→ P (ON)

will be called an operator if H is a closure operator, i.e monotone,
inclusive and idempotent, and satisfies the following conditions for all
X ∈P (ON):

1. 0 ∈ H(X) and Ω ∈ H(X).
2. If α has Cantor normal form ωα1 + · · ·+ ωαn , then

α∈H(X) ⇐⇒ α1, ..., αn∈H(X).

The latter ensures that H(X) will be closed under + and σ 7→ ωσ, and
decomposition of its members into additive and multiplicative components.

For a sequent Γ = {A1, . . . , An} we define

|Γ | := |A1 | ∪ . . . ∪ |An | .

If s is an RSPΩ -term, the operator H[s] is defined by

H[s](X) = H(X ∪ {| s |}).

Likewise, if X is a formula or a sequent we define

H[X](X) = H(X ∪ |X | ).

If Yi is a term, or a formula, or a sequent for all 1 ≤ i ≤ n, we let
H[Y1,Y2] = (H[Y1])[Y2], H[Y1,Y2,Y3] = (H[Y1,Y2])[Y3], etc.
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Lemma 5.5. Let H be an operator. Let s be a term and X be a formula or
a sequent.

(i) ∀X,X ′ ∈ P (ON)[X ′ ⊆ X =⇒ H(X ′) ⊆ H(X)].

(ii) H[s] and H[X] are operators.

(iii) |X | ⊆ H(∅) =⇒ H[X] = H.

(iv) | s | ∈ H(∅) =⇒ H[s] = H.

Since we also want to keep track of the complexity of cuts appearing in
derivations, we endow each formula with an ordinal rank.

Definition 5.6. The rank of a formula is determined as follows.

1. rk(s ∈ t) := rk(s /∈ t) := max{| s |+ 1, | t |+ 1}.

2. rk((∃x ∈ t)F (x)) := rk((∀x ∈ t)F (x)) := max{| t |, rk(F (V0)) + 2}.

3. rk((∃x ⊆ t)F (x)) := rk((∀x ⊆ t)F (x)) := max{| t |+1, rk(F (V0))+2}.

4. rk(∃xF (x)) := rk(∀xF (x)) := max{Ω, rk(F (V0)) + 2}.

5. rk(A ∧B) := rk(A ∨B) := max{rk(A), rk(B)}+ 1.

Note that for a ∆P
0 formula A we have rk(A) < Ω.

There is plenty of leeway in designing the actual rank of a formula.

Definition 5.7. Let H be an operator and let Λ be a finite set of RSPΩ –
formulae. H α

ρ Λ is defined by recursion on α.
If Λ is an axiom and |Λ | ∪ {α} ⊆ H(∅), then H α

ρ Λ .
Moreover, we have inductive clauses pertaining to the inference rules of

RSPΩ , which all come with the additional requirement that

|Λ | ∪ {α} ⊆ H(∅)

where Λ is the sequent of the conclusion. We shall not repeat this require-
ment below.

Below the third column gives the requirements that the ordinals have
to satisfy for each of the inferences. For instance in the case of (∀)∞, to
be able to conclude that H α

ρ Γ,∀xF (x) , it is required that for all terms s

13



there exists αs such that H[s] αs
ρ Γ, F (s) and | s | < αs + 1 < α. The side

conditions for the rules (b∀)∞, (pb∀)∞, (6∈)∞, ( 6⊆)∞ below have to read in the
same vein.

The clauses are the following:

(∧)
H α0

ρ Γ, A0 H α0

ρ Γ, A1

H α

ρ Γ, A0 ∧A1

α0 < α

(∨)
H α0

ρ Λ, Ai

H α

ρ Γ, A0 ∨A1

α0 < α
i ∈ {0, 1}

(Cut)
H α0

ρ Λ, B H α0

ρ Λ,¬B

H α

ρ Λ

α0 < α
rk(B) < ρ

(b∀)∞
H[s] αs

ρ Γ, s ∈ t→ F (s) for all | s | < | t |

H α

ρ Γ, (∀x ∈ t)F (x)
| s | ≤ αs < α

(b∃)
H α0

ρ Γ, s ∈ t ∧ F (s)

H α

ρ Γ, (∃x ∈ t)F (x)

α0 < α
| s | < | t |
| s | < α

(pb∀)∞
H[s] αs

ρ Γ, s ⊆ t→ F (s) for all | s | ≤ | t |

H α

ρ Γ, (∀x ⊆ t)F (x)
| s | ≤ αs < α

(pb∃)
H α0

ρ Γ, s ⊆ t ∧ F (s)

H α

ρ Γ, (∃x ⊆ t)F (x)

α0 < α
| s | ≤ | t |
| s | < α

(∀)∞
H[s] αs

ρ Γ, F (s) for all s

H α

ρ Γ,∀xF (x)
| s | < αs + 1 < α

(∃)
H α0

ρ Γ, F (s)

H α

ρ Γ,∃xF (x)

