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Abstract:  Recent advances in laser and electro-optical technologies have made the

previously under-utilized terahertz frequency band of the electromagnetic spec-

trum accessible for practical imaging.  Applications are emerging, notably in the

biomedical domain. In this chapter the technique of terahertz pulsed imaging is

introduced in some detail. The need for special computer vision methods, which

arises from the use of pulses of radiation and the acquisition of a time series at

each pixel, is described.  The nature of the data is a challenge since we are inter-

ested not only in the frequency composition of the pulses, but also how these dif-

fer for different parts of the pulse. Conventional and short-time Fourier transforms

and wavelets were used in preliminary experiments on the analysis of terahertz

pulsed imaging data.  Measurements of refractive index and absorption coefficient

were compared, wavelet compression assessed and image classification by multi-

dimensional clustering techniques demonstrated.  It is shown that the time-

frequency methods perform as well as conventional analysis for determining mate-

rial properties.  Wavelet compression gave results that were robust through com-

pressions that used only 20% of the wavelet coefficients.  It is concluded that the

time-frequency methods hold great promise for optimizing the extraction of the

spectroscopic information contained in each terahertz pulse, for the analysis of

more complex signals comprising multiple pulses or from recently introduced ac-

quisition techniques.

1.  Introduction

The terahertz (110 GHz to 10 THz) band of the electromagnetic spectrum, be-

tween microwaves and the infrared, has until recently been unexplored as a sig-

nificant imaging tool.  Recent advances in laser and electro-optical technologies

now make the band accessible for practical use and applications, notably in the

medical domain, are emerging.   Previously, terahertz radiation was generated ei-

ther by using thermal sources that produced weak and incoherent radiation, as

conventionally used in far infrared Fourier Transform Spectroscopy, or by highly
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complex and bulky equipment such as free electron lasers or optically pumped gas

lasers [Allen et al. 1995, Jaroszynski et al. 2000].  Similarly, incoherent detection

methods were used, which were able to record only the intensity of the terahertz

electric field.  The most sensitive detectors of this type were liquid helium cooled

bolometers, which give a relatively noisy signal and have low sensitivity.  The key

advances that have made terahertz imaging a practical proposition have been in

the fields of ultrashort pulsed lasers, non-linear optics and crystal growth tech-

niques [Grischkowsky and Mittleman 2003].  These have resulted in sources of

bright, coherent, broadband terahertz pulses and enabled coherent room tempera-

ture detection [Auston and Nuss 1988]. The advantage of coherent detection

methods is that it is possible to record not only the intensity, but also a time re-

solved amplitude of the electric field: a time series.  In turn this leads to the possi-

bility of obtaining a spectrum by Fourier transformation of the time domain signal,

and opens up a wealth of spectroscopic analytic techniques, including those that

rely on measuring changes in the phase of the measured signal.

In parallel with the development of pulsed techniques, work has been under-

taken in the development of continuous wave terahertz imaging [Kleine-Ostmann

et al. 2001, Siebert et al. 2002], which allows precise tuning to a particular fre-

quency.  As monochromatic radiation is used the data acquired are simpler than in

the pulsed case, and we shall not be considering these systems and the corre-

sponding data further in this chapter.  Advances have also led to the design of

compact free electron laser systems [Gallerano et al. 1999].

Terahertz pulsed imaging is a development of terahertz time domain  spectros-

copy   [Grischkowsky et al. 1990,  van Exter and Grischkowsky 1990, Kindt and

Schmuttenmaer 1996].  These workers have had success in measuring, in the tera-

hertz band, the dielectric and optical properties of a range of materials including

water, polar and non-polar liquids, gases, semiconductors and dielectrics.   Tera-

hertz pulsed imaging involves projecting broadband pulses at a sample and either

detecting them after transmission through the sample (transmission based imag-

ing) or detecting their reflections (reflection based imaging). In the extension to

imaging, the spectroscopic response of a sample is mapped by recording the

transmitted or reflected broadband terahertz pulse at a series of contiguous pixel

locations [Hu and Nuss 1995, Wu et al. 1996].  The simplest images are generated

by acquiring data at only one time point during the pulse, and plotting the ampli-

tude of the signal at that time.  Potentially more useful images can be generated by

calculating parameters associated with the full time series at each pixel, and dis-

playing those values using color look up tables [Herrmann et al. 2000].  Selected

parametric terahertz pulsed images of a wax embedded melanoma section of

thickness 1 mm, which has been prepared with the standard techniques used in

histopathology, are shown in Figure 1.  The melanoma is outlined in the photo-

graph in Figure 1(a).  The terahertz imaged section was 7 mm by 7 mm corre-

sponding with the lower right quadrant of the photograph.  The numerical values

associated with the color scale are different for each of (b), (c) and (d).
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(a) (b) (c) (d)

Fig. 1.  (a) Photograph of a wax embedded histo-pathological melanoma section.  (b) Pulse

amplitude relative to reference pulse amplitude, in time domain.  (c) Time delay between

transmitted pulse peak and peak of reference. (d) Transmittance (ratio of transmitted and

incident intensities after Fourier transformation of pulses) at 2 THz.

The images shown in Figure 1 were acquired using the technique as it was in-

troduced in 1995.  Since that time, workers have introduced alternative acquisi-

tions designed to improve one or more aspects of the measurement.  Many of

these are based on adaptation of mature algorithms from other fields.  Dark-field

imaging [Loeffler et al.  2001] was introduced to generate images where the image

contrast arises from the differential scattering or diffraction of radiation.  An alter-

native approach to diffraction imaging has been developed [Ruffin et al. 2002],

with the emphasis on solution of the inverse problem to predict the aperture shape

responsible for a measured diffraction field.   Extraction of information about the

location of buried structures was first obtained in 1997 [Mittleman et al. 1997],

using time-of-flight reflection measurements analogous to B-mode ultrasound.  In

addition to generation of slice images in a plane perpendicular to the object sur-

face, knowledge of depth of objects of interest allow spectroscopic measurement

to be made only from the relevant location or the reconstruction of a slice parallel

to the surface.  The technique is most appropriate for objects where both negligi-

ble dispersion and absorption can be assumed.  This assumption is not applicable

to biomedical subjects, and led to the use of techniques from two related fields.

Retaining a reflection geometry, techniques from geophysics have been applied

leading to estimates of thickness and refractive index [Dorney et al. 2002].  In

contrast, by using a transmission geometry, the filtered back projection methods

that underpin medical imaging techniques such as x-ray computed tomography

have been applied to parametric projection images and the reconstruction of strong

interfaces successfully demonstrated [Ferguson et al. 2002b].

In spite of the increasing complexity of data acquisition, all the techniques re-

tain a feature in common that sets them apart from other imaging methods.  The

data acquired consist of a time series rather than a single value, and new image

analysis techniques are needed to ensure that all the information present is used.

In our own area of interest, because the depth of penetration in human tissue is of

the order of millimeters [Berry et al. 2003b] it is likely that the first practical hu-

man in vivo imaging will involve data acquired in reflection, with transmission

techniques being reserved for imaging of samples in vitro.  Whilst in the latter

case it may be possible to simplify the geometry by sample preparation, in the

former, unknown and complex tissue arrangements are expected.

There has been only limited work on applying computer vision techniques to

terahertz images.  Some [Herrmann et al. 2000] have suggested using specific
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"display modes" for certain applications, for example ensuring that parameters are

calculated from the part of the spectrum corresponding with absorption lines of

particular molecules, and the range of parameters available for display was illus-

trated by others [Loeffler et al. 2002].  The first application of multidimensional

classification techniques to terahertz data has also been described [Ferguson et al.

2002a].  Mittleman et al. [Mittleman et al. 1996] introduced the idea of using

wavelet-based techniques, and this idea was taken up by others [Mickan et al.

2000,  Ferguson and Abbott 2001] for pulse de-noising.   We return to the topic of

computer vision in terahertz imaging in section 1.3, and introduce our own work

in this field.

1.1 Equipment for terahertz pulsed imaging

A schematic layout of a transmission terahertz pulsed imaging system is shown

in Figure 2.  The technique is based on the pump and probe technique of optical

spectroscopy.  An ultra-fast infrared laser beam, giving femtosecond pulses, is

split in two.  One part is used as the pump beam to generate picosecond terahertz

pulses, whilst the other forms part of the coherent detection system and is used as

a probe beam to detect  the amplitude of the terahertz electric field after it has in-

teracted with the sample or subject.

