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Recent step strain experiments in well-entangled polymeric liquids demonstrated a bulk fracturelike

phenomenon. We study this instability by using a modern version of the Doi-Edwards theory for entangled

polymers, and we find close quantitative agreement with the experiments. The phenomenon occurs

because the viscoelastic liquid is sheared into a rubbery state that possesses an elastic constitutive

instability [G. Marrucci and N. Grizzuti, J. Rheol. 27, 433 (1983)]. The fracture is a transient

manifestation of this instability, which relies on the amplification of spatially inhomogeneous fluctuations.

This mechanism differs from the fracture in glassy materials and dense suspensions.
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Introduction.—Viscoelastic liquids have slow time scales
due to the relaxation of internal degrees of freedom such as
polymer deformation or the structures of self-assembled
materials such as amphiphiles. These slow time scales
give rise to dramatic effects, such as rubbery behavior at
high deformation rates, viscous behavior at lower rates, and
both solidlike and liquidlike features. Materials such as
amorphous solid polymers [1] or metallic glasses [2] have
arguably the most dramatic behavior possible for a solid:
rupture, fracture, and flow at a macroscopically sharp inter-
face. This has been modeled as collective rupture of shear
transformation zones [3] and in dense colloidal materials as
due to the coupling between shear and density [4].

Recent experiments have demonstrated fracturelike
behavior in well-entangled polymeric liquids. Very
rapid step strains were applied to polymer melts [e.g.,
poly(styrene-butadiene) [5] or poly(ethylene oxide) [6]]
with Z ! 53–160 entanglements per polymer. At such
high shear rates, the liquid becomes rubbery and solidlike.
After the step strain the solidlike melt relaxes homogene-
ously for a short time, followed by a rapid relaxation
during which the material splits into two layers moving
in opposite directions, separated by a thin (& 40 !m)
shear band or ‘‘fracture’’ layer [Fig. 1 of Ref. [5]].
Reference [5] suggested that this is due to microscopic
yield, such as a sudden localized chain pullout or loss of
entanglements, perhaps analogous to the shear transforma-
tion zone picture for yield in amorphous solids [4].

We show that these results can be explained by a pure
constitutive instability due to the effects of shear flow on
the elastic stress in the fluid, and it is actually contained in
the Doi-Edwards (DE) theory of entangled polymers [7–9];
this provides yet another mechanism for fracture, due
purely to a constitutive shear instability in a viscoelastic
liquid brought suddenly into a (transient) solid state.

The motion of an entangled polymer is restricted to a
tubelike region due to the constraints imposed by surround-
ing chains. The DE theory for this [7] predicts a maximum
in the shear stress Txy as a function of shear rate [Fig. 1(a)],

at a shear rate _" roughly equal to the reciprocal of the time
#d for a polymer to diffuse (or reptate) along its tube. This
nonmonotonic constitutive behavior (which was not
inferred in early experiments on polymer melts [10]) indi-
cates instability, which can lead to inhomogeneous flows
and shear banding [11]. This constitutive instability was
widely implicated [12] in the spurt effect [13], responsible
for instabilities in industrial processes; however, spurt is
now usually attributed to wall slip [14]. In rapid startup
flow, the DE theory predicts the rubbery behavior of a
stress overshoot [7–9]. Modern theories incorporate chain
stretch and convected constraint release—chain relaxation
due to the release of entanglement constraints, which
restores stable constitutive behavior [15]. However, new
observations of shear banding seem to validate the DE
instability [9,16,17] in some cases. We will show that
apparent fracture is another manifestation of the DE
instability.
Model.—We separate the total stress tensor T into con-

tributions from the polymer and a Newtonian solvent, as
T ¼ GW þ $ð!þ !TÞ & pI, where G is a modulus, $ is
the solvent viscosity, the pressure p maintains incompres-
sibility, I is the identity tensor, and %&' ¼ r'v&. The fluid
velocity v (with no slip boundary conditions) with mass
density ( obeys
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where r ( T ¼ 0 for very small Reynolds numbers, as is
the case here. The dimensionless polymeric conformation,
or strain, tensor W is assumed to obey the diffusive Rolie-
Poly model [9,18]:
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which is a simplified form of the Graham-Likhtman-Milner-
McLeish (GLaMM) model, itself a modern version of Doi-
Edwards theory [19]. Here, #d is the reptation time, and the
Rouse time #R governs the relaxation of stretch TrðWÞ. The
parameter ' quantifies convected constraint release; a large
value of' corresponds tomore convected constraint release,
which leads to monotonic (stable) behavior of the shear
stress. Spatial gradients due to stress ‘‘diffusivity’’ D are
subject to the boundary condition rW ¼ 0 [11].

Calculations.—We consider two infinite flat plates sepa-
rated by Lŷ where the top plate moves parallel to x̂ and the
bottom plate is fixed. The velocity field is thus given by
v ¼ vxðt; yÞx̂, and W ' Wðt; yÞ. We define dimensionless

quantities _̂" ¼ _"#d, D̂ ¼ D#d=L
2, ) ¼ $=ðG#dÞ, (̂ ¼

(L2=ðG#2dÞ, v̂ ¼ #dv=L, and t̂ ¼ t=#d. The degree of
entanglement Z determines the Rouse time via #R ¼
#d=ð3ZÞ [18,19]. A desired average shear rate is imposed
for a duration t0 leading to a strain "0 ¼ h _̂"it0.