α0 + 1 < α
| s | < α

14



(6∈)∞
H[r] αr

ρ Γ, r ∈ t→ r 6= s for all | r | < | t |

H α

ρ Γ, s 6∈ t
| r | ≤ αr < α

(∈)
H α0

ρ Γ, r ∈ t ∧ r = s

H α

ρ Γ, s ∈ t

α0 < α
| r | < | t |
| r | < α

(6⊆)∞
H[r] αr

ρ Γ, r ⊆ t→ r 6= s for all | r | ≤ | t |

H α

ρ Γ, s 6⊆ t
| r | ≤ αr < α

(⊆)
H α0

ρ Γ, r ⊆ t ∧ r = s

H α

ρ Γ, s ⊆ t

α0 < α
| r | ≤ | t |
| r | < α

(ΣP -Ref)
H α0

ρ Γ, A

H α

ρ Γ, ∃z Az
α0 + 1,Ω < α

A ∈ ΣP

Remark 5.8. Suppose H α

ρ Γ(s1, . . . , sn) where Γ(a1, . . . , an) is a sequent
of KP(P) such that all variables a1, . . . , an do occur in Γ(a1, . . . , an) and
s1, . . . , sn are RSPΩ -terms. Then we have that | s1 |, . . . , | sn | ∈ H(∅). Stand-
ing in sharp contrast to the ordinal analysis of KP (cf. [14, 8]), however,
the terms si may and often will contain subterms that the operator H does
not control, that is, subterms t with | t | 6∈ H(∅).

The following observation is easily established by induction on α.

Lemma 5.9 (Weakening).

H α

ρ Γ ∧ α ≤ α′ ∈ H(∅) ∧ ρ ≤ ρ′ ∧ |Λ | ⊆ H(∅) =⇒ H α′

ρ′
Γ,Λ .

Lemma 5.10 (Inversion). (i) If H α

ρ Γ, A ∨B and rk(A∨B) ≥ Ω, then
H α

ρ Γ, A,B .

(ii) If H α

ρ Γ, A0 ∧A1 , i ∈ {0, 1} and rk(A0 ∧A1) ≥ Ω, then H α

ρ Γ, Ai .

(iii) H α

ρ Γ, ∀xF (x) ∧ γ ∈ H(∅) ∧ γ < Ω =⇒ H α

ρ Γ, (∀x ∈ Vγ)F (x) .
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(iv) If H α

ρ Γ, (∀x ∈ t)F (x) and rk(F (V0)) ≥ Ω, then for all | s | < | t | we
have H[s]

α

ρ Γ, s ∈ t→ F (s) .

(v) If H α

ρ Γ, (∀x ⊆ t)F (x) and rk(F (V0)) ≥ Ω, then for all | s | ≤ | t | we
have H[s]

α

ρ Γ, s ⊆ t→ F (s) .

Proof : All proofs are by induction on α. Note that a formula C of
rk(C) ≥ Ω cannot be an active part of an axiom, i.e., if C occurred in
an axiom sequent the sequent obtained by deleting C or replacing C with
another formula would still be an axiom.

We show (iii). Firstly, suppose that ∀xF (x) was the principal formula
of the last inference. Then we have H[s] αs

ρ Γ,∀xF (x), F (s) for all terms
s, using weakening (Lemma 5.9) if ∀xF (x) was not a side formula of the
inference. Moreover, | s | ≤ αs + 1 < α holds for all s. Inductively we
have H[s] αs

ρ Γ, (∀x ∈ Vγ)F (x), F (s) for all | s | < γ. Hence, using (∨),

H[s] αs+1

ρ Γ, (∀x ∈ Vγ)F (x), s ∈ Vγ → F (s) holds for all | s | < γ, so that
via an inference (b∀) we arrive at H α

ρ Γ, (∀x ∈ Vγ)F (x) .
Now assume that ∀xF (x) was not the principal formula of the last in-

ference. Then the assertion follows by applying the induction hypothesis to
its premisses and performing the same inference. ut

6. Embedding

To relate KP(P) to the infinitary system RSPΩ we show that KP(P) can
be embedded into RSPΩ . Indeed, the finite KP(P)-derivations give rise to
very uniform infinitary derivations.

Definition 6.1. For Γ = {A1, . . . , An} let

no(Γ) := ωrk(A1)# · · ·#ωrk(An).

Here “no” stands for “norm”. We define


 Γ :⇐⇒ for all operators H, H[Γ]
no(Γ)

0
Γ

and


ξ
ρ Γ :⇐⇒ for all operators H, H[Γ]

no(Γ)#ξ

ρ Γ .
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Lemma 6.2. (i) For all formulae A,


 A,¬A.

(ii) (∆P
0 -Collection)


4
0 (∀x ∈ s)∃y F (x, y)→ ∃z (∀x ∈ s)(∃y ∈ z)F (x, y)

if F (V0,V0) is in ∆P
0 .

Proof : (i): We proceed by induction on the syntactic complexity of A.
For A in ∆P

0 this is an axiom of RSPΩ . Suppose A is of the form ∀xF (x). Let
H be an arbitrary operator. Let αs := | s | + no({F (s),¬F (s)}) and α :=
no({∀xF (x), ∃x¬F (x)}). Note that | s | < αs + 1 < α since rk(∀xF (x)) =
max{Ω, rk(F (V0)) + 2}. Inductively we have

H[F (s), s] αs

0
F (s),¬F (s)

for all terms s. Using an inference (∃) we get

H[F (s), s]
no({F (s),∃x¬F (x)})
0

F (s),∃x¬F (x) .

Hence, via an inference (∀), we arrive at H[∀xF (x)]
α

0
∀xF (x),∃x¬F (x) ,

noting that H[F (s), s] ⊆ (H[∀x¬F (x)])[s].
The other cases are similar.