Fig. 2. Schematic layout of a transmission terahertz pulsed imaging system

There are two commonly used techniques for generating the pulses of terahertz

radiation using the pump beam.  In one, a voltage-biased photoconductive antenna

[Auston et al. 1984] is illuminated with pulses from the ultra-fast infrared laser.

Alternatively, the technique of optical rectification or optical mixing, may be used

to yield pulses containing frequencies up to 70 THz, which cross the border be-

tween the terahertz band and the far infrared.  The infrared pulses are used to illu-
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minate a crystal with high non-linear susceptibility [Auston and Nuss 1988, Zhang

et al. 1992].   The resulting terahertz beam is directed onto the sample or subject

using parabolic mirrors. The transmitted terahertz pulse profile is measured at a

discrete number of time points by scanning using an optical delay stage.  The spa-

tial scanning of the object for image formation may most simply be performed

using raster scanning of either the terahertz beam or of the sample itself, but this is

time consuming.  Alternative, faster, schemes are under development.  A promis-

ing method involves the illumination by the pump beam of a larger area repre-

senting many pixels; a multi-element array detector such as a charge coupled de-

vice is used for detection  [Wu et al. 1996, Shan et al. 2000, Ruffin et al. 2001].

More complete descriptions of terahertz imaging systems are available [Mittleman

2003].

Many of the systems in use for research are laboratory-based and occupy an

area of up to 3 m by 2 m, but more compact and portable systems are under devel-

opment.  An example is shown in Figure 3 (TeraView Ltd, Cambridge, UK) which

is a commercially available reflection system for use in dermatology.  The box

shown is 100 cm x 60 cm x 100 cm in size.  The subject of interest is placed on a

window on the top of the instrument, or examined using the probe attachment.

Fig. 3.  The TPI Scan(TM): A complete terahertz imaging system including near infrared

laser and terahertz imaging optics for imaging biological tissue; courtesy of TeraView Ltd.

In Figure 4, a commercially available system (Picometrix, Inc.  Ann Arbor,

Michigan U.S.A.) is shown, which can be used in both reflection and transmission

modes [Zimdars 2001, Dorney 2002].

A further system is under development by the Zomega Technology Corpora-

tion.



6

Fig. 4. The Picometrix T-Ray(TM) 2000, the First Commercial Time Domain Terahertz

Spectroscopy and Imaging System; courtesy of Picometrix.

1.2  Potential applications

In addition to the possibility of characterizing materials by spectroscopy, the

penetration characteristics of terahertz radiation have also guided researchers to-

wards potential applications.  For example, polar liquids absorb strongly in the

terahertz band; an example of such a liquid is water.  Metals are opaque to tera-

hertz radiation, whilst non-metals such as plastics and paper products are transpar-

ent, as are non-polar substances.  Dielectrics have characteristic absorption fea-

tures peculiar to each material. The exploitation of these penetration

characteristics is discussed in more detail in the following sections.

1.2.1 Biomedical imaging applications

Our particular interest is in biomedical applications for terahertz imaging.  The

perceived advantages of using the terahertz band for biomedical applications in-

clude its sensitivity to the presence of water which may be of use for detecting or

characterizing disease state, the lack of a hazard from ionization, relatively less

Rayleigh scattering than for infrared and visible radiation, and the possibility of

characteristic "signatures" from different tissues in health and in disease [Arnone

et al. 1999, Mittleman et al. 1999, Smye et al. 2001]. These characteristic signals

may result from water content (section 1.2.1.1) or other chemical features related

to the composition or functional properties of the tissues.
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1.2.1.1 Sensitivity to water

An excellent example of utilization of the sensitivity of terahertz frequency ra-

diation to the presence of water molecules is a study concerning the non-invasive

continuous measurement of leaf water content [Mittleman et al. 1996, Hadjiloucas

et al. 1999].  The technique may find further applications in agriculture and manu-

facturing [Boulay et al. 1984], for assessing the moisturizing effects of cosmetics,

and characterizing the flow of water through engineered materials or tissues.

There is potential for distinguishing healthy and diseased tissue by its water con-

tent, where it may also be possible to differentiate bound and free water molecules

[Cole, 2001].   We return to this last point in section 1.2.1.5.

The drawback of the high attenuation of terahertz frequency radiation by water

is the concomitant limited depth of penetration (up to a few millimeters).  How-

ever, even without special devices to deliver and detect the radiation inside the

body, there is still a number of promising applications that do not require the ra-

diation to travel far compared with the aforementioned depth of penetration.

There are hopes that terahertz frequency imaging will be of value for in vivo char-

acterization of dermatological conditions, or the early diagnosis of tooth decay.

1.2.1.2  Safety issues

In common with many of the more recent introductions for medical imaging

(ultrasound, magnetic resonance imaging, infrared techniques) terahertz frequency

radiation is free from the ionization hazard associated with x-rays and nuclear

medicine techniques.  There are published guidelines regarding safe exposures, for

example [American National Standards Institute 2000].  These were based on

measurements made using wavelengths under 10.6 µm and pulse durations over

1.4 ns [Sliney and Wolbarsht 1980] and it is believed that under those conditions

the damage mechanism is thermal.  However there is also the possibility of reso-

nant absorption mechanisms and thermomechanical and thermochemical effects

for pulses of the type used in terahertz pulsed imaging, and work is underway to

investigate this [Clothier and Bourne 2003, Scarfi et al. 2003].  We have estimated

that skin exposure for current pulsed systems using electronic and optical genera-

tion methods, where the average power of each pulse is under a milliwatt, will

give exposures that are well within the limits set in the guidelines [Berry et al.

2003a].  It is likely that the more powerful systems, such as those based on free

electron lasers, may carry with them a hazard associated with heating.

1.2.1.3 Rayleigh scattering

As the amount of Rayleigh scattering decreases with the fourth power of the

wavelength, it is expected that terhaertz frequency radiation should be scattered

less than visible and near infrared frequencies, which would be advantageous for

imaging.  This has been borne out by experiment.  In a direct comparison of im-

aging using terahertz and near-infrared pulses, higher image contrast was obtained

using the terahertz pulse although the near-infrared pulse was of higher power

[Han et al. 2001].  The difference could be explained by wavelength-dependent

scattering.
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1.2.1.4 Characteristic tissue �signatures�

In Fourier Transform Infra Red (FTIR) spectroscopy the word �signature� de-

scribes the presence of a characteristic absorption peak at a particular wavelength,

which indicates the presence of a specific molecular bond.  In some in vitro appli-

cations for terahertz pulsed imaging, particularly of pure samples, signatures of

this kind may be present.  For the reasons outlined below we do not expect to see a

single characteristic spectral absorption feature associated with each tissue in tera-

hertz pulsed imaging in vivo, or of tissue samples in vitro.  Instead, we hypothe-

size that spectra from different tissues will have different shapes (or signatures),

perhaps best described by a combination of absorption characteristics.  The reason

we do not expect to see sharp absorption peaks in spectra from tissues is because

the samples will contain a complex mixture of several molecules.  For each mole-

cule, there may be several chemical environments, which will lead to smoothing

of the spectral features.  Finally, the presence of water, with its strong absorption,

will potentially mask the other molecular absorptions.

1.2.1.5 Proposed biomedical applications

Many applications have been proposed, ranging from studies at the genetic

level, for example investigating the hybridization state of DNA [Bolivar et al.

2002] to in vivo measurements of the thickness of skin [Cole et al. 2001].  Two

Europe-wide projects are leading work in this field: Terahertz Bridge

(http://www.frascati.enea.it/THz-BRIDGE/) which is following a streamline of in-

creasing complexity from bio-molecules to cell membranes, cell nuclei and tis-

sues, and Teravision (http://www.teravision.org) concentrating on imaging of in-

tact tissue in vitro and in vivo.

Imaging, and computer vision, is most likely to be used for in vivo applications

where knowledge of the spatial distribution of the chemically specific spectro-

scopic measurements is of value.  A number of groups have demonstrated image

contrast between tissues, though using, in general, very small numbers of samples.