The values #d ¼ 310 s and Z ¼ 55–100 are consistent
with the data in [5]; with $ ! 1 Pa s and G ! 7) 103 Pa
[20] we find ) ! 10&7; for numerical stability, we use ) ¼
10&4. For L ¼ 1 mm, ( ! 103 kgm&3 gives (̂ ! 10&10,

and we use D̂ ¼ 10&5 [21]. Spatial derivatives are discre-
tized by using a semi-implicit central finite difference
scheme. For a time step *t̂ ¼ 10&6 and 1000 spatial mesh
points, the maximum velocity in the fracture and time to
fracture converge within a few percent.

We infer (in)stability by considering the evolution
of perturbations to the uniform solution to Eq. (2):
sðtÞ ' ½!xx;!xy;!yy+ðtÞ, where ! ¼ W & I, with initial
conditions sð0Þ ¼ ½0; 0; 0+ and imposed uniform shear
rate _̂". At some time t0 we impose an inhomogeneous
perturbation *uðy; t0Þ ¼ ½* _̂";*!xx;*!xy;*!yy+ðy; t0Þ ¼P

k*ukðt0Þ expðikyÞ. The full dynamics is thus given by
uðy; t; t0Þ ¼ ½ _̂"; s+ðt0Þ þ *uðy; t& t0Þ. The perturbation
*u evolves for small times t& t0 according to the dynam-
ics given by linearizing Eqs. (1) and (2): * _ukðt& t0Þ ¼
Mk½sðt0Þ+*ukðt& t0Þ. The growth or decay of this pertur-
bation at early times indicates whether the perturbation can
induce fracture after shearing is stopped at t0. The pertur-
bation will grow after t0 when the largest real part !max of
the spectrum of eigenvalues of Mk is positive.
To capture the behavior reported in [5], we consider a

fluid with nonmonotonic constitutive behavior, ' ¼ 0
[solid line in Fig. 1(a)], and use Z ¼ 72 (consistent with
[5]); this leads to shear banding and a stress plateau in the
steady state [dashes in Fig. 1(a)] [11]. We initialize Eq. (2)
with random perturbations *uð0; yÞ ¼ +

P5
n¼1ðAn=n

2Þ)
cosn,y, Ani 2 ½&1; 1+, where i are the four components
of An; here, + sets the scale of the perturbation. The
penalty 1=n2 arises because high wave numbers n should
be suppressed by both spatial gradients in W and by the
slow dynamics of long wavelength velocity fluctuations
that induce perturbations upon sample loading (for

FIG. 1 (color online). (a) Constitutive (solid line) and steady state shear banding (black dashes) curves. The stress overshoot is
indicated by green squares; small perturbations grow exponentially in time (!max > 0) for stresses exceeding the stress given by the
blue diamonds. The stresses at t0 for three cases described in the text are indicated by I, II, and III. (b) Velocity profile at t

&
0 ( just before

shear cessation) for h _̂"i ¼ 200. (c) Stress relaxation for step strains "0 ¼ 0:2, 2.5; the solid line is for "0 ¼ 2:5 with no initial
perturbation. The dot-dashed line shows the evolution of the most unstable eigenvalue!max, which becomes unstable (!max > 0) in the
red (dashed) region. (d) Velocity profiles during fracture, with experimental data from [5] superposed. (e) Shear rate profiles, (f) stress
relaxation, and (g) evolution of the maximum stretch in the gap Tr!max. [Parameters: Z ¼ 72, #R ¼ #d=216, h _̂"i ¼ 200, "0 ¼ 2:5,
t0 ¼ 0:01250#d, and t,0 ¼ t0 , 10&5#d. Times t and 1=!max are displayed in units of #d.]
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example). We use + ¼ 0:01, consistent with the scale of
typical thermal fluctuations in W [22].

Perturbations can grow if the fluid becomes unstable
[8,22–24]. For 34% of 300 sets of randomly chosen An,
the resulting velocity profiles were similar to those
reported in [5]. Using initial conditions that produce the
experimentally observed velocity profile, we simulate ex-
amples reported in [5]. The green squares in Fig. 1(a) are
the overshoot stresses at different shear rates, and the
stresses at t0 for the three cases studied are indicated as I,
II, and III. For times t0 later than the time at which the
startup stress is given by the blue diamonds, the perturba-
tion *u grows exponentially upon shear cessation. This is
where we infer instability.