(ii): By (i) we have 
 ¬(∀x ∈ s) ∃y F (x, y), (∀x ∈ s) ∃y F (x, y). Since the
formula (∀x ∈ s) ∃y F (x, y) is ΣP an inference (ΣP -Ref) yields


2
0 ¬(∀x ∈ s) ∃y F (x, y), ∃z (∀x ∈ s) (∃y ∈ z)F (x, y).

Thus, by applying (∨) twice, we arrive at


4
0 (∀x ∈ s) ∃y F (x, y)→ ∃z (∀x ∈ s)(∃y ∈ z)F (x, y).

ut

Lemma 6.3. (Equality and Extensionality)


ρ s1 6= t1, . . . , sn 6= tn,¬A(s1, . . . , sn), A(t1, . . . , tn)

where ρ = max(rk(s1 6= t1), . . . , rk(sn 6= tn)) + 1.
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Proof : We proceed by induction on the buildup of A(~s ). Let H be an
arbitrary operator.

If A(~s ) is ∆P
0 then this is an axiom.

Suppose A(~s ) is a formula ∀xF (x,~s ). Let ~s 6= ~t stand for s1 6= t1, . . . , sn 6=
tn. Let Γr := {~s 6= ~t,¬F (r, ~s ), F (r,~t )} and αr := no(Γr). Inductively we
have

H[Γr]
αr
ρ Γr

for all terms r. Using an inference (∃) we obtain H[Γ̃r]
α̃r
ρ Γ̃r where

Γ̃r := {~s 6= ~t,∃x¬F (x,~s ), F (r,~t )}

and α̃r := no(Γ̃r), noting that | r | < Ω ≤ no(∃x¬F (x,~s )). Thus, using an
inference (∀)∞, we have

H[Γ]
no(Γ)

ρ Γ

where Γ := {~s 6= ~t,∃x¬F (x,~s ),∀xF (x,~t )}. In the latter we used the fact
that H[Γ̃r] ⊆ (H[Γ])[r].

Suppose A(~s ) is a formula (∀x ⊆ s1)F (x,~s ). Inductively we have


ρ q 6= r, ~s 6= ~t,¬F (q, ~s ), F (r,~t )

where | q | ≤ | s1 | and | r | ≤ | t1 |. As q 6⊆ s1, q ⊆ s1 is an axiom we can use
(∧) to infer


ρ q 6= r, ~s 6= ~t,¬F (r,~t ), q 6⊆ s1, q ⊆ s1 ∧ F (q, ~s ). (3)

Via (bp∃) followed by two (∨) inferences, (3) yields


ρ q ⊆ s1 → q 6= r, ~s 6= ~t,¬F (r,~t ), (∃x ⊆ s1)F (x,~s ) (4)

for all q satisfying | q | ≤ | s1 |. Thus, applying ( 6⊆)∞ to (4) we have


ρ r 6⊆ s1, ~s 6= ~t,¬F (r,~t ), (∃x ⊆ s1)F (x,~s ). (5)

Since s1 6= t1, r 6⊆ t1, r ⊆ s1 is an axiom we can apply a cut with (5),
obtaining


δr
ρ ~s 6= ~t, r 6⊆ t1,¬F (r,~t ), (∃x ⊆ s1)F (x,~s ) (6)

where δr = no(r ⊆ s1). To (6) we can apply (∨) twice so that


δr+2
ρ ~s 6= ~t, r ⊆ t1 → ¬F (r,~t ), (∃x ⊆ s1)F (x,~s ) (7)
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holds for all r with | r | ≤ | t1 |. Hence, by applying (bp∀)∞ to (7), we arrive
at


ρ ~s 6= ~t, (∀x ⊆ t1)¬F (r,~t ), (∃x ⊆ s1)F (x,~s )

The other cases are similar. ut

Lemma 6.4. (Set Induction)


 ∀x [(∀y ∈ x)F (y)→ F (x)] −→ ∀xF (x).

Proof. Fix an operator H. Let A ≡ ∀x [(∀y ∈ x)F (y) → F (x)]. First,
we show, by induction on | s |, that

(+) H[A, s]
ωrk(A)#ω|s|+1

0
¬A,F (s) .

So assume that
H[A, t]

ωrk(A)#ω|t|+1

0
¬A,F (t)

holds for all | t | < | s |. Using (∨), this yields

H[A, s, t]
ωrk(A)#ω|t|+1+1

0
¬A, t ∈ s→ F (t)

for all | t | < | s |, and hence

(1) H[A, s]
ωrk(A)#ω|s|+2

0
¬A, (∀x ∈ s)F (x)

via (b∀)∞. Set ηs := ωrk(A)#ω|s| + 2. By Lemma 6.2 we have
H[A, s]

ηs

0
¬F (s), F (s) . Therefore, using (1) and (∧),

H[A, s]
ηs+1

0
¬A, (∀y ∈ s)F (y) ∧ ¬F (s), F (s) .

From the latter we obtain

H[A, s]
ηs+2

0
¬A,∃x [(∀y ∈ x)F (y) ∧ ¬F (x)], F (s)

via (∃). This shows (+).
Finally, (+) enables us to deduce, via (∀)∞, that

H[A, s] ωrk(A)+Ω

0
¬A,∀xF (x) .

From this the assertion follows by applying (∨) twice. ut
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Lemma 6.5. (Infinity Axiom) For any operator H we have

H ω+2

0
∃x [(∃y ∈ x) y ∈ x ∧ (∀y ∈ x)(∃z ∈ x) y ∈ z] .