These demonstrations include data from pork and chicken [Mittleman et al. 1999,

Arnone et al. 1999, Bezant 2000, Han et al. 2000, Loeffler et al. 2001], human

tooth enamel and dentine [Ciesla et al. 2000], human skin in vivo [Cole et al.

2001], Spanish Serrano ham [Ferguson and Abbott 2001], histopathologically pre-

pared human liver [Knobloch et al. 2002] and canine tumour [Loeffler et al. 2001].

A study on healthy tissue that includes repeated measurements from dehydrated

tooth samples from seven individuals and freshly excised tissue samples from two

donors has been reported [Berry et al. 2003b]. The first study to include more

samples in both health and disease, and thus having a higher power for hypothesis

testing, is that of [Woodward et al. 2002].  They imaged 15 samples of human

healthy tissue and basal cell carcinoma.

These early results have led to optimism that early dental caries and skin can-

cers may be detectable using terahertz pulsed imaging.  Although there are alter-

native modalities that can be applied to each application, none has the necessary

high sensitivity and specificity [Fitzgerald et al. 2002].  Other suggestions for

terahertz pulsed imaging include in vivo imaging of breast tumours, based on

promising results obtained using microwaves [Hagness et al. 1998] and in vitro re-
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sults from terahertz pulsed imaging [Mickan et al. 2000].  Wound healing is an

area attracting much interest, as terahertz imaging offers the potential of a non-

contact measurement technique that could be used through a dry dressing.

1.2.2 Non-biomedical imaging applications

1.2.2.1 Security and military applications

These applications take advantages of the chemical specificity of the technique,

and terahertz imaging has been advocated for remote scanning for biological

agents such as anthrax or explosives [Wang et al. 2002].  Ranging studies to

simulate radar of larger objects have been performed using terahertz radiation and

scale models [McClatchey et al. 2001], and non-imaging versions of the technol-

ogy are expected to have applications in communications.

1.2.2.2  Quality control

Most packaging materials are transparent to terahertz radiation, so terahertz ra-

diation has been proposed as a non-ionizing substitute for quality control using x-

rays, in several industries including the food and textile industries. The connec-

tions in packaged integrated circuits may be assessed [Mittleman et al. 1996]

1.2.2.3  Characterization of semiconductors, gas identification

Semiconductor characterization has been a particularly fertile area because di-

electrics have a characteristic absorption dependent on the polarity and optical

phonon resonances peculiar to that material.    Gas identification at terahertz fre-

quencies [Jacobsen et al. 1996] is also a good application because the emission

and absorption lines of rotational and vibrational excitations of lighter molecules

are strong in that part of the spectrum.  Spectral lines are generally sharper in

gaseous than in solid or liquid states, and this makes possible the precise localiza-

tion of gas emission or the characterization of combustion flames.

1.2.2.4 Research applications

The non-destructive and non-contact nature of the radiation has attracted the

interest of those wishing to investigate valuable artifacts.  There are potential uses

for studying fossils in paleontology, visualizing through the surface layers of art

works and other antiquities, and determining the content of books without the

need to touch or disturb delicate pages.

Reviews that describe potential applications, with an emphasis on the biomedi-

cal, include those by Mittleman et al. [Mittleman et al. 1996] and Koch [Koch

2003].  Siegel [Siegel 2002] gives a complete historical overview, including the

passive imaging methods that are used for applications in astronomy and Anderton

et al.[Anderton et al. 1997] consider military applications.
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1.3 Terahertz pulsed imaging and computer vision

(a)

(b) (c)

Fig. 5.  Three terahertz pulses.  (a) A reference pulse. (b) The pulse after transmission

through 1 mm of nylon. (c) The pulse after transmission though 1 mm of cortical bone.

(a)

(b) (c)

Fig. 6.   Frequency domain representation of three terahertz pulses.  (a) A reference pulse.

(b) The pulse after transmission through 1 mm of nylon. (c) The pulse after transmission

though 1 mm of cortical bone.

Terahertz pulsed imaging presents challenges to analysis because in the ac-

quired data set, each pixel contains a time series representing the measured tera-
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hertz frequency pulse.  We have investigated some novel data processing ap-

proaches.

1.3.1 Time-frequency analysis

The aim in terahertz pulsed imaging is to extract useful comparisons between a

well-understood reference pulse, and those detected after transmission or reflec-

tion.  Figure 5 shows three pulses, a reference pulse and two different transmission

responses, one from nylon and one from cortical bone.  Figure 6 shows these

pulses after Fourier transformation.  Notice that the spectra are very different, as

are the pulses; they capture some of the information about the pulses that is obvi-

ous. For example the high frequency (noise) activity in the reference, and the re-

duced activity, or �power� in the transmitted pulses.  However features which, to

the human eye, are dominant, such as the pulse delay, cannot be seen in this repre-

sentation.

In order to describe the different overall shapes and characteristic absorption

features that characterize the different materials, analysis of waveforms is usually

based on Fourier decomposition [Papoulis 1962].  Most of the applications listed

in section 1.2 have used analyses of this type.  For example, Kindt and Schmut-

tenmaer [Kindt and Schmuttenmaer 1996] present a series of plots showing the re-

fractive index and linear absorption coefficient of polar liquids plotted against fre-

quency.  On its own, however, Fourier transformation is somewhat crude since the

measure is global to the signal.  We seek mechanisms for deriving more local,

time specific, features.   This is of particular importance for data comprising a se-

ries of pulses, at different times, representing interactions with different bounda-

ries.  The work in this chapter uses transmission data, from a single layer of mate-

rial.   Figure 5 illustrates that the reference pulse peak suffers a delay (along the

time axis) and a flattening, or spreading, that are characteristic of the particular

part of the sample under inspection.  Ordinary Fourier transforms do not capture

the time-dependent qualities of the information.  There are also noticeable effects

in the remainder of the signal that can be perceived as changes to the frequency

make-up, which are dependent on the temporal instant.  For example, the broad-

ening of the main pulse suggests that the higher frequencies are no longer present,

due to absorption, reflection or scattering, as they are responsible for the sharpness

of the peak.  It is hard to say however if the higher frequencies have been removed

from the pulse uniformly over time.

An analytic technique was required that would perform the frequency space de-

composition that Fourier transforms provide, but in a time dependent manner. We

have applied two approaches, the short-time Fourier transform and wavelets.  The

theoretical bases for these approaches are described in sections 2.1 and 2.2.

Wavelets were first used for terahertz imaging by Mittleman and colleagues [Mit-

tleman et al. 1996], and have been used in other areas of biomedical signal proc-

essing [Akay 1998, Xu et al. 1995].  The techniques can generically be described

as time-frequency techniques.
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We have investigated the use of time-frequency techniques in two ways.  The

first of these would, in a generalized framework for computer vision [Sonka et al.

1999], be described as a segmentation task.  Previous time-frequency segmenta-

tion work in biomedicine has been performed on breast RF data and on neuro-

physiological signals [Georgiou et al. 2001, Sun and Sclabassi 1998].  For the

terahertz data, both conventional and time-frequency methods were used to deter-

mine the refractive index and absorption coefficient of samples of nylon and resin,

and the results compared.  The second application is an example of a pre-

processing or signal processing step.  Time-frequency techniques have been ap-

plied for noise reduction of the acquired time series, following work on related

modalities [Ching et al. 1999, Coifman and Wickerhauser 1998, Sardy et al. 2001]

and for compression.  Compression may be required because very large data sets

can result from the need for spectroscopic detail at high spatial resolution.  The ef-

fect of compression was determined by calculating the refractive index and ab-

sorption coefficient of nylon with and without compression.  The refractive index

and absorption coefficient of a material are key factors for terahertz pulsed imag-

ing.  They determine the amplitude and timing of a transmitted, reflected or

propagated pulse.  Most parameters used for parametric images are strongly re-

lated to one or other property.

1.3.2 Clustering

In general, terahertz pulsed imaging data are not amenable or accessible to the

customary image processing and computer vision approaches unless these 3D data

are first reduced, by the production of parametric images, to the two or three spa-

tial dimensions used by such algorithms.  However, workers in FTIR spectroscopy

have reported successes with the analysis of complex samples by applying classi-

fication techniques to the acquired spectra [Lasch and Naumann 1998].  This ap-

pears a promising approach for the terahertz frequency spectra we expect from tis-

sue.  They used prior knowledge of cellular structure in normal tissue and in the

presence of carcinoma.  The latter state is characterized by absence of particular

cells, e.g. absence of goblet and mucin from colorectal adenocarcinomas, which

has an effect on the shape of the spectrum.  Classification success using training

data, but without prior knowledge of biology, has recently been reported for tera-

hertz imaging data [Ferguson et al. 2002a].

