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1. Introduction

The robustness of control designs is still an active research
area. The work includes assessing the robustness of designed
control system with respect to changes in plant dynamic characteristics
and developing design techniques that guarantee a required degree of
robustness. These problems are of particular importance for the
case where the plant includes significant time delay in its dynamics.
It is well known that the Smith predictor(l) is often used in this
case., The scheme is shown in Fig.2. The design should be robust
enough to cope with the observed plant/model mismatch and to retain
stability in the presence of changes in plant dynamics.

Ingz), a general theory describing the robustness of the Smith
scheme is given. It can be summarized as follows: the Smith predictor
is stable if -

1) The plant component G and its model GA map Uo2 into yom
and their restrictions to Uo2 have finite induced norms. The delay
components T, TA map yom into itself with restrictions to yom of
finite induced norm.

2) The restriction to yom of the "delay free'" mapping

r > UA 4 (I+KGA)~1Kr has range in Uol and finite induced norm.

3 A= ]](1+KGA)'1;<ATGA|| <1 ¢ 2.0 L)
&) a, =1—f—}-\-1— H(I+KGA)_1KTAGH £ 1 e (2)

where K is the forward path controller
AT and AG are the additive perturbations of the model GA
and TA. Which is
= + ... (3
G GA AG (3)

T = TA,+ AT —y



The condition 1) boils down in practice to the requirement that the

plant TG and its approximate model TAGA are open-loop stable. The

condition 2) simply states that the feedback scheme of Fig.3 is
stable in the normal practical sense, whilst conditions (3) and (4)
put bounds on the permissible mismatch.

The result described above has great generality allowing some
distributed, non-rational in G and non-delay elements in T. There
are clearly an infinity of stability criteria derivable from this

result. For simplicity, the author of(z) suppose that G and GA are
rational and strictly proper TFMs (transfer function matrices), that
-ST,
K is rational and proper and that both T = diag{e J}l<j<m and
-5T, . S

= diag{e AJ} are mxm diagonal matrices of pure delay.

4

In this case, the theorem has the following simple form:

1<j<m

If the plant component G and its model G, are asymptotically

A
stable and the delay free feedback system of Fig.4 is input-output
stable then the Smith scheme of Fig.2 is BIBO stable if

L

-1
max sup z {((I+KG ) "K(T-T. )G )..l <1 ... (5)
I<i<p s€d@  j=1 o A A

4

A, = o max  sup 'f l((I+KGA)_1KT(G_GA))ij| < 1 ..4:(0)
1 1<1<g sed j=1 ;
where 3Q is the boundary of Nyquist contour.

In this report, we will first discuss the problem of expressing
the plant into separate form TG in different cases. Then, by looking
at a process control example we will illustrate the choice of
approximate model GA’ TA and their controller K such that the

stability of scheme Fig.4 can be easily guaranteed. In addition,

we will analyse the necessity and necessary condition of including



integral action in the controller. Finally, the robustness of the

design in some cases is discussed.

2, Real plant and their expression

In this report, we assume that the TFM of the real plant is known
and that the time delay of some elements are big (somewhat near the
time constant of the same element). The performance of the normal
feedback control scheme in this case is necessarily bad and to cope
with this problem the Smith predictor is assumed to be used.

The underlying assumption made is that the plant can be expressed
in the separable form TG (see Figl), where T is a pure delay diagonal
matrix, G is a rational and strictly proper TFM but does not have to
be é "delay free" component.

As an example, we look at £ input—2 output system, the TFM of

which is

iy Ty
m?é—e ..(7)
. 28
A lot of plants can be described approximately by such a TFM. The
value of gij’ Tij and Ty may be very different for different plant.

They can be expressed in a separable form by such a means: express T

as a diagonal matrix of pure delays

o R
T = diag {e b e+ (8)
15111152

where the time delay 'Em is the smallest time delay in the ith row

of the plant TFM. Leave the difference of the time delay in the



component G, defined by

G _ gij e—(TijuTim)S (9)
1+T. .S e
1] 2x0
For the 2x2 TFM:
( &11 e-Tlls €12 e_les
1+Tlls 1+T128
... (10)
£21 e'Tzls €22 e“‘zzs
| T#T, 8 14T, 8

We can divide the decomposition into 6 kinds and give the separable
forms as in table 1.

In the 6th line of table 1, G has diagonal form but T is non
diagonal, This is a very particular situation and describes a plant
with large interaction.

We wish to design a forward path controller K for the Smith
control scheme such that the scheme

1) is stable

2) has small steady-state errors (e.g. less than IOZj in

responsé to step demands

3) has small overshoot (e.g. less than 20%)

4) has acceptable interaction (e.g. less than 20%)

5) is robust in the sense that if the plant component G changes

to Gand T to T over a period of time, stability will be

retained provided that the changes G-G and T-T are small enough.