Proof : Let s be a term with | s | = n < ω. Then H 0

0
s ∈ Vn+1 and

H 0

0
Vn+1 ∈ Vω since these formulae are axioms. Via (∧) we deduce

H 1

0
Vn+1 ∈ Vω ∧ s ∈ Vn+1

and hence H n+2

0
(∃z ∈ Vω)s ∈ z , using (b∃). An inference (∨) yields

H n+3

0
s ∈ Vω → (∃z ∈ Vω)s ∈ z .

Since this holds for all terms s with | s | < ω, we conclude that

H ω

0
(∀y ∈ Vω)(∃z ∈ Vω)y ∈ z . (8)

Since V0 ∈ Vω is an axiom we have H 1

0
V0 ∈ Vω ∧ V0 ∈ Vω via (∧) and

thus

H 2

0
(∃z ∈ Vω)z ∈ Vω , (9)

using (b∃). Combining (8) and (9) we arrive at

H ω+1

0
(∃z ∈ Vω)z ∈ Vω ∧ (∀y ∈ Vω)(∃z ∈ Vω)y ∈ z .

Thus an inference (b∃) furnishes us with

H ω+2

0
∃x [(∃z ∈ x)z ∈ x ∧ (∀y ∈ x)(∃z ∈ x)y ∈ z] .

ut

Lemma 6.6. (∆P
0 –Separation) Let A(a, b, c1, . . . , cn) be a ∆P

0 –formula of L
with all free variables among the exhibited. Let r, s1, . . . , sn be RSPΩ -terms.
Let H be an arbitrary operator. Then:

H[r, ~s ] α+8
ρ ∃y [(∀x ∈ y)(x ∈ r ∧A(x, r, ~s ) ∧ (∀x ∈ r)(A(x, r, ~s )→ x ∈ y)] ,

where α = | r | and ρ = max{| r |, | s1 |, . . . , | sn |}+ ω.
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Proof : Define the RSPΩ -term p by

p := {x ∈ Vα | x ∈ r ∧ A(x, r, ~s )}.

Then | p | = α. Let H̃ := H[r, ~s ]. We have H̃[t]
0

0
t 6∈ p, t ∈ r ∧ A(t, r, ~s )

for all | t | < α since this is an axiom (A6). Hence, using (∨) twice,
H̃[t] α+2

0
t ∈ p→ t ∈ r ∧ A(t, r, ~s ) , and therefore

H̃ α+3

0
(∀x ∈ p)(x ∈ r ∧ A(x, r, ~s )) (10)

by applying (b∀)∞. We also have, on account of being axioms, H̃[t]
0

0
t 6∈ r, t ∈ r

and H̃[t]
0

0
¬A(t, r, ~s ), A(t, r, ~s ) . Using (∧) and weakening (Lemma 5.9) we

conclude that

H̃[t]
1

0
t 6∈ r,¬A(t, r, ~s ), t ∈ r ∧ A(t, r, ~s ) . (11)

Since H̃[t]
0

0
¬(t ∈ r ∧ A(t, r, ~s )), t ∈ p holds on account of being an axiom

(A7), a cut applied to (11) and the latter yields

H̃[t]
1

ρ t 6∈ r,¬A(t, r, ~s ), t ∈ p (12)

since rk(t ∈ r ∧ A(t, r, ~s )) < ρ holds for terms t with | t | < α. Now use (∨)
four times to arrive at

H̃[t] α+5
ρ t ∈ r → (A(t, r, ~s )→ t ∈ p) . (13)

Applying (b∀)∞ to (13) yields

H̃ α+6
ρ (∀x ∈ r)(A(x, r, ~s )→ x ∈ p) . (14)

Combining (10) and (14) via (∧) we have

H̃ α+7
ρ (∀x ∈ p)(x ∈ r ∧ A(x, r, ~s )) ∧ (∀x ∈ r)(A(x, r, ~s )→ x ∈ p) .

Consequently, by means of (b∃),

H̃ α+8
ρ ∃y[(∀x ∈ y)(x ∈ r ∧ A(x, r, ~s )) ∧ (∀x ∈ r)(A(x, r, ~s )→ x ∈ y)] .

ut

Lemma 6.7. (Pair and Union) For any operator H the following hold:
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(i) H[s, t] α+2

0
∃z (s ∈ z ∧ t ∈ z) where α = max(| s |, | t |) + 1.

(ii) H[s]
β+4

0
∃z (∀y ∈ s)(∀x ∈ y)(x ∈ z) where β = | s |.

Proof : (i): s ∈ Vα and t ∈ Vα are axioms. ThusH[s, t]
1

0
s ∈ Vα ∧ t ∈ Vα ,

and hence H[s, t] α+2

0
∃z (s ∈ z ∧ t ∈ z) by means of (b∃).

(ii): Let r and t be terms of levels < β. Since r ∈ Vβ is an axiom, we have

H[s, r]
0

0
r ∈ Vβ .

Thus we get

H[s, t, r]
β

0
r ∈ t→ r ∈ Vβ

H[s, t]
β+1

0
(∀x ∈ t)x ∈ Vβ

H[s, t]
β+2

0
t ∈ s→ (∀x ∈ t)x ∈ Vβ

H[s]
β+3

0
(∀y ∈ s)(∀x ∈ t)x ∈ Vβ

H[s]
β+4

0
∃z (∀y ∈ s)(∀x ∈ t)x ∈ z .

ut

Lemma 6.8. (Power Set) For any operator H the following holds:

H[s] α+3

0
∃z (∀x ⊆ s)x ∈ z ,

where α = | s |.