Clustering methods fall into the category of segmentation in computer vision

[Sonka et al. 1999].  Here, image classification using clustering techniques (both

for the full time series and for parameters derived from it) was applied to several

terahertz images.  These included a synthetic image with a known true classifica-

tion, an acquired image where a classification was available from another imaging

modality, and acquired images without knowledge of the true classification.
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1.3.3 High level processes

Higher level processes used in computer vision, such as shape representation

and shape extraction via motion, texture, etc. will be relevant for the analysis of

parametric images or for classified images.  Such analysis is not presented here.

The ultimate aim of any computer vision analysis route is to extract "understand-

ing" of some description from the data being processed. The understanding in

biomedical terahertz imaging will be highly specific.  Examples include the identi-

fication of regions of low mineralization representing early tooth decay, and asso-

ciating different regions of an image with states of health and disease.

Thus the purpose of this work was to apply data processing methods designed

to suit the nature of terahertz pulsed imaging data:

• to compare time-frequency techniques with conventional Fourier methods

for extracting optical properties of materials

• to determine the maximum degree of wavelet compression that would lead

to no significant alteration in measured optical properties and

• to demonstrate clustering by multi-dimensional techniques.

In the following section we present a brief theoretical overview to support the

methods that are described in section 3.

2 Theory

2.1 Short-time Fourier transfom (STFT)

The Fourier series representation of a real valued periodic function f(t), with pe-

riod T (so f(t+T)=f(t)) has Fourier series representation

�
∞

∞−

= tik
keatf ω)(

where ω=2π /T is the fundamental frequency and the Fourier coefficients are

given by

dtetf
T
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�

+ −= ω)(
1

(1)

This representation provides a decomposition of the function into frequency

harmonics, whose contribution is given by the coefficients ak.  This decomposition

is of great use in the analysis of functions since it betrays many useful properties �

for example, very sharp changes contribute very high harmonic information, while

slow variation is associated with low harmonics.  Similarly, noise effects are often

characterized by high frequency components.
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More generally, for a non-periodic function, the Fourier transform of f(t) is

given by

�
∞
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−= dtetff tiωω )()(� (2)

This transform may be inverted, where f� and f are a Fourier transform pair, by
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However, the Fourier transform, and Fourier methods generally, are global, in

the sense that they operate on the whole period of a function.  In Equation (1) we

need full knowledge of f(t) in order to extract the coefficients, and all values of f(t)

contribute to them.  Any perturbation of f(t) at any point will affect all the ak.  This

leaves it of limited value when the effects under scrutiny are local, in the sense

that there are time dependencies in the frequency content of the signal.  This is

very much the case in the study of terahertz data � for example, in Figure 5(b) and

5(c), it is clear that the major peak of the pulse has been delayed, but by different

lengths of time.  The lack of information on time delays is evident in Figure 6.

While it is possible to use the Fourier Transform to estimate time delays by deter-

mining the phase difference between two pulses, the estimates tend to be inaccu-

rate.  The transform is a periodic function with 2π phase increments concealed by

the periodicity and inaccuracies arise from the limitations of the phase unwrapping

algorithm used to estimate time delay.   We seek, therefore, a combination of time

and frequency analyses to permit the extraction of local effects using the power of

the Fourier approach.  This can be done by extracting windows of the original

function before performing the Fourier analysis � this is the approach of the short-

time Fourier transform.  The simplest way to extract windows from a function is

to multiply it by another function, such as a rectangular window of width 2Ĳ, de-

scribed by equations (3) and (4).

)()()( bttftfb −Φ= (3)

                      =     { [ ]
otherwise        0

,    )( ττ +−∈ bbttf
(4)

fb(t) can then be subjected to Fourier analysis in the normal manner.

The short-time Fourier transform (STFT) of the function f(t) with respect to the

window function )(tΦ calculated at the frequency ξ and the time b is then

dtebttfbfG ti

�
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−
Φ −Φ= ξξ )()(),(

Contrast this with Equation (2) � we have added a second variable b to locate

the transform in time.  This is sometimes written, using the bar notation for the

complex conjugate, as

dtttfbfG b�
∞

∞−
Φ Φ= )()(),( ,ξξ
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where

ti
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ξ
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It should be clear that the rectangular  window function (Equations (3) and (4))

is not best chosen for our purpose; the hard limiting step edges will cause any sub-

sequent Fourier transform to include high frequency components that are proper-

ties of the step rather than of the function.  For this reason it is more common to

use smooth window functions such as Gaussians.  In particular, the Gabor trans-

form uses the window function

α
α

πα
4/2

2

1
)(

t
etg =

for some α > 0.
In this work, we have used a simple Gaussian window (parameterized by its

standard deviation) in all applications of the STFT.  Applications of the STFT to

two of the pulses of Figure 5 are in Figure 7.  It can be seen that, in addition to the

reduction in power, the transform has successfully captured the delay in the in-

formation in the transmitted pulse, at each frequency.

(a) (b)

Fig. 7.  The STFT applied to (a) the pulse of Figures 6(a) and (b) the pulse of Figure 6(b).

It is important to realize that it is impossible simultaneously to obtain good time

resolution and good frequency resolution.  Imagine a box drawn on a time-

frequency graph, a narrow tall box has good time but poor frequency resolution,

while a short wide one has bad time but good frequency resolution. The uncer-

tainty principle determines the minimum area of this box, and thereby the useful-

ness of the technique. Conversely, the fact that the function is windowed permits

real-time application of the STFT (since only limited information is needed), al-

though this advantage is not relevant in this application.  Various other transforms,

which we will not consider here, exist with the aim of localizing the study of fre-

quency, in particular the Wigner Ville transform [Carmona et al. 1998].  The the-

ory of Fourier transforms and series in discrete and continuous forms is described

exhaustively elsewhere [Goswami and Chan, 1999], and their application to signal
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and image processing is similarly fully described in other texts [Sonka et al.

1999].

2.2 Wavelets

Wavelets overcome the shortcomings of the STFT by providing a basis for

function representation that varies in frequency and time (translation). Where a

number of STFT calculations would be required to include a range of window

sizes in both frequency and time, this is achieved in a single wavelet operation.

This basis is derived from a mother function ψ(t) which is dilated (scaled) and

translated to construct the family of basis functions.  We write

�
�

�
�
�

� −
=

a

bt

a
tab ψψ

1
)(,

so a has the effect of dilating, or scaling, ψ, and b translates.

These effects are illustrated in Figure 8 for a very simple mother function, the

Haar.  The scaling parameter a is clearly influencing the frequency of the function

� 1/a is a measure of frequency.

(a) (b)

(c) (d)

Fig. 8.  (a) The Haar mother function with a = 1, b= 0. (b) The Haar mother function with a

= 1, b= 1.  (c) The Haar mother function with a = 2, b = 0.  (d) The Haar mother function

with a = 2, b = 1.

Given this family of basis functions, we can now represent an arbitrary function

f(x) by correlating it with the scaled and translated versions of the mother. The

continuous wavelet transform of f(x) with respect to the mother ψ(t) is given by

�
∞

∞−
= dtttfabfW ab )()(),( ,ψψ (5)
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A wavelet transform of the terahertz pulse of Figure 5(b) is shown in Figure 9.

Fig. 9.   The Morlet wavelet transform of the terahertz pulse in Figure 5(b).  The scale axis

runs from front to back, and the time (or translation) axis from left to right.

Notice the degree of detail in Figure 9; wavelet representations can be difficult

to interpret without practice and concentration, however, as for Figure 7, it is

straightforward to observe the time delay of the high frequency component.

The wavelet transform is invertible, provided

0)0(� =ψ

where ψ�  is the Fourier transform of ψ  � Equation (2).  To recapture f, a two

dimensional integration over both parameters a and b is required;
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Here, ψC  is a constant dependent on the mother, given by
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We require this constant to be finite � this is known as the admissibility condi-

tion that restricts the class of functions that may be chosen as wavelets.  Note in

particular that of necessity 0)0(� =ψ .