Case I.—For h _"i#R ! 1 and "0 > "ov (the overshoot
strain), we impose h _̂"i ¼ 200 (h _"i#R¼0:93) for "0¼2:5.
Immediately before cessation at t&0 , the velocity profile
is imperceptibly inhomogeneous [Fig. 1(b)], while at tþ0
the fluid has stopped with a slight inhomogeneity
induced by the perturbation [Fig. 1(d)]. Some stress then
quickly relaxes due to stretch relaxation in a time ts ’ 7#R
[Figs. 1(c), 1(f), and 1(g)], followed by an induction
time ti ’ 30#R with relaxation due to reptation [blue circles
in Figs. 1(c) and 1(f)]. The perturbation slowly grows
during ti and localizes, leading to a fracture plane at
which the fluid shears very rapidly [Figs. 1(d) and 1(e)],
and a sizable stretch Tr! is induced [Fig. 1(g)]. The stress
relaxes quickly during this localization in a time tf ’ 15#R
[Figs. 1(c) and 1(f)]. Thereafter it relaxes like a quiescent
melt with a small initial strain "0 ¼ 0:2 [Fig. 1(c)]. Since
the boundaries are fixed, positive shear strain within the
slip layer is balanced by opposing recoil in the still-
entangled outer regions [e.g., Fig. 1(e) for t=#d > 0:15].
Without an initial perturbation, only quiescent relaxation is
obtained [solid line in Fig. 1(c)]. The velocity profiles
[Fig. 1(d)] are consistent with Fig. 1 of Ref. [5] (which
has an induction time ti ! 5#R).

Stability.—Figures 1(a) and 1(c) suggest that the mate-
rial is unstable (!max > 0) from well before the stress
overshoot until shear cessation. To understand this insta-
bility, we turn to the Marrucci-Grizzuti observation that for
strain "0 * 2:1 the elastic energy function Fð"Þ for the DE
model has a negative effective shear modulus A '
@2F=@"2 < 0 [8], which heralds instability. Marrucci and
Grizzuti predicted elastic instability for a step strain, for

Aeff ' !ðt0 þ tsÞ
@2F

@"2

&&&&&&&&"0

þ½1&!ðt0 þ tsÞ+
@2F

@"2

&&&&&&&&0
<0;

(3)

where !ðtÞ is the fraction of unrelaxed material. The
elastic limit _"#d-1 gives Aeff ’@Txy=@"¼ _"&1@Txy=
@t<0 [8,17,22,23], which coincides with the stress
overshoot.

The anisotropy of the polymer conformation tensor W
defines ! ' j-1 & -2j=j-1 þ -2j, where -i are the eigen-
values of W in the plane containing the velocity gradient
and flow directions [25]. For a homogeneous initial condi-
tion, !ðtÞ relaxes homogeneously to zero, while an inho-
mogeneous initial condition initiates instability and an
inhomogeneous !ðy; tÞ [Fig. 2(d)].
Figures 2(d) and 2(c) show the spatial profiles for the

strain and the effective shear modulus Aeff after stretch
relaxation [26]. The fracture region is most unstable, so
that the initial perturbation [Fig. 2(a)] can localize strain.
The unstable region predicted by the elastic limit coincides
with the most unstable eigenvalue !max calculated from
the full dynamics, which indicates instability before the
stress overshoot is reached [e.g., Fig. 1(a)] because of the
viscous contribution to the instability [23]. The most un-
stable eigenvector is dominated by the growth of !xx [24],
which enhances stretch in the flow direction.

FIG. 2 (color online). Spatial profiles of (a) initial perturba-
tion, (b) local strain, and (c) effective modulus Aeff as well as
the unstable growth rate !max, after cessation of flow and
subsequent stretch relaxation. (d) Evolution of unrelaxed poly-
mer segments !ðy; tÞ during fracture development. [Parameters
are as in Fig. 1. Time t is displayed in units of #d.]
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Conditions for fracture.—A detailed study shows that
perturbations in !xx and !yy induce fracture [24]. The step
strain "0 advects the initial perturbation into a shear
component of the polymer strain (e.g., Wxyðy;t0Þ’
"0½1þ!yyðy;0Þ+), which generates an inhomogeneous
shear rate * _̂"ðy; tþ0 Þ ’ &"0!yyðy; 0Þ=) immediately after
cessation of flow to maintain r ( T ’ 0. Although general
perturbations are complex [Fig. 2(a)] [24], a local maxi-
mum in the polymeric strain " defines the position with
the most negative effective shear modulus Aeff < 0 and
the fastest growth rate !max [Fig. 2(c)] [26] and, thus, the
fracture position.

The subsequent evolution resembles spinodal decomposi-
tion of a conserved quantity, since the total strain "0 is fixed.
The strain in themost unstable region grows,while that in the
less unstable regions decreases. This leads to recoil and a
sharpening of the deformation around the most unstable
position, which can then fracture if the initial amplitude
grows quickly enough compared to the overall relaxation
due to reptation. Significant convected constraint release
suppresses fracture because of the enhanced relaxation.

Character of fracture.—A larger strain leads to a less
dramatic fracture [Figs. 3(a) and 3(d)], because the total
stress has passed the overshoot and decreased, hence
releasing less stress into the fracture; however, the larger
molecular strain Wxy leads to a faster growing instability,
which is consistent with Fig. 8 of Ref. [5]. Alternatively,
for a higher imposed strain rate and t0 beyond the over-
shoot, the stretch-dominated response leaves less orienta-
tional stress and molecular strain after stretch relaxation, so
that fracture takes longer to develop [23].