Situation T G
By ™ iy . e_Tlls o V| Bu 12
L. T#T,,5  T9T 8
21 22 -7__S
0 . Yoy €91 822
T, S T4T,5
T £ B e "Hgt vl B TS gy
e @ T+T_ . 5° 1+T S
11 : = g
Ta1 2 T I
. 22t 81 "7 8y |
) [ 14T,,5 , 1+T,,5)
Ty 2 Ty By y ¢ 811 81z (7578
- e 0 1+T,.S 1+T..S°
11 12
21 2 22 ’
o 6—1213 B Bay  ~(Typ7Ty)8
] 1+T218 1+T228‘:
-7, .5 g e & TS S
12 ; 11 11712 12
11 2 T2 g 0 T+T, 5 T+T 8
T < T
2L~ 22 o . 215 81 Byp  T(Tyy7Ty)8
J I+T, 5 T+T,,8
T..o< T . “XpnS . 811 Bp (7708
i & %3 e 0 TS T
Bgy £ Tay o .
5 e‘Tzzs 81 T(Ty17Ty0)8 8y,
L | 1+'1‘2lsE . 1+T228
f11. _ Bn o1t b F Byq
1+1,,8  14L,8 I+T, 8 0
812 8y e"Tzls E'Tzzs o B)o
= L ‘ \
I¥T 8 ~ T4T,,8 T+T_ 8
for all s €D

Table 1



In section 3 and 4, we will discuss the control design problem.
The first stage of doing that is the choice of an approximate model

G, and T,. As described previously, T, is a diagonal matrix of pure

A A

delays and can be chosen as

A

= 8

T, = diag {e Al ... (11)

where TAj have somewhat different values to ij.

It is self-evident that GA should be of low order and simple form

in order to be easy to realize and choose the form of controller.’
In this report, we confine our attention to two kinds of approximate

(3)

model QAi.e.the pseudo-diagonal model and the first order model .

3.  Proportional Control

3.1. Pseudo-diagonal model

For the plant with TFM (7), the model GA can be chosen as

P eee(12)
lgach

G, = diag

1
A 1+0..S
1

(When the time constants in the same line are similar, the ai>0

should be near to the average value of Tij’ j=1,8
G, = P diag)—x (13)
or A lag 1+ajS 1<j<8 T

(When the time constants in the same columm are similar, the aj>0
should be near to the average value of Tij’ i=1,2).

In other words, the dynamic of the plant component is represented
by a diagonal matrix and the interaction is represented by a constant
state interaction matrix P. P can be chosen as G(o) in general to

match steady statesbut it can also be chosen by other means. Then



let the controller be of form

P giag (k.2 (relative to form 12)  ...(14)
1<j<2

K

or

diag {k.} Pul (relative to form 13) wa5(15)
1<j<t

-~
]

The closed-loop TFM of scheme Fig.4 is expressed by (16) or (17)

respectively.

k.
. _ -1 _ s ]
i.e. Hc(s) (I+GAK) GAK diag Tk 7a5 ... (16)
1<j<g

(for form 12 and 14)

or
-1 o ot
HC(S) = (I‘I“GAK) GAK =P dl&g W P ...(17)

(for form 13 and 15)
It is very clear that in both cases the scheme Fig.4 is stable if
and only if kj>-1.
The closed-loop TFM of equivalent Smith scheme Fig.3 is

1

* -] %
Hs(s) =T(I+GK T) "GK 5% q CLB)

*
where K is a uniquely defined linear mapping of Y™ into UR, which iscz)

S +KG & )—1K 19
K = (I KT,G, i C19)

A
The final value of the response of Smith scheme to a step demand,

the Laplace transform of which is %R, is
- * -1 *
Y(x) = T(o) (I+G(0)K (0)T(0)) ~G(0)K (o)R ... (20)

Because of

K*(0) = (1+R(0)6, (0) K (0)T, ()6, (0)) 'K(0) = K(o)
... (21)



and T(0) TA(o) = I ,

vy (146G (0)K(0)) "a(0)K(0)R ... (22)

In the pseudo-~diagonal and proportional control case, if we choose

P = G(o), then the final wvalue is

Y(») = diag iI;%T R (relative to form 12 and 14)
1 1<5<0 ... (23)
or
k.
Y(x) = G(o)diag §1+i. G(o)—lR (relative to form 13 and 15)
1714540 e (24)

We next check condition (5) and (6) to decide the gain that can
be used. It is intuitive that for robustness of the design, the
norms ll and AZ should be less than unity and the smaller the norms,
the more robust the design will be. But on the other hand, from
(23) and (24), the greater the norms and hence the higher the gain kj,
the smaller the steady-state errors. For simplicity, we suggest
that choose the controller gain to ensure that Al < 0.8, Ay < 0.8.