The functions f we observe are of course discrete, and so require a discretized

continuous wavelet transform in the same manner as a discrete Fourier transform

is defined. In fact, the continuous transform contains a lot of redundancy; this, to-

gether with the computational load of a simple discretization, has led to the devel-

opment of very efficient sub-samplings to provide the discrete wavelet transform

(DWT).  This is normally done by taking the scale parameter a to be of the form 

2
-s
 for an integer s, and b=k2

-s
. Then, Equation (5) becomes
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If F is discretized, with a sampling rate chosen as 1 for convenience, this be-

comes

� −=−−

n

s

s

ss knnfkfW )2()(2)2,2( 2 ψψ

Note that in computing this, we only need to know the function values where

the corresponding wavelet value is non-zero.

2.3  Computer vision background

2.3.1 Wide Band Cross Ambiguity Function, WBCAF

Significant relevant theory on signal pulses was developed in the study of radar,

in which we are often interested in correlating a signal with time shifted copies of

itself.  The aim is to extract time delay and Doppler shift, thereby making good

estimates of signal delay, and implicitly distance of travel [Carmona et al. 1998].

The relevant ambiguity function of a signal is given by
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The transforms in which we are interested perform a correlation of the observed

data with individual basis functions, not with itself. The Wide Band Cross Ambi-

guity Function, WBCAF [Weiss 1994], of a function f2(t) against a reference f1(t)

is defined as
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where fq has been delayed byτ and scaled by σ.  This permits the extraction of

the appropriate τ  (time delay) for each scale σ, by locating the value of τ that pro-

vides the maximum value of correlation at that σ.

Note, however, the similarity between Equations (5) and (6).  The WBCAF re-

sembles the continuous wavelet transform, using the reference function as the

wavelet mother.  This is an expensive computation, since the reference f1 needs

repeated resampling (interpolation, filtering, sub-sampling), which can generate a

prohibitive overhead.  To overcome this, Young [Young 1993] has developed the

Wavelet-Based Wide-Band Cross Ambiguity Function
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where Wψ is the continuous wavelet transform with respect to the mother ψ.

Using an arbitrary mother permits efficient pre-computation of the wavelets for all

relevant τ and σ.
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The WB-WBCAF permits useful measurements to be made on an output pulse.

Fixing the scale at 1, determining the translation which provides the maximal re-

sponse gives a good estimate of the time delay associated with the pulse. This

measurement, which may be considered as a cross-correlation or the application of

a matched filter, provides the parameter that gives the best match with the refer-

ence.  Note that we cannot determine the time delay as easily at different scales,

since the scaling operation also causes a shift in the reference.

We can normalize the WB-WBCAF and the WB-CAF using equation (6) at

various values of sigma
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f

f (7)

 This parameter, which we shall call the WBCAF absorption, can then be taken

to be proportional to the relative transmission of the band of frequencies corre-

sponding to scale σ.  The reasoning here is that ),(
21

στfWBCAF
f

is the spectral

content of f2 with respect to f1 at σ and τ, while similarly ),(11
στ ′fWBCAFf is the

spectral content of f1. It is necessary to use different values of τ because the pulses

experience different time delays, and must first be aligned in time to ensure that

the WBCAF absorption is calculated using the same part of each pulse.  Finding

the maximum value of the WBCAF in τ achieves this.   The ratio of these two

should then give the power ratio of f1 to f2 at that σ.

2.3.2 Compression

The task of data compression has been approached via function transforms in

many ways [Sonka et al. 1999].  At simplest, the coefficients of a function's Fou-

rier transform are often negligibly small (corresponding to harmonics that scarcely

appear in the function).  One approach to compression is to derive a far more

compact representation of the transform by neglecting these coefficients. The in-

verse Fourier transform of this compressed transform will then provide a good ap-

proximation to the original function, since the information lost is insignificant.

The same approach may be taken with the wavelet transform, where a similar

observation may be made about coefficients of small magnitude. Figure 10 shows

a histogram of the frequency of occurrence of values of the wavelet coefficients

for the terahertz pulse in Figure 5(b) � it is clear that the majority of these are

relatively insignificant.    Wavelet compression could be achieved by setting the

smallest value coefficients to zero.
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Fig. 10.  The frequency of occurrence of values of the wavelet coefficients for the terahertz

pulse in Figure 5(b).

2.3.3 Clustering

Multi-dimensional data are often easily represented by clusters.  The centers

(usually centroids) of these clusters may then be used as exemplars � if the exem-

plars are indeed good examples of the data clustered around them, a highly com-

pact codebook representation of the data becomes available.  Terahertz imaging

datasets can be interpreted as large, high-dimensional vectors; at simplest, each

�pixel� (time series) can be taken as a vector of length equal to the number of time

samples it provides.  Each vector is then termed a �feature�.  Alternatively, we

might look for clustering of other features derived from the pulses, such as Fourier

or wavelet coefficients.  A clustering of these vectors might then seek out physical

similarities in the sample under inspection.

Clustering has received much attention in the literature.  The simplest approach

(and widely used) is the k-means algorithm [MacQueeen 1967], which may be

summarized as;

1. Select N, the number of clusters to be formed.

2. Choose initial cluster centers v1, v2, …, vN.
3. Determine for each data point its closest �center�.

4. Recalculate centers as centroids of allocated data points.

5. Iterate from 3 until no change.

It should be clear that this algorithm may be applied generally to any multi-

dimensional data.  It has been the subject of significant work, in particular to de-

termine favorable values for N, and the initialization v1, v2, …, vN [Kaufmann and
Rousseeuw 1990].

2.4 Transmission of terahertz radiation

In this work we have assumed the following simple model for the transmission

of the terahertz pulses.
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2.4.1 Refractive index

When considering the time delay caused by transmission through a thickness x

of material, compared with transmission through the same distance in vacuo.  Let

the velocity in vacuo be c, and in the medium v.   Then the difference in time

taken by radiation following the two paths, ∆t = (x/v -x/c). But the refractive index

n, is defined as n=c/v, so

∆t = x(n-1)/c (8)

Thus if the time delay is measured for a range of sample thickness, n can be

found from the slope of a plot of ∆t against x.  The true refractive index of a mate-
rial varies with frequency, but the single value found by this technique is a single

broadband measurement and will be peculiar to the system on which measure-

ments were made.

2.4.2 Absorption coefficient.

The absorption of a beam of radiation of incident intensity I0 , transmitted

through a thickness x is described by the Beer-Lambert law

I/I0 = exp(-µx)

or

ln (I/I0 ) = -µx

(9)

where µ is the linear absorption coefficient.

If scattering is considered to be negligible, a plot of ln (I/I0 ) against x is linear

with slope -µ., as for a given material and with the simple geometry of the samples

used here, reflection losses will be constant and do not affect the slope of the

graph.   The Beer-Lambert expression was used in the time domain to give an es-

timate of the broadband absorption coefficient.  In this work we also apply it in the

frequency domain to give the absorption coefficient as a function of frequency,

and in the STFT and WBCAF analyses.  In the latter cases the relevant linear ab-

sorption coefficient is derived by replacing I/I0 with an estimate of maximum

transmittance (over t or τ) derived from the STFT or WBCAF; in the case of the

WBCAF this is defined by equation (7).

3 Methods

3.1 Optical properties of materials

We wished to use samples whose optical properties were known not to vary

with time, and in spite of our interest in biomedical applications, this ruled out the

use of tissue samples.  The acquisition time was long enough for tissue samples to

dehydrate and change the values we were trying to measure.  So specially manu-
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factured test objects were used instead.  Two step-wedges were manufactured by

rapid prototyping [Webb 2000].  One, from nylon (Duraform polyamide, nylon

12) by the selective laser sintering process.  The other made of resin by stereoli-

thography.  The test objects had steps of known thickness ranging from 0.1 mm to

7 mm and are shown in Figure 11.

Transmission data were acquired from both step wedges, using the pulsed tera-

hertz imaging system at JW Goethe-Universitaet, Frankfurt. The time series re-

corded at each pixel comprised 128 points, separated by 0.15 ps for the nylon step

wedge and at 0.2 ps for the resin step wedge.  Parametric images representing the

step wedge data are shown in Figure 12.