In case II (h _̂"i ¼ 900, h _"i#R ¼ 4:2), the shear rate is
large but the strain "0 ¼ 2:5 is slightly less than the over-
shoot strain "ov [Figs. 3(b) and 3(c)]. The velocity profiles
are consistent with Fig. 2 of Ref. [5]. Because the growth
rate !max is so rapid for the high shear rate, the smaller
strain can effect the necessary large growth of the instabil-
ity. In this case, the induction time and velocity profiles are
similar to case I. In case III (h _̂"i ¼ 10, h _"i#R ¼ 0:046) the
shear rate is relatively small [Figs. 3(e) and 3(f)], and
fracture and recoil are very weak due to the small growth
rate. The stress response due to the inhomogeneity is almost
negligible compared to that of an unperturbed initial con-
dition. The weak recoil agrees with Fig. 7 of Ref. [5].
Figure 6 of Ref. [5] demonstrated that, for subovershoot

strains, higher shear rates lead to longer induction times,
while our calculations predict shorter induction times
because of the faster growing instability [24]. We cannot
explain this discrepancy.
Conclusion.—We have shown that the fracture seen in

recent step strain experiments onpolymeric liquids [5,6] could
result from an underlying elastic instability in the DE model,
whose signature is stress overshoot during rapid startup
[8,9,27]. Once stretch degrees of freedom have relaxed, the
deformed melt is elastically unstable so that small inhomoge-
neities grow into plastic strain (shear flow) in the most un-
stable regions. If this instability grows fast enough compared
to reptation, then a dramatic fracture can result. The perturba-
tion’s shape and amplitude control whether fracture occurs.
In related works, Manning et al. studied a shear-

transformation-zone model of an amorphous solid [3],
demonstrating plastic yield within a fluid shear band (or

FIG. 3 (color online). (a) Values of Z and "0 required for fracture at fixed h _̂"i; contours show the maximum local shear rates during
fracture. (b), (c) Case II (h _̂"i ¼ 900, h _"i#R ¼ 4:2, "0 ¼ 2:5): (b) stress relaxation and unstable growth rate!max (the dashed line is the
stress overshoot with no initial perturbation); (c) velocity profiles during fracture. (d) Stress decay for three different imposed strains
"0. (e), (f) Case III (h _̂"i ¼ 10, h _"i#R ¼ 0:046, "0 ¼ 1:3): (e) stress relaxation and!max and (f) velocity profiles. [All other parameters
are as in Fig. 1. Time t is displayed in units of #d.]
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fracture) during startup of shear flow, while a shear-dilation
coupling has been shown to lead to fracture in glass-
forming materials [4]. In the rubbery polymer liquid
considered here, the instability is purely constitutive:
Shearing leads to a decreased stress as chains are oriented
along the flow direction, and the resulting fluid is mechani-
cally unstable.

Boukany, Wang, and Wang suggested that the fracture
demands new physics [5]. Certainly, current tube models
are incomplete [28]. However, our calculations are reason-
able if spatial features are smooth on length scales greater
than the tube diameter a ’ 3–4 nm. For a gap of 1 mm, the
fracture width *x ’ 0:05 corresponds to a thickness of
the order of 50 !m, which is consistent with the dimension
. 40 !m reported in Ref. [5]. Thus, higher experimental
resolution will determine whether or not the continuum
nature of the tube model is adequate.
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I. CALCULATIONS

A. Step-Strain Calculations for Di↵erent Initial Conditions

The starting point for the calculations is the di↵usive Rolie-Poly (DRP) model, given by [1]

dW

dt
=  · W + W · T � 1

⌧
d

(W � I) �
2
⇣
1 �

q
3

TrW

⌘

⌧
R

 
W + �

✓
TrW

3

◆
�

(W � I)

!
+ Dr2

W, (1)

where W is a polymer strain, 
↵�

= @
↵

v
�

, v is the fluid velocity, ⌧
d

and ⌧
R

are the reptation and stretch relaxation
times respectively, I is the identity tensor, � measures the amount of convective constraint release in the system, � is
a fitting parameter and D is stress di↵usion constant.

We use the Cartesian coordinate system (for the case of simple shear flow where the fluid is placed between
two infinite parallel plates of separation L) where ŷ is the velocity gradient direction and x̂ is the flow direction,
v = v

x

(t, y)x̂ and W = W(t, y). Substitution into Eq. 1 with W = � + I gives

@�
xx

@t
= 2�

xy

ḃ� � �
xx

� 2⌧
d

⌧
R

[1 � A] [(�A + 1) �
xx

+ 1] + bD@2�
xx

@y2

(2a)

@�
xy

@t
= ḃ� + ḃ��

yy

� �
xy

� 2⌧
d

⌧
R

[1 � A](�A + 1)�
xy

+ bD@2�
xy

@y2

(2b)