Proof : Let t be a term with | t | ≤ α. Then t ∈ Vα+1 is an axiom.
Whence, using (∨), (pb∀)∞, and (∃), we have

H[s, t]
0

0
t ∈ Vα+1

H[s, t] α+1

0
t ⊆ s→ t ∈ Vα+1

H[s] α+2

0
(∀x ⊆ s)x ∈ Vα+1

H[s] α+3

0
∃z (∀x ⊆ s)x ∈ z .

ut
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Theorem 6.9. If
KP(P) ` Γ(a1, . . . , al)

then there exist m,n < ω such that

H[s1, . . . , sl ]
ωΩ+m

Ω+n
Γ(s1, . . . , sl)

holds for all RSPΩ -terms s1, . . . , sl and operators H. m and n depend solely
on the KP(P)-derivation of Γ(~a).

Proof : One proceeds by induction on the length of the KP(P)-derivation
of Γ(~a ). Note that the rank of an RSPΩ -formula A is always < Ω + ω and
thus the norms of RSPΩ -sequents will always be < ωΩ+ω.

If Γ(~a ) is an axiom of KP(P) then the assertion follows from the earlier
results of this section.

If the last inference was (∆P
0 -COLLR) then Γ(~a ) contains a formula

(∀x ∈ ai)∃y F (x, y,~a ) with F (b, c,~a ) being ΣP and inductively we have
n0,m0 < ω such that

H[~s ]
ωΩ+m0

Ω+n0
Γ(~s ), (∀x ∈ si)∃y F (x, y,~s )

holds for all terms ~s. Since (∀x ∈ si)∃y F (x, y,~s ) is ΣP an application of
(ΣP -Ref) yields

H[~s ]
ωΩ+m0+1

Ω+n0
Γ(~s ),∃z (∀x ∈ si)(∃y ∈ z)F (x, y,~s ) ,

i.e., H[~s ]
ωΩ+m0+1

Ω+n0
Γ(~s ) .

As an example of a logical rule we shall treat (pb∃). So suppose the
last inference of our KP(P)-derivation D was an instance of (pb∃). Then
Γ(~a ) contains a formula of the form (∃x ⊆ ai) ∧ F (x,~a ) and there exists
a shorter KP(P)-derivation D0 whose end sequent is either of the form
Γ(~a ), c ⊆ ai ∧ F (c,~a ) with c not occurring in Γ(~a ) or c is aj for some
1 ≤ j ≤ l. In the former case the induction hypothesis supplies us with
n0,m0 < ω such that

H[~s ]
ωΩ+m0

Ω+n0
Γ(~s ),V0 ⊆ si ∧ F (V0, ~s ) (15)

holds for all terms ~s. As |V0 | = 0 ≤ | si | we can apply an inference (pb∃)
in yielding

H[~s ]
ωΩ+m0+2

Ω+n0
Γ(~s ), (∃x ⊆ si)F (x,~s ) (16)

23



and thus H[~s ]
ωΩ+m0+2

Ω+n0
Γ(~s ) as (∃x ⊆ si)F (x,~s ) belongs to Γ(~s ).

Now let’s turn to the case where c is aj . Then, by the induction hypoth-
esis, there are n0,m0 < ω such that

H[~s ]
ωΩ+m0

Ω+n0
Γ(~s ), sj ⊆ si ∧ F (sj , ~s ) (17)

holds for all terms ~s. Owing to Lemma 6.3 we can find m1 such that with
ρ := ωΩ+m1 we have

H[~s, r]
ρ

0
r 6= sj , sj 6⊆ si, r ⊆ si

and H[~s, r]
ρ

0
sj 6= r,¬F (sj , ~s ), F (r, ~s ) hold for all r, ~s. By applying weak-

ening and (∧) we thus get

H[~s, r]
ρ+1

0
r 6⊆ si, r 6= sj ,¬F (sj , ~s ), r ⊆ si ∧ F (r, ~s )

for all r with | r | ≤ | si |. Now apply (pb∃), (∨) (twice), ( 6⊆)∞, and (∨)
(twice):

H[~s, r]
ρ+2

0
r 6⊆ si, r 6= sj ,¬F (sj , ~s ), (∃x ⊆ si)F (x,~s )

H[~s, r]
ρ+4

0
r ⊆ si → r 6= sj ,¬F (sj , ~s ), (∃x ⊆ si)F (x,~s )

H[~s ]
ρ+5

0
sj 6⊆ si,¬F (sj , ~s ), (∃x ⊆ si)F (x,~s )

H[~s ]
ρ+7

0
¬(sj ⊆ si ∧ F (sj , ~s )), (∃x ⊆ si)F (x,~s ) . (18)

Finally, by applying a cut to (17) and (18) we have

H[~s ]
ωΩ+m

Ω+n
Γ(~s ), (∃x ⊆ si)F (x,~s )

i.e., H[~s ]
ωΩ+m

Ω+n
Γ(~s ) , where m = max(m0,m1) + 1 and n is chosen such

that n > n0 and rk(sj ⊆ si ∧ F (sj , ~s )) < Ω + n for all ~s.