Fig. 11.  Nylon (left) and resin (right) step wedges.  Each block measures approximately

4 cm x 3 cm x 1 cm.

(a) (b) (c)

Fig. 12.  Parametric terahertz pulsed images taken from the nylon step wedge data set. The

white end of the gray scale represents large values, and as in Figure 13 the thinnest step is

at the left.  (a) Pulse amplitude relative to reference pulse amplitude, in time domain. (b)

Time delay between transmitted pulse peak and peak of reference. (c) Transmittance (ratio

of transmitted and incident intensities after Fourier transformation of pulses) at 1.2 THz.

3.1.1  Refractive index, broadband and as a function of frequency

Two methods of finding the broadband refractive index were used, the conven-

tional time domain analysis and the WBCAF analysis.  STFT analysis was used to

find the variation of refractive index with frequency.  For the conventional analy-

sis, the time delay was estimated for each pixel in the time domain.  For the

wavelet-based analysis, the WBCAF was calculated at scale 1, and the time delay
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was the value of τ that maximized the correlation (equation (6)).  For the STFT

analysis, the STFT was performed using a Gaussian window of width 1.5 ps.  For

each frequency, the time delay was the time at which the value of the STFT was a

maximum.  In each case, the mean value for the time delay was found within a re-

gion of interest, approximately 40 by 40 pixels, one in each step.  Time delay was

plotted against step depth, and refractive index found using equation (8).  The

standard error of the slope was calculated.

3.1.2 Attenuation, broadband and as a function of frequency or scale

For each material, a region of interest approximately 40 by 40 pixels was de-

fined in each step of the wedge.

(i) A broadband estimate of transmittance was made, using the square of

the measured peak amplitude in the time domain I/I0.  These results

were plotted against step thickness and equation (9) used to calculate

the broadband linear absorption coefficient

(ii) Following Fourier transformation, the transmittance I(ωi)/I0(ωi) was

calculated at several values of frequency.  At each frequency, equation

(9) was used to calculate the linear absorption coefficient, and these

results were plotted against frequency.

(iii) Following short-time Fourier transformation, the maximum transmit-

tance, MAXt[I(ωi)/I0(ωi)] was calculated at several values of fre-

quency.  At each frequency, this value was substituted for I/I0 in equa-

tion (9), and was used to calculate the STFT linear absorption

coefficient.  These results were plotted against frequency.

(iv) Equation (7) was used to calculate the proposed WBCAF-absorption

at 13 values of scale.  At each scale, this value was substituted for I/I0

in equation (9), and was used to calculate the WBCAF linear absorp-

tion coefficient.  These results were plotted against scale.

In each case the standard deviation of the linear absorption coefficient was de-

termined from the plot against step thickness.  The results of the analyses were not

directly comparable because the wavelet-based technique gives results in terms of

scale rather than frequency, but it was possible to inspect the plots of absorption

parameters to gain a qualitative impression of their ability to discriminate between

materials.

3.2  Signal Compression

The conventional calculations to determine the refractive index and absorption

coefficient associated with the nylon step wedge, described in sections 3.1.1 and

3.1.2, were repeated using a range of reduced versions of the wavelet transform.

These reductions were compressions of the transform data obtained by setting to

zero the smallest (in magnitude) p% of coefficients, before performing the calcu-

lations.  This common form of compression does not, of course, result in the data

requiring (100-p)% space, since the resulting sparse arrays require indexing in-
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formation to locate the surviving coefficients.  Nevertheless, given that we ex-

perimented with values of p in excess of 50, the potential for compression of the

(real valued) data is clear.

The quality of the results generated was easy to assess in the case of the refrac-

tive index; taking the uncompressed transform data as a gold standard, a simple

numerical comparison permitted an evaluation of the result extracted from the

compressed form. The absorption coefficient measurement was generated at a

range of terahertz frequencies.  These results were compared with those from the

uncompressed data by calculating the Pearson correlation coefficient (measuring

the degree of linear relationship between data sets), the root mean square differ-

ence, and Student's paired t-test probability, which provides a confidence estimate

for a set of pairs of observations being matching pairs [Goulden 1956].

3.3 Clustering Demonstrations

3.3.1 Synthetic image of tooth slice

Our first experiment on clustering was designed to determine the importance of

initialization on the success of the classification, and to compare various choices

of feature vector.  We used a synthetic image data set because in that case the

class of each pixel is known, and this can be used to determine the success of the

classification.  A 50 by 50 pixel image of a slice of a tooth was generated.  Each

pixel was set to belong to one of three classes comprising tooth enamel, tooth

dentine and air, and these were distributed in a realistic configuration by tracing

the outlines from an image of a tooth slice.  This is illustrated in figure 13(a).  A

typical time series for each material was taken from a real data set, and noise was

modeled by adding normally distributed noise, with values selected at random

from the distribution, to each time point of the time series at each pixel.  The noise

was taken from a single Gaussian distribution; the mean of the distribution was

taken from inspection of time series from the background of real image, and the

standard deviation chosen empirically. The validity of this noise model is dis-

cussed in section 5.  In this preliminary experiment partial volume effects were not

incorporated into the model.  Three parametric images representing the synthetic

data are shown in Figure 13(b)-(d).
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(a) (b) (c) (d)

Fig. 13.  (a) Allocation of classes in the synthetic image of a tooth slice.  Black represents

enamel, gray dentine and white air.  (b)-(d) Parametric terahertz pulsed images taken from

the synthetic data set. (b) Pulse amplitude relative to reference pulse amplitude, in time

domain. (c) Time delay between transmitted pulse peak and peak of reference. (d) Trans-

mittance (ratio of transmitted and incident intensities after Fourier transformation of pulses)

at 0.85 THz.

The number of clusters was set to three, representing air, enamel and dentine,

and standard k-means clustering with random initialization was used [Hartigan

1975].  Four different feature vectors were used, for (i) - (iii) the vector dimension

was 64 or 128 depending on the number of time samples in the data

(i) The time series

(ii) Fast Fourier transform (FFT) of time series

(iii) Discrete wavelet transform (DWT) of time series

(iv) a three dimensional vector using three parameters calculated from the

time series.  These were the integral phase shift between 0.5 and

1 THz, the integral phase shift between 1 and 1.5 THz and the absorb-

ance A = -log10(I/I0) at 1 THz.  The three parameters were normalized

to be univariate within a unit hypercube to ensure that differences in

units between them did not bias the outcome.

The result of using random initialization was, as expected, that many classifi-

cations were �unsuccessful�, for example many of the air pixels were wrongly

classed as enamel or dentine, or where only two classes resulted.  Future work will

concentrate on refining the initialization, but for these initial experiments we sim-

ply repeated each classification several times, and termed it �successful� if the re-

sult was three contiguous regions broadly occupying the relevant locations.   For

each �successful� classification the number of misclassified pixels in the image

was determined as a percentage of the total number of pixels.

3.3.2 Terahertz pulsed image of tooth slice

The same methods of classification were used on a non-synthetic image of a

dehydrated tooth slice of thickness approximately 200 µm.  Transmission data
were acquired from an area 22.2 mm by 9 mm, using the pulsed terahertz imaging

system at the University of Leeds. The image array was 56 by 56 pixels, and the
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time series recorded at each pixel comprised 64 points separated by 0.15 ps.

Three parametric images representing the tooth data are shown in Figure 14.

(a) (b) (c)

Fig. 14.  Parametric terahertz pulsed images taken from the tooth slice data set. (a) Pulse

amplitude relative to reference pulse amplitude, in time domain. (b) Time delay between

transmitted pulse peak and peak of reference. (c) Transmittance (ratio of transmitted and

incident intensities after Fourier transformation of pulses) at 0.85 THz.

Unlike the synthetic tooth data, there are no known classes for this data.  To

allow the results to be assessed against an independent modality we acquired a ra-

diograph of the tooth slice using a dental x-ray system operating at 60kV.  Using a

commercial biomedical image processing package (Analyze, AnalyzeDirect.com,

Lenexa, Kansas, USA), this image was registered to a parametric image derived

from the terahertz pulsed image data.  Interactive region growing was used to de-

fine the enamel, dentine and air regions on the registered x-ray image.  These

definitions were used to produce an outline that was overlaid on the clustering re-

sults, to give a visual indication of the accuracy of the classification.  The percent-

age of misclassified pixels was determined.  Further quantification was not at-

tempted because the tooth slice was not of perfectly uniform thickness, being

thinner at the top right, and this would lead to errors in the classification based on

automatic clustering.