@�
yy

@t
= ��

yy

� 2⌧
d

⌧
R

[1 � A][(�A + 1)�
yy

+ 1] + bD@2�
yy

@y2

(2c)

A =

✓
1 +

Tr�

3

◆�1/2

, (2d)

where ḃ� = �̇⌧
d

, bD = D⌧
d

/L2 [2]. The total stress T is then obtained from W and a Newtonian solvent of viscosity ⌘
as

T = GW + ⌘( + T ) � pI, (3)

where G is the plateau modulus and p is pressure, this gives the total shear stress as

T
xy

= G�
xy

+ ⌘�̇. (4)

To capture the behaviour reported in [3], we initialize Eq. 2 with random perturbations of the form

�u(0, y) = ⇠

5X

n=1

(A
n

/n2) cos(n⇡y), (5)

where u ⌘ [ḃ�, �
xx

, �
xy

, �
yy

]. The amplitudes A
ni

which are the components of vector A are chosen randomly within

[�1, 1]. The index i = 1, 2, 3, 4 corresponds to each of the quantities [ḃ�, �
xx

, �
xy

, �
yy

] The parameter ⇠ = 0.01 sets
the overall scale of amplitude and a cosine series was chosen since it satisfies the boundary condition imposed on �.
Using more modes does not change the resultant perturbation significantly due to the 1/n2 penalty on the amplitudes.
Each component of u is initially perturbed separately using di↵erent random perturbations. Then all components of
u are perturbed together with each quantity receiving a separate random perturbation. Sample results from these
simulations are shown in Figs. s1 to s5.



2

0 0.5 1
−5

0
5

x 10−3

0
5
10

0 0.5 1
−5

0
5

x 10−3

0
5
10
15

0 0.5 1
−4
−2

0
2
4

x 10−3

0
5
10
15

0 0.5 1
−0.01

0

0.01

0
10
20

0 0.5 1
−4
−2

0
2
4

x 10−3

−20
−10
0

0 0.5 1
−4
−2

0
2
4
6

x 10−3

0
10
20
30

0 0.5 1
−6
−4
−2

0
2
4

x 10−3

−5
0
5
10
15

0 0.5 1
−5

0
5

x 10−3

0
5
10
15

0 0.5 1
−5

0
5

x 10−3

−30
−20
−10
0

0 0.5 1
−6
−4
−2

0
2

x 10−3

−10

0

10

0 0.5 1
−10
−5

0
5

x 10−3

−5
0
5

0 0.5 1
−5

0
5

x 10−3

−5
0
5

0 0.5 1
−6
−4
−2

0
2
4

x 10−3

−15
−10
−5
0
5

0 0.5 1
−4
−2

0
2
4
6

x 10−3

0
10
20

0 0.5 1
−5

0
5

x 10−3

−20
−10
0

0 0.5 1
−5

0
5

x 10−3

0
5
10
15

�

xx

(0,y)
v

x

(t
max

, y)

FIG. s1. Recoil or ‘fracture’ for di↵erent random initial conditions upon perturbing �
xx

. In all cases, the blue line is the
perturbation and the red line is the velocity profile when both µ± reach their extrema together (for ‘fracture’) or µ± reach
their extrema separately (for recoil without ‘fracture’). The ‘fracture’ profiles are indicated by the dashed circles. Left axis:
perturbation; Right axis: velocity.
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FIG. s2. Same as Figure s1 but with perturbation to �
yy

.

In all calculations reported here, the parameters were set as Z = ⌧
d

/(3⌧
R

) = 72, bD = 10�5, ✏ = ⌘/(G⌧
d

) = 10�4,
� = 0 and for stability analysis, ⇢̂ = 10�10. To determine if fracture has occurred or not, consider the ‘velocity
moments’ µ

v±, defined by

µ
v± =

X

i

v
i

H(±v
i

), (6)

where the sum is over all spatial positions y
i

and H is the Heaviside step function. If both positive moment µ
v+
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FIG. s3. Perturbation of �
xy

. Only a weak recoil or a weak sign of ‘fracture’ is seen in this case. The blue and red lines have
the same meaning as in Fig. s1. The ‘weak fracture’ profiles are indicated by the dashed circles. Left axis: perturbation; Right
axis: velocity.
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FIG. s4. Same as Figure s3 but with perturbation to ˆ̇�.

and negative moment µ
v

occur together at any time during stress relaxation after shear cessation, then we say that
‘fracture’ has occurred, otherwise there is no fracture. The velocity profiles shown in Figs. s1 to s5 occur at the time
when both µ

v+

and µ
v

reach their extrema for the case of fracture. When there is no fracture, the velocity profiles
are shown when either µ

v+

reaches its maximum or µ
v

reaches its minimum. When fracture occurs, the position
of the fracture plane depends on the shape of the specific perturbation. The stress relaxation is independent of the
position of the fracture plane, as in the experiments of [3] (section III A).