The case of the last inference being (b∃) is treated in the same vein as
(pb∃). All the other inferences are straightforward as the desired assertion
can be obtained immediately from the induction hypothesis applied to the
premisses followed by the corresponding inference in RSPΩ . For example, in
the case of the (∆P

0 -COLLR) one inductively finds m0, n0 < ω such that

H[~s]
ωΩ+m

Ω+n
Γ0(~s ), (∀x ∈ si)∃y H(x, y,~s )

holds for all ~s, where H(x, y,~a ) is ΣP . Using (ΣP -Ref) one obtains

H[~s]
ωΩ+m

Ω+n
Γ0(~s ), ∃z(∀x ∈ si)(∃y ∈ z)H(x, y,~s ) .

ut
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7. Cut elimination

The usual cut elimination procedure works as long as the cut formulae
are not in ∆P

0 and have not been introduced by an inference (ΣP -Ref). As
the principal formula of an inference (ΣP -Ref) has rank Ω one gets the
following result.

Theorem 7.1 (Cut elimination I).

H α

Ω+n+1
Γ ⇒ H

ωn(α)

Ω+1
Γ

where ω0(β) := β and ωk+1(β) := ωωk(β).

Proof : The proof is standard. For details see [8, Lemma 3.14]. ut

Lemma 7.2 (Boundedness). Let A be a ΣP-formula, α ≤ β < Ω, and
β ∈ H(∅). If

H α

ρ Γ, A

then
H α

ρ Γ, AVβ .

Proof : Note that the derivation contains no instances of (ΣP -Ref). The
proof is by induction on α. For details see [8, Lemma 3.17]. ut

The obstacle to pushing cut elimination further is exemplified by the
following scenario:

H δ

Ω
Γ, A

H ξ

Ω
Γ,∃z Az

(ΣP -Ref)
· · ·H[s]

ξs

Ω
Γ,¬As · · · (s ∈ T )

H ξ

Ω
Γ,∀z ¬Az

(∀)

H α

Ω+1
Γ

(Cut)

Fortunately, it is possible to eliminate cuts in the above situation pro-
vided that the side formulae Γ are of complexity ΣP . The technique is known
as “collapsing” of derivations.

If the length of a derivation of ΣP -formulae is ≥ Ω, then “collaps-
ing” results in a shorter derivation, however, at the cost of a much more
complicated controlling operator.

Definition 7.3.

Hδ(X) =
⋂
{CΩ(α, β) : X ⊆ CΩ(α, β) ∧ δ < α}
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Lemma 7.4. (i) Hη is an operator.

(ii) η < η′ =⇒ Hη(X) ⊆ Hη′(X).

(iii) If ξ ∈ Hη(X) and ξ < η + 1 then ψΩ(ξ) ∈ Hη(X).

Proof : See [8, Lemma 4.6]. ut

Lemma 7.5. Suppose η ∈ Hη(∅). Define β̂ := η + ωΩ+β.

(i) If α ∈ Hη then α̂, ψΩ(α̂) ∈ Hα̂.

(ii) If α0 ∈ Hη and α0 < α then ψΩ(α̂0) < ψΩ(α̂).

Proof : See [8, Lemma 4.7]. ut

Theorem 7.6 (Collapsing Theorem). Let Γ be a set of ΣP-formulae and
η ∈ Hη(∅). Then we have

Hη
α

Ω+1
Γ ⇒ Hα̂

ψΩ(α̂)

ψΩ(α̂)
Γ

where α̂ = η + ωΩ+α.

Proof by induction on α. Suppose Hη
α

Ω+1
Γ . We shall distinguish cases

according to the last inference of Hη
α

Ω+1
Γ . Note that this cannot be (∀)∞

since Γ consists of ΣP -formulae. Note also that η ∈ Hη(∅) implies η ∈ Hα̂(∅),
and therefore

α ∈ Hη(∅) ⇒ ψΩ(α̂) ∈ Hα̂(∅). (19)

Case 0: Suppose Γ is an axiom. Then Hα̂
ψΩ(α̂)

ψΩ(α̂)
Γ follows immediately by

(19).

Case 1: Suppose the last inference was (pb∀)∞. Then there is an A ∈ Γ of
the form (∀x ⊆ t)F (x) and Hη[s]

αs

Ω+1
Γ, s ⊆ t→ F (s) and αs < α hold for

all s with | s | ≤ | t |. By Lemma 4.2 we have

Hη(∅) = CΩ(η + 1, 0) = CΩ(η + 1, ψΩ(η + 1)).

Since | t | ∈ Hη(∅) it follows that | t | ∈ CΩ(η + 1, ψΩ(η + 1) ∩ Ω, whence
| t | < ψΩ(η + 1) and hence | s | < ψΩ(η + 1) whenever | s | ≤ | t |. As a
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result, | s | ∈ CΩ(η + 1, ψΩ(η + 1)) = Hη(∅) holds for all | s | ≤ | t |. Whence
Hη[s] = Hη for all | s | ≤ | t |. Therefore, by the induction hypothesis,

Hα̂s
ψΩ(α̂s)

ψΩ(α̂s)
Γ, s ⊆ t→ F (s) (20)

for all | s | ≤ | t |. Let | s | ≤ | t |. Since | s | < ψΩ(η + 1) one computes
that ψΩ(α̂s) < ψΩ(α̂). Therefore, an inference (pb∀)∞ applied to (20) yields

Hα̂
ψΩ(α̂)

ψΩ(α̂)
Γ .