3.3.3 Terahertz pulsed images of histopathological samples

Classification techniques were run on two further data sets.  In these cases un-

registered optical images were available for comparison, and it is important to

note that clinically important differences will not necessarily be seen in the photo-

graph. The image data sets were acquired from wax embedded histopathologically

prepared sections of tissue, of thickness 1 mm.  The preparation involved dehy-

dration and fixing with formalin, and this means that terahertz radiation was able

to penetrate the tissue more readily than would be the case if the tissue were fresh.

Transmission data were acquired from both, using the pulsed terahertz imaging

system at the University of Leeds. The first example was of basal cell carcinoma

and the second melanoma. In each case the time series recorded at each pixel

comprised 64 points separated by 0.15 ps.  For the basal cell carcinoma the image
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array was 56 by 56 pixels over an area 10 mm by 10 mm, for the melanoma the

image array was 20 by 18 pixels over an area 5 mm by 4.5 mm.

k-means clustering on the fast Fourier transform coefficients of the time series

was applied to the basal cell carcinoma data, using five and eight classes.  For the

melanoma, the fast Fourier transform coefficients were again used, this time with

both k-means clustering and vector quantization, each for five classes.  Three

parametric images representing the basal cell carcinoma and melanoma histo-

pathological data are shown in Figure 15.

(a) (b) (c)

Fig. 15.  Parametric terahertz pulsed images taken from the histopathological basal cell car-

cinoma (top) and melanoma (below) data sets.   (a) Pulse amplitude relative to reference

pulse amplitude, in time domain. (b) Time delay between transmitted pulse peak and peak

of reference. (c) Transmittance (ratio of transmitted and incident intensities after Fourier

transformation of pulses) at 2 THz.

Matlab (Version 6, The MathWorks Inc., Cambridge, UK) was used for the

post-acquisition image and signal analysis work described in this section.
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4 Results

4.1 Optical properties of materials

4.1.1  Refractive Index, broadband and as a function of frequency

Results for the broadband refractive index are shown in Table 1, and the varia-

tion of refractive index with frequency from the STFT analysis is in Figure 16.  It

can be seen that the refractive index decreases with increasing frequency, and is

higher for resin than for nylon, which is consistent with the broadband results.

Nylon Resin

Conventional time domain 1.603 ± 0.004 1.66 ± 0.01

WBCAF at scale 1 1.597 ± 0.005 1.64 ± 0.02

Table 1. Results of refractive index measurements, mean ± standard deviation
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Fig. 16.  STFT refractive index against frequency for nylon (left) and resin (right).  Error

bars show ± one standard deviation.

These results illustrate that any image reconstruction algorithm requiring an as-

sumption of negligible dispersion would be valid for nylon but not for resin.

4.1.2  Attenuation, broadband and as a function of frequency

From the conventional broadband analysis, for nylon the linear absorption coef-

ficient was 6.8 ± 0.5 cm
-1 

and for resin 11.8 ± 1.6 cm
-1

. Figure 17(a) shows the

variation of linear absorption coefficient with frequency, using conventional Fou-

rier analysis.  The two materials may be differentiated throughout the frequency

range by their linear absorption coefficient.  Figure 17(b) shows the variation of

the STFT linear absorption coefficient with frequency.  As was the case for the

conventional Fourier analysis the two materials may be differentiated throughout
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the frequency range by their STFT absorption coefficient.  The values diverge

with increasing frequency as the curves diverge for the conventional analysis, but

the analysis is robust to a higher frequency.   This is likely to be a consequence of

the windowed nature of the transform, and suggests that the STFT may be valu-

able for analysis of noisy data such as that acquired from tissue in our system be-

tween 1.5 and 2.5 THz.
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Fig. 17. (a) Conventional Fourier analysis to show the variation of the linear absorption co-

efficient with frequency (b) STFT analysis to show the variation of the STFT linear ab-

sorption coefficient with frequency.  The error bars have been omitted from the resin STFT

data points � they were of approximately the size of the symbol, where shown they repre-

sent ± one standard deviation.

Figure 18 shows the variation of the WBCAF linear absorption coefficient with

frequency.  As was the case for the conventional Fourier analysis the two materi-

als may be differentiated throughout the scale range by their WBCAF absorption

coefficient, which is higher for resin than for nylon.  The values diverge as the

scale decreases, which corresponds with the way in which the curves diverge with

increasing frequency for the conventional and STFT analyses.  For nylon, the

WBCAF linear absorption coefficient is almost constant with scale, in contrast to

the behavior with frequency of the linear absorption coefficient calculated both by

conventional methods and using the STFT.  Thus, for some materials, reconstruc-

tion methods that require an assumption of negligible changes in absorption with

frequency could appropriately be tackled using a wavelet approach.



30

0.0 0.5 1.0 1.5

0

10

20

30

40

50

W
B

C
A

F
 l
in

e
a
r 

a
b
s
o
rp

ti
o
n
 c

o
e
ff

ic
ie

n
t 
/ 
c
m

-1

Scale 

 Nylon

 Resin

Fig. 18. Results of WBCAF analysis to show the variation of the WBCAF linear absorption

coefficient with scale.

4.2 Signal Compression

4.2.1 Refractive Index
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Fig. 19.   (a) The terahertz pulse of Figure 5(b) transmitted through 1 mm of the nylon step-

wedge compressed by removal of 50%, 80%, and 90% and 95% of the smaller coefficients.

The pulses are shown offset in the amplitude direction for clarity. (b) Linear absorption co-

efficient against frequency for nylon using conventional Fourier analysis, at various degrees

of wavelet compression.  To allow comparison, the results for the various degrees of com-

pression have been offset from the uncompressed result at intervals of 10 cm-1.

Coefficients removed / % 0 50 80 90 95

n 1.603 1.603 1.604 1.603 1.61

Standard deviation of n 0.002 0.002 0.003 0.005 0.01

Table 2. Broadband refractive index, n, for different compression levels.
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Compression to very high levels has a negligible impact on the broadband re-

fractive index calculations (Table 2).  This measurement is robust until 90% of the

coefficients are removed, at which point a small error is introduced. The terahertz

pulse of figure 5(b) is shown in Figure 19 reconstructed from the discrete wavelet

transform after the truncation of 50%, 80% and 90% and 95% of the smaller coef-

ficients.  As expected, the major feature of the pulse (the main peak) is unaffected,

while the truncation removes more and more of the smaller scale features, which

we might expect to be largely noise.

4.2.2 Absorption coefficient

Coefficients

removed / %

0% 50% 80% 90% 95%

Pearson correlation 1.0 0.999 0.997 0.992 0.495

RMSD 0 0.09 0.61 0.97 7.05

P (paired t) - 0.43 0.85 0.40 0.06

Table 3. Results of statistical tests comparing absorption coefficient (cm-1) at various

degrees of compression.

The results of the statistical tests of similarity between the uncompressed and

compressed observations across a range of frequencies from 0.52 to 1.46 THz at

intervals of 0.05 THz, for various truncations are shown in Table 3.   Figure 19(b)

shows the absorption coefficient at selected frequencies, for various truncations.

More detailed results are presented elsewhere [Handley et al. 2002].  Up to about

1 THz, the curves coincide.  However, note that the spectral feature at 1.1 THz is

lost when 90% of the coefficients are removed, and significant errors appear at

95%.  The statistical tests all suggested that there is no significance in the differ-

ences as far as 10% compression (90% of the coefficients are removed), the global

nature of the statistic masked the disappearance of a local feature, which could be

of importance.

4.3 Clustering

4.3.1 Synthetic image of tooth slice

Clustering performed on the synthetic tooth image produced promising results.