In about 34% of 300 simulations where �
xx

, �
yy

, �
xy

and ḃ� are all perturbed simultaneously, the resultant velocity
profiles resemble the type reported in [3]. The calculations in the manuscript use a set of initial conditions that give
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FIG. s5. Recoil or ‘fracture’ upon perturbing all components, with each component receiving a separate random perturbation.
Red line: perturbation to �

xx

. Green line: perturbation to �
yy

. Blue line: perturbation to �
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. Magenta line: perturbation
to �̇. Cyan line: recoil or ‘fracture’ velocity profile v. Left axis: perturbation; Right axis: velocity. In all cases, the ‘fracture’
profiles are indicated with the dashed circles.
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a fracture with all quantities perturbed, such as subfigure P
1

in Fig. s5.

B. Linear stability analysis

Linear stability analysis is carried out by considering the stability of a homogeneous base state s(t) to fluctuations.
During the evolution of the base state s(t), a perturbation �u(t, y) = [��

xx

, ��
xy

, ��
yy

, �ḃ�](t, y) is introduced at
some time t

0

. Subsequent evolution of the perturbation is then given by

u(t � t
0

, y) = [ˆ̇�, s](t
0

) + �u(t � t
0

, y). (7)
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If the perturbation grows at early times after shear cessation at t
0

, then it may be able to induce ‘fracture’ at later

times. The homogeneous base state s(t) = [ḃ�, �
xx

, �
xy

, �
yy

] is obtained by solving

@
t

�
xx

=2�
xy

ḃ� � �
xx

� 2⌧
d

⌧
R

⇥
1 � A

⇤ ⇥�
�A + 1

�
�

xx

+ 1
⇤

(8a)

@
t

�
xy

=ḃ� + ḃ� �
yy

� �
xy

� 2⌧
d

⌧
R

⇥
1 � A

⇤ �
�A + 1

�
�

xy

(8b)

@
t

�
yy
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yy

� 2⌧
d

⌧
R

⇥
1 � A

⇤ ⇥�
�A + 1

�
�

yy

+ 1
⇤

(8c)

A =

✓
1 +

Tr�

3

◆�1/2

. (8d)

The perturbation �u(t, y) consists of fluctuations in the velocity gradient direction of the form

�u(t, y) =
X

k

�u
k

(t) exp(iky) t � t
0

. (9)

Substituting Eq. 7 into Eq. 2 and the momentum equation

⇢
dv

dt
⌘ ⇢


@

@t
+ (v · r)

�
v = r · T, (10)

where ⇢ is the fluid density, gives
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where all nonlinear terms in [��
xx,k

, ��
xy,k

, ��
yy,k

, �ḃ�
k

] have been neglected. In the zero Reynolds number limit
⇢̂ ! 0 this reduces to
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yy

A
3 � ⌧

d

3⌧
R

A
3 � 2

3
�

⌧
d

⌧
R

�
yy

A
4

�
��

xx,k

(t)

+


⌧
d

3⌧
R

(� � 1) �
yy

A
3 � 1 � ⌧

d

3⌧
R

A
3 � 2

⌧
d

⌧
R

⇥
1 + (� � 1) A

⇤
� 2

3
�

⌧
d

⌧
R

�
yy

A
4

+2�
⌧
d

⌧
R

A
2 � k2 bD

�
��

yy,k

(t) (12c)

This is a matrix equation of the form

@
t

�ũ(t) = M(t
0

) · �ũ(t) t � t
0

, (13)

where ũ = [�
xx

, �
xy

, �
yy

]. Similar to the case described in [4], the eigenvalues of the stability matrix M(t
0

) determine
the (in)stability of the system. We infer instability when the the largest real part of an eigenvalue just becomes
positive [4]. In this situation the perturbations grow exponentially. Hence the spinodal (the shear stress at which the
fluid goes unstable during startup) for the system can be constructed as shown in Fig. s6. This region of instability
matches the constitutive curve, similar to the situation reported in [4].

When the perturbation given in Eq. 5 is used to initialize the system, it induces some inhomogeneity in the system.
Each point in space can then be considered as a base state and the stability of each of these base states to small
amplitude fluctuations is also described by the stability matrix M(t

0

). Hence the most unstable of these base states
(which is the state whose eigenvalue has the largest real part) can be determined. This approach gives insight into the
behaviour of the system when the quantities �̇, �

xx

, �
xy

and �
yy

are perturbed separately. For 15 di↵erent initial
conditions that give a ‘fracture’ profile, the eigenvector e

v

m

corresponding to the maximum real eigenvalue in space
at the time of stretch relaxation is heavily dominated by the components �

xx

and �
yy

. The components of e
v

m

for
these di↵erent initial conditions are shown in Table I, where evxx

m

is the component in the flow direction, evxy

m

is the
component in the shear direction and evyy

m

is the component in the velocity gradient direction. Hence perturbing the
components �̇ and �

xy

separately do not induce ‘fracture’ (as in Figs. s3 and s4) as compared with perturbing the
components �

xx

and �
yy

separately at the same amplitude (as in Figs. s1 and s2).