The cases were the last inference is an instance of (b∀)∞, ( 6∈)∞, ( 6⊆)∞,
or (∧) are dealt with in a similar manner.

Case 2: Suppose the last inference was (∃). Then there is a formula A ∈ Γ
of the form ∃xF (x) such that Hη

α0

Ω+1
Γ, F (s) holds for some term s and

α0 + 1 < α. The induction hypothesis yields

Hα̂0

ψΩ(α̂0)

ψΩ(α̂0)
Γ, F (s) .

Since α0, | s | ∈ Hη(∅) we see that

α0, | s | ∈ CΩ(η + 1, ψΩ(η + 1)) .

Consequently we have | s |, ψΩ(α̂0) < ψΩ(α̂). Thus, via (∃) we conclude that

Hα̂
ψΩ(α̂)

ψΩ(α̂)
Γ .

The cases were the last inference is an instance of (b∃), (pb∃), (∈), (⊆),
or (∨) are dealt with in a similar manner.

Case 3: Suppose ∃z Az ∈ Γ and Hη
α0

Ω+1
Γ, A with α0 < α. This means

that the last inference was (ΣP -Ref). The induction hypothesis yields

Hα̂0

ψΩ(α̂0)

ψΩ(α̂0)
Γ, A and therefore, as A is a ΣP -formula, we get

Hα̂0

ψΩ(α̂0)

ψΩ(α̂0)
Γ, AVψΩ(α̂0)

by Lemma 7.2. Since ψΩ(α̂0) ∈ Hα̂ and ψΩ(α̂0) < ψΩ(α̂), an inference (∃)
yields Hα̂

ψΩ(α̂)

ψΩ(α̂)
Γ, ∃z Az , i.e. Hα̂

ψΩ(α̂)

ψΩ(α̂)
Γ .

Case 4: Suppose the last inference was (Cut). Then

Hη
α0

Ω+1
Γ, A and Hη

α0

Ω+1
Γ,¬A ,

where α0 < α and A is a formula with rk(A) ≤ Ω.
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Case 4.1: Suppose that rk(A) < Ω. This implies

rk(A) ∈ CΩ(η + 1, ψΩ(η + 1))

and hence rk(A) < ψΩ(η + 1) < ψΩ(α̂). Inductively we have

Hα̂0

ψΩ(α̂0)

ψΩ(α̂0)
Γ, A and Hα̂0

ψΩ(α̂0)

ψΩ(α̂0)
Γ,¬A .

Thus Hα̂
ψΩ(α̂)

ψΩ(α̂)
Γ by means of (Cut).

Case 4.2: Suppose that rk(A) = Ω. Then A or ¬A will be of the form
∃z F (z) with F (V0) being ∆P

0 . We may assume that the former is the case.

Then the induction hypothesis applied toHη
α0

Ω+1
Γ, A yieldsHα̂0

ψΩ(α̂0)

ψΩ(α̂0)
Γ, A .

Since ψΩ(α̂0) ∈ Hα̂0(∅), we can apply the Boundedness Lemma 7.2, obtain-
ing

Hα̂0

ψΩ(α̂0)

ψΩ(α̂0)
Γ, AVψΩ(α̂0) . (21)

By applying inversion (Lemma 5.10(iii)) to Hα̂0

α0

Ω+1
Γ,¬A we also get

Hα̂0

α0

Ω+1
Γ,¬AVψΩ(α̂0) . (22)

Observing that Γ,¬AVψΩ(α̂0) is a set of ΣP -formulae, we can apply the in-
duction hypothesis to (22), yielding

Hα1

ψΩ(α1)

ψΩ(α1)
Γ,¬AVψΩ(α̂0) , (23)

where α1 = α̂0 +ωΩ+α0 = η+ωΩ+α0 +ωΩ+α0 < η+ωΩ+α = α̂. Moreover, we
have ψΩ(α1) < ψΩ(α̂). Therefore (Cut) applied to (21) and (23) furnishes

Hα̂
ψΩ(α̂)

ψΩ(α̂)
Γ . ut

Note that the Collapsing Theorem removes all instances of (ΣP -Ref).
Also note that we cannot eliminate cuts with ∆P

0 -formulae since we don’t
have predicative cut elimination [8, Theorem 3.16] as in the case KP.

Corollary 7.7. Let A be a ΣP-sentence of KP(P). Suppose that KP(P) `
A. Then there exists an operator H and an ordinal ρ < ψΩ(εΩ+1) such that

H ρ

ρ A .
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Proof : Let H0 be defined as in Definition 7.3. By Theorem 6.9 we have

H0
ωΩ+m

Ω+m+1
A

for some 0 < m < ω. Applying ordinary cut elimination, Theorem 7.1, we
get

H0
ωm(ωΩ+m)

Ω+1
A .

Finally, using the Collapsing Theorem 7.6 we arrive at

Hωm+1(ωΩ+m)
ρ

ρ A

with ρ := ψΩ(ωm+1(ωΩ+m)). ut

8. Soundness

For the main Theorem of this paper, we want to show that derivability
in RSPΩ entails truth. Since RSPΩ -formulae contain variables we need the
notion of assignment. Let V AR be the set of free variables of RSPΩ . A
variable assignment ` is a function

` : V AR −→ VψΩ(εΩ+1)

satisfying `(aα) ∈ Vα+1, where as per usual Vα denotes the αth level of the
von Neumann hierarchy.