Table 4 records the percentage of misclassified pixels as a result of clustering the

entire pulse data, the FFT of the pulse data, the DWT, and a 3-dimensional feature

vector. The high quality of these results is partly because the issue of initialization

was not addressed.  The basic k-means algorithm is very susceptible to initializa-

tion, and some runs produced very poor results that were simply excluded in these

experiments.  We have not yet experimented with more intelligent initialization

procedures, but once this is done we would expect results approaching this quality.
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Synthetic image of  tooth slice % misclassified

Time series 0

FFT coefficients 0.04

DWT coefficients 0

Feature vector 1

Table 4. Percentage of mis-classified pixels: Synthetic image.

4.3.2 Terahertz pulsed image of tooth slice

Results for the image of the 200 µm tooth slice are presented in Table 5.

Terahertz pulsed image of  tooth slice % misclassified

Time series 19

FFT coefficients 23

DWT coefficients 19

Feature vector 13

Table 5. Percentage of mis-classified pixels: Tooth slice.

Figure 20 illustrates classifications resulting from time series, FFT and feature-

vector clustering.  The pulse relative amplitude image is shown as an indicator of

where physical boundaries in the sample lie.  The boundaries segmented from the

radiograph are shown in white as an overlay.

(a) (b) (c) (d)

Fig. 20. The tooth slice data set.   (a) Parametric terahertz pulsed image showing pulse am-

plitude relative to reference pulse amplitude, in time domain. (b) Result of clustering using

the whole time series in the time domain. (c) Result of clustering using the FFT coeffi-

cients. (d) Result of clustering using the three dimensional feature vector.  In (b)-(d) air is

shown in black, enamel in dark gray and dentine in light gray.  The white outline indicates

the boundaries of dentine and enamel that were identified interactively on the radiograph of

the tooth slice.

4.3.3 Terahertz pulsed images of histopathological samples

Results from performing clustering on the hisopathological data sets are shown

in Figures 21 and 22.  For the basal cell carcinoma data a feature is emphasized in
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white at the center of Figure 21(b) which is not apparent in the photograph � as

stated previously one does not expect clinically important features necessarily to

be obvious in the photograph.  The feature is also evident in the transmittance

terahertz image shown earlier in Figure 15(c), but use of the FFT coefficients in

the clustering has defined it more clearly.

(a) (b) (c)

Fig. 21.   The basal cell carcinoma data set.   (a) Photograph showing the histopathologi-

cally prepared sample.  (b) Result of clustering into five classes using the using the FFT co-

efficients. (c) Result of clustering into eight classes using the using the FFT coefficients.

For the melanoma data set the classes returned by the two types of clustering

differ.  Again they do not correspond with the regions of the photograph, nor were

they expected to.  The mid-gray feature shown by clustering using the FFT coeffi-

cients in Figure 22(b) is also apparent to a lesser extent in each of the parametric

images in Figure 15.

(a) (b) (c)

Fig. 22. The melanoma data set.   (a) Photograph showing the histopathologically prepared

sample, with the melanoma outlined.  The terahertz imaged area corresponds to the lower

right quadrant of this photograph.  (b) Result of k-means clustering into five classes using

the using the FFT coefficients. (c) Result of vector quantization clustering into five classes

using the FFT coefficients.

5 Discussion

Terahertz pulsed imaging is a relatively new modality that records large da-

tasets that are difficult to visualize.  Conventional Fourier and time domain tech-

niques are widely used for analysis, but there is no standardization on the methods

or presentation of data.  A powerful addition to the analysis would be the ability to

consider time and frequency independently, but this is not possible using the Fou-
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rier Transform, so time-frequency techniques such as the STFT and wavelets have

been considered.   The limitations of the uncertainty principle on the STFT means

that it would be necessary to run the analysis many times to get a complete picture

of the variations with time and frequency.  Wavelet analysis, although still con-

strained by the uncertainty principle, can give a more complete picture from a sin-

gle analysis.  Wavelet analysis has proved successful in related areas where analy-

sis of time series is required, including ultrasound and radar.  The analysis is

particularly attractive for use with terahertz pulses because they can be described

very efficiently by wavelets, where the Fourier transform is a less efficient basis.

This is encouraging for applications such as compression and noise reduction, and

may be an advantage in other analytical methods.  Wavelet techniques are also at-

tractive experimentally, because there is an established theoretical background and

robust software is available.

In this work we investigated a range of potential alternatives to conventional

Fourier analysis.  We have shown that, for our test materials, the STFT and

wavelet analyses give, within experimental error, the same result for refractive in-

dex as the conventional method.  The simple WBCAF analysis involves estima-

tion of time delays only at scale 1 because changing the scale results in an associ-

ated time shift.  Extension to higher scales is an area for future work.  The

absorption coefficients produced by conventional and wavelet analysis are not di-

rectly comparable, because the conventional analysis produces values at given

frequencies, whilst the wavelet results are plotted against scale, each of which rep-

resents a range of frequencies. However, we see a similar pattern of differences

between two materials in this simple case of transmission imaging, and believe

that the opportunity to focus on particular time periods with wavelets will be help-

ful for more complex images.  In addition, a material that showed increasing ab-

sorption coefficient with frequency by Fourier techniques demonstrated an almost

constant WBCAF absorption coefficient with scale.  This may be a property that

could be exploited in reconstruction techniques that require an assumption of neg-

ligible variation in absorption with frequency.  It is a limitation of the work pre-

sented here that only two materials were studied, and neither of these was bio-

medical.  In such material, biological variation is expected, and the value of the

optical parameters will vary from sample to sample [Berry et al. 2003b].  Nor will

tissue be neatly arranged as a step wedge, so a smaller number and range of thick-

nesses would be available.  Adaptation of existing techniques for refractive index

estimation, which have been successful for characterizing semi-conductors [Du-

villaret et al. 1996, Dorney et al. 2001], will be needed.

An understanding of the imaging process is often fundamental to successful

analysis of medical imaging data [Highnam and Brady 1999, Cotton et al. 1997].

There are still many factors that need to be included in the analysis, perhaps by in-

cluding a model of the imaging process such as diffraction, scattering, pulse

shape, partial volume effects, frequency dependent amplitude and frequency de-

pendent spatial resolution.  It should also be possible to exploit models of how the

pulses are expected to appear [Duvillaret et al. 2001], especially with advances in

pulse shaping [Lee et al. 2001].
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In this work a very simple model of the noise in terahertz pulsed images was

used when making the synthetic tooth data set.  Recent analysis has shown that a

single Gaussian does not correctly model the noise, and improving the noise

model is an area of current research.  These are very early results, but clearly do

not rule out the use of time-frequency techniques in this field.  The robust results

from these initial experiments in the simplest case of using transmission data

through a single layer give us confidence for applying adaptations of the methods

to data where time localization will be important for identifying which pulse cor-

responds with which boundary.

The use of wavelets for signal compression is a well known application, and it

would be of real practical benefit in terahertz pulsed imaging.  Our initial work

presented here has highlighted the difficulties associated with quantifying the ef-

fect of such compression.  Statistical tests showed no significant difference be-

tween pulses, where, by eye it could be seen that a potentially relevant spectral

feature had been lost.  Testing of the effect of compression is therefore application

specific, and one must address the question of whether the final conclusion has

been affected by the process.  In our particular example, we sought changes to the

measured values of refractive index, and in this case the loss of the spectral feature

was not important.  We suspect that this will not be the case when terahertz pulsed

imaging moves into clinical and laboratory use.

  The idea of using clustering methods that use more of the information in the

time series at each pixel then just two or three parameters is very attractive, and

has been used successfully in other fields [Lasch and Naumann 1998].  Our work

here is very preliminary, and the next stage is to perform a study on large numbers

of samples for which we have a gold standard classification by another technique,

for evaluation.  However, from these early results it appears that robust segmenta-

tion, using features derived from the terahertz pulses is a real possibility.   The in-

corporation of knowledge about likely signal changes from particular disease pro-

cesses could be built in to the classification scheme, and classified data may form

the input for filtered back projection.

Terahertz pulsed imaging is in its infancy, and in order to speed up the imaging

process many of the early systems do not collect the whole time series at each

pixel.  Even when data from the whole pulse are available, users display or use

parametric images for further calculation without an understanding of the most

appropriate choice of parameter to emphasize a feature of interest.  In this work,

we have presented preliminary simple experiments to investigate techniques that

made use of all the information in each pulse.  The results from these justify fur-

ther investigation in this area and our aim is to provide tools for the user that will

optimize their use of the spectroscopic information hidden in each terahertz signal.
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