C. Comparison with experiment

The calculations in the manuscript are based on the sample SBR 250K whose rheological properties are reported
in Tables 1 and 2 of [3]. The rheological properties reported in Table 2 of [3] were said to have been measured from
linear viscoelastic measurements (see section II B of [3]) but the Rouse times reported in Table 2 were estimated using
⌧w

R

= ⌧
d

/(M
w

/M
e

), where ⌧
d

is the reptation time (section II B of [3]). However, in our manuscript the Rouse time
is calculated using ⌧

R

= ⌧
d

/(3Z) (as given in section I of [5]), where Z = M
w

/M
e

is the number of entanglements per
chain. This then implies that the values of ⌧w

R

quoted in Table 2 of [3] are larger than the values of ⌧
R

used in our
manuscript by a factor of 3. We then present the data in [3] as di↵erent cases.
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TABLE I. Components of most unstable eigenvector ev
m

for 15 di↵erent initial conditions, for hḃ�i = 200, �0 = 2.5.

Initial Condition evxx
m

evxy
m

evyy
m

1 0.9657 -0.0115 -0.2594

2 0.9767 -0.0131 -0.2144

3 0.9678 -0.0118 -0.2516

4 0.9730 -0.0125 -0.2304

5 0.9632 -0.0112 -0.2687

6 0.9667 -0.0117 -0.2555

7 0.9678 -0.0118 -0.2513

8 0.9636 -0.0113 -0.2672

9 0.9739 -0.0127 -0.2266

10 0.9683 -0.0119 -0.2496

11 0.9675 -0.0118 -0.2524

12 0.9742 -0.0127 -0.2255

13 0.9666 -0.0116 -0.2562

14 0.9613 -0.0110 -0.2753

15 0.9596 -0.0109 -0.2812

Case I: Intermediate Shear Rate, High Strain– Using h�̇i = 0.7 s�1 given in Fig. 1a of [3] and ⌧w

R

= 4.1 s
quoted in Table 2 of [3] (for the sample SBR 250K) gives h�̇i⌧w

R

' 2.9. The sample SBR 250K (see Table 2 of [3]) has
M

w

= 250000 g/mol and M
e

= 3300 g/mol, which gives Z = 76. Then using Z = 76, h�̇i⌧
d

= 200 and ⌧
d

/⌧
R

= 3Z
gives h�̇i⌧

R

' 0.95, which is comparable to the value of h�̇i⌧
R

' 1 specified in case I of the manuscript, this is
consistent with Fig. 1 of [3].

Case II: High Shear Rate, Low Strain– Similarly, h�̇i = 14 s�1 from [3] gives h�̇i⌧w

R

' 57, which is consistent
with h�̇i⌧

R

> 1 given in case II of the manuscript and it agrees with Fig. 2 of [3].
Case III: Low Shear Rate, Low Strain– Again, h�̇i = 0.05 s�1 gives h�̇i⌧w

R

' 0.2, which is consistent with
h�̇i⌧

R

< 1 given in case III of the manuscript, this has close agreement with Fig. 7 of [3].
The shear stresses at the time of shear cessation for the three cases I, II and III are indicated in Fig. s6. In case I,

the shear stress had gone through the overshoot and it is beginning to decrease. In case two, the flow is switched o↵
before the shear stress reaches the overshoot. Finally, in case III the flow is switched o↵ just before the shear stress
reaches the overshoot. Figure 1(c) of the manuscript shows a comparison of velocity profiles from the simulations
and experimental data; the experimental data were obtained from V

max

in Fig. 1c of [3], made dimensionless using
V̂

max

= V
max

⌧/L, where ⌧ = 310 s (from Table 2 of [3]) and L = 0.7 mm as given in section II of [3].
Induction time–To check the variation of the delay time after shear cessation before fracture sets in, we performed

calculations at three di↵erent shear rates satisfying h�̇i⌧
R

> 1 (with ⌧
R

fixed), similar to Fig. 6 of [3]. For hˆ̇�i = 600,
h�̇i⌧

R

' 2.8, hˆ̇�i = 800, h�̇i⌧
R

' 3.7 and hˆ̇�i = 1000, h�̇i⌧
R

' 4.6. In all cases, the applied strains indicated by the
lines l

1

and l
2

in Fig. s7(a), are below the strain for overshoot at the applied shear rate. The overshoot stress is a
linear function of the overshoot strain, as in Fig. 6(a) of [3]. Figures s7(bcd) show that, for varying strain and given
shear rate, the higher plateau stress after stretch relaxation leads to a longer induction time. This characteristic is
similar to the the situation in the inset of Fig. 6(b) of [3].

Figures. s7(e-f) show that for fixed strain and varying shear rate, the plateau stresses collapse, and the lower applied
shear rate leads to a slightly longer induction time for �

0

= 2.2. This can be linked to the faster growth rate !
max

observed for the very high shear rates, in which the viscous contribution to the instability dominates. However, this
behaviour does not match that displayed in the inset of Fig. 6(b) of [3], in which the higher applied shear rate resulted
in a larger induction time. We do not have an adequate explanation for these discrepancies.