` can be canonically lifted to all RSPΩ -terms as follows:

`(Vα) = Vα

`({x ∈ Vα | F (x, s1, . . . , sn)}) = {x ∈ Vα | F (x, `(s1), . . . , `(sn))} .

Note that `(s) ∈ VψΩ(εΩ+1) holds for all RSPΩ -terms s. Moreover, we have
`(s) ∈ V| s |+1.

Theorem 8.1 (Soundness). Let H be an operator with H(∅) ⊆ CΩ(εΩ+1, 0)
and α, ρ < ψΩ(εΩ+1). Let Γ(s1, . . . , sn) be a sequent consisting only of ΣP-
formulae. Suppose

H α

ρ Γ(s1, . . . , sn) .

Then, for all variable assignments `,

VψΩ(εΩ+1) |= Γ(`(s1), . . . , `(sn)) ,

where the latter, of course, means that VψΩ(εΩ+1) is a model of the disjunction
of the formulae in Γ(s1, . . . , sn).
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Proof : The proof proceeds by induction on α. Note that, owing to
α, ρ < Ω, the proof tree pertaining to H α

ρ Γ(s1, . . . , sn) neither contains
any instances of (ΣP -Ref) nor of (∀)∞, and that all cuts are performed
with ∆P

0 -formulae. The proof is straightforward as all the axioms of RSPΩ
are true under the interpretation and all other rules are truth preserving
with respect to this interpretation. Observe that we make essential use of
the free variables when showing the soundness of (b∀)∞, (pb∀)∞, ( 6∈)∞ and
( 6⊆)∞. We treat (pb∀)∞ as an example. So assume (∀x ⊆ si)F (x,~s ) ∈ Γ(~s )
and

H[r] αr
ρ Γ(s1, . . . , sn), r ⊆ si → F (r, ~s )

holds for all terms r with | r | ≤ | si | for some αr < α. In particular we

have H[aβ]
α′

ρ Γ(s1, . . . , sn), aβ ⊆ si → F (aβ, ~s ) , where β = | si | and aβ is a
free variable not occurring in Γ(s1, . . . , sn) and α′ = αaβ . By the induction
hypothesis we have

VψΩ(εΩ+1) |= Γ(`(s1), . . . , `(sn)), `′(aβ) ⊆ `(si)→ F (`′(aβ), `(s1), . . . , `(sn) )

where `′ is an arbitrary variable assignment. This entails that either

VψΩ(εΩ+1) |= Γ(`(s1), . . . , `(sn))

or
VψΩ(εΩ+1) |= `′(aβ) ⊆ `(si)→ F (`′(aβ), `(s1), . . . , `(sn) )

for all assignments `′. In the former case we have found what we want and
in the latter case we arrive at VψΩ(εΩ+1) |= (∀x ⊆ `(si))F (x, `(s1), . . . , `(sn) )
and therefore also have VψΩ(εΩ+1) |= Γ(`(s1), . . . , `(sn)). ut

Combining Theorem 8.1 and Corollary 7.7 we have the following:

Theorem 8.2. If A is a ΣP-sentence and

KP(P) ` A

then
VψΩ(εΩ+1) |= A.

The bound of this Corollary is actually sharp, that is, ψΩ(εΩ+1) is the
first ordinal with that property. This follows immediately from [22, Theorem
4.9].
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Corollary 8.3. Assume AC in the background theory. If A is a ΣP-
sentence and

KP(P) + AC ` A

then VψΩ(εΩ+1) |= A.

Proof : This follows from Theorem 8.2 since the axiom of choice, AC,
can be formulated as a ΠP

1 -sentence. ut

The previous results can be extended to ΠP
2 sentences, basically by the

same proof as for [22, Theorem 2.1].

Theorem 8.4. Let A be a ΠP
2 -sentence.

(i) If KP(P) ` A then VψΩ(εΩ+1) |= A.

(ii) If KP(P) + AC ` A then VψΩ(εΩ+1) |= A.

Proof : (i): Assume KP(P) ` ∀u∃wH(u,w) with H(u,w) being ∆P
0 .

Let σ := ψΩ(εΩ+1). Let b ∈ Vσ. We have to verify that Vσ |= ∃wH(b, w). σ
is a limit, so there is ξ < σ such that b ∈ Vξ. Since Vξ does not satisfy all
ΣP -sentences provable in KP(P), we have KP(P) ` B and Vξ |= ¬B for
some ΣP -sentence B. Since ΣP -reflection is provable in KP(P), we also get
KP(P) ` ∃α∃x(x = Vα ∧Bx). Then, using ∆P

0 –Collection, we obtain

KP(P) ` ∃z∃α∃x[x = Vα ∧Bx ∧ (∀u∈x)(∃w∈z)H(u,w)] .

Since this formula is equivalent to a ΣP–formula in KP(P), we get

Vσ |= ∃α∃x[x = Vα ∧Bx ∧ (∀u∈x)∃wH(u,w)]

As the formula “x = Vα” has the same meaning in Vσ as it has in V , there
exists α < σ such that Vα |= B and (∀u ∈ Vα)(∃w ∈ Vσ)H(u,w). By the
choice of B, this implies ξ < α, hence b ∈ Vα, thus Vσ |= ∃wH(b, w).

(ii) follows from (i) since AC can be expressed as a ΠP
1 statement. ut
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