II. MOVIES

The movies in https://eudoxus.leeds.ac.uk/dynacop/FracturePage.html illustrate the cases where the fluid
undergoes fracture after shear cessation (Fracture.avi) and recoil without fracture (Recoil.avi) for case I. To
achieve this, an initial condition of the form �

xx

(0, y) = A(cos(⇡y) + � cos(2⇡y)) is used to perturb the system. The
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�ḃ�� = 800

10−2 10−1

0.2

1

t/�d

b
T

x
y

�
0

= 2.2

�
0

= 3.2
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FIG. s7. (a) Shear stress versus strain at the three di↵erent applied shear rates indicated in the figure such that h�̇i⌧
R

> 1 in
all cases, red circles: h�̇i⌧

R

= 2.8, green squares: h�̇i⌧
R

= 3.7 and blue diamonds: hˆ̇�i⌧
R

= 4.6. The dashed line connects the
strains for overshoot and their corresponding stresses for each applied shear rate, while the lines l1 and l2 indicate the applied
strains �0 = 2.2 and �0 = 3.2 respectively. (b)-(f) Stress relaxation after step strains at di↵erent applied strains �0 and shear
rates hˆ̇�i indicated. Parameters as in Fig. s4.

shape and amplitude of this perturbation can be tuned to bring it close to one of the random perturbations which
yields fracture-like behaviour when the component �

xx

is perturbed. The amplitude is fixed at A = 0.006 while the
parameter � is varied to change the shape of the perturbation. The shapes of this perturbation for � = 0.25 and
� = 0.67 are shown in Fig. s8(a).

For � = 0.67, the fluid fractures after shear cessation, the window on the left of Fracture.avi shows the fluid
velocity from startup (with the upper plate fixed and the lower plate moving) to shear cessation and continues until
the end of fracture. Before shear cessation, the fluid is seen to be moving to the left, after which the flow is switched
o↵ and the velocity vectors go to zero momentarily (except with a slight bulge due to the initial perturbation). The
sizes of the velocity vectors before shear cessation are larger than their sizes after shear cessation by roughly one order
of magnitude, hence to make the figure visible in the video, a rescaling of the figure window was carried out after
shear cessation. The velocity profile v in the video on the left was made dimensionless using v̂ = v⌧

d

/L. Then using
⌧
d

= 310 s and L = 0.7 mm (from [3]) gives the maximum size of velocity vectors v
max

before shear cessation roughly
equal to 0.45 mm s�1 and the maximum size after shear cessation is roughly equal to 0.02mm s�1. The velocity profile
during fracture is shown in Fig. s8(b).

The figure window on the right of Fracture.avi shows the corresponding total shear stress T
xy

/G from startup
until the end of fracture. The total shear stress builds up quickly when the flow is switched on, and then just after the
overshoot when the flow is switched o↵, the total shear stress goes through an initial quick relaxation during which
the polymer chains relax stretch. It then enters a slow relaxation when reptation sets in. Although some reptation
had already occurred during stretch relaxation, it becomes the dominant mechanism for stress relaxation after stretch
relaxation. However, before reptation can completely relax the stress, the growing perturbation causes a sudden quick
relaxation of stress. By this time the ‘fracture plane’ is fully developed and the fluid can be seen moving rapidly in
two di↵erent directions on both sides of this plane. Finally when this rapid motion ceases, the stress resumes its slow
relaxation and the material appears to have healed itself.

The case of � = 0.25, where there is no peak in the initial perturbation as in Fig. s8(a), gives a completely di↵erent
relaxation behaviour in the fluid as shown in Recoil.avi. The left window of that figure shows the fluid velocity
from startup to shear cessation and beyond. Like in the case of � = 0.67, the top plate is fixed while the lower plate
moves to the left. After shear cessation, the perturbation is seen to grow for a while but the fluid does not ‘break’ in
two unlike in the case of � = 0.67. The growing perturbation loses the competition against the background reptation
and hence the material heals itself and the fluid velocity vanishes after some time. Like in the case of � = 0.67, the
figure window has been rescaled after shear cessation to make the velocity vectors visible. The maximum size of the
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FIG. s8. (a) Initial perturbation for: � = 0.25 and � = 0.67, as shown in the movies Recoil.avi and Fracture.avi. (b)Recoil
after shear cessation for � = 0.25 and fracture after shear cessation for � = 0.67. Parameters: � = 0, Z = ⌧

d

/(3⌧
R

) = 72,
hˆ̇�i = 200, and �0 = 2.5.

velocity vectors before shear cessation is roughly equal to 0.45mm s�1 while the maximum size after shear cessation
is roughly equal to 0.006 mm s�1. The recoil velocity for this case is shown in Fig. s8(b).

The right window of Recoil.avi shows the corresponding time dependent total shear stress for this case. It grows
quickly from startup like the case of � = 0.67, then decays quickly during stretch relaxation and ends up with a
slow relaxation due to reptation. The stress does not show any stage of rapid relaxation again since reptation is the
dominant mechanism for stress relaxation in this case.

The movies were made with a mesh of 100 grid points to reduce the computational time. The relevant parameters
were Z = 72, bD = 10�5, ✏ = 10�4, � = 0, �

0

= 2.5 and hˆ̇�i = 200, which represent case I described in the manuscript.
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