We now do an example as follows.

The plant has been expressed as

e-35x22.85 0 119.3 -62.3
1+812.88 1+9045
T = 3 g &
0 e—35X3S 553 ~108.7
147765 1+7158
L)

and we choose

o~30x22.88 1 B
TA ” , GA - 1+8508 (o)
0 -30x3S 0 1
® 1+750S |
... (26)

and K = G(o)_lk.



Choosing a value of k, we can check the validity of the
condition (5) and (6) at a selection of frequency points covering
the bandwidth of interest. 1f Al or A2 > 0.8, we could then
reduce k in an attempt to reduce Al and AZ. Repeat this procedure
until X, < 0.8 and A, < 0.8. By this means we find that k = 3.0

1 2

is a suitable value and the norms Al and A2 are shown in Fig.6 as
a function of frequency. The closed-loop response of the Smith
scheme are shown in Fig.7. From these we can see that the performance
is acceptable except the steady-state error.

For comparison purposes, we also give the closed-loop response
of normal feedback control scheme of Fig.5 using the same controller.
The benefits of the Smith scheme are self-evident - much less
oscillation, much shorter setting times and smaller interaction

than those of normal feedback control. In other words, by using

Smith predictor the performance can be much improved.

3.2. First order model

The first order model and its proportional controller suggested

by Owens(3) is of form:
G, = (AS+ Al)_l
= .o (27)
K = kAo = Al

where AO and Al are constant matrices
k is a scalar.
For plant which is of TFM (7), we suggest two methods to decide
AO and A1(4) that leads relative small plant/model mismatch. One

method is as



_10_

AT = lim sG(s)
e ... (28)
Al_l = jig e
s-=0

The other is as follows:

Let Al = P (a 2x% constant matrix)
e C2G
AO = diag {a.} A
1<j<e

and hence

G, = (diag{a,}A .S + A )_l = P diag{ 1 1 v s s 30}

A 18 1 T+a.S .

1 1=328

It is clear that (30) is identical with (13), so it is suitable
for the case where the time constants Tij in the same line are similar,
and the uj>0 should be near to the average value of Tij’ j=1,8.

The little bit different form with (29) is

Al_l = p
: 4 :.031)
A = A, diag {a.}
o} 1 1<i<p
and
G, = diagl 1+1 =) P e (32)
Otj 1<j<t

The form (32) is identical with (12) and can be analysed in the same

way. Like in subsection 3.1, P in general can be chosen as G(o),

when
B, = Glo} Fapl == } (33)
e iag{ 77— e
T lsjw
or
¢, = diag{ ——1  G(o) ... (34)
A 1+a.8
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It is trivially verified that the closed-loop TFM of scheme Fig.4
13(3)

_ -1 - =
H(s) = (I+,K) "6k = —=— {I

5 T A Al} v« (:35)

S0 the scheme Fig.4 is stable if and only if k>0.
The closed-loop TFM of Smith scheme Fig.3 is of course the same form
as (18) and (19). The final value of the response of Smith scheme

to a step demand R is

(1+6(0)K(0)) "G (0)K(0)R

Y (o)

(T+G(0)A | = G(o)Al)“l(kc(o)AO - G(0)AR  ...(36)

If AI is chosen as G(o)hl, then

_ “1, ool
T(=) = (T+kA A - 1) (kA TA - DR

- 1,1

ol - R F T W ... (37)

The validity of condition (5) and (6) can then be checked by the
similar means with section 3.1 to decide the largest gain k that can
be used.

For plant (25), for example, we use formula (28) and find

8.79 ~3.95 0.01137 -0.00646

4.128 -8.37 0.00573 -0.01237

208, A2<0.8 and the norms

A and AZ are illustrated in Fig.8 as a function of frequency.  The

The suitable k is 0.005 to ensure Al

closed-loop response of Smith scheme and normal feedback scheme are
shown in Fig.9. It is of the similar manner with pseudo-diagonal

model (Fig.7).



- 12 -

From Fig.7 and 9, the common defect of the Smith scheme with
proportional control is that the steady-state errors are too big.
This is because the theorem is a "small gain theorem"(z). In other
words, norms Al and Az will tend to become small as the gains in K
are reduced to zero. It is clear from (23), (24) and (37) that when
the k becomes small the steady-state error is necessarily big.

To offset the steady-state error, the integral action should be

included in the controller. This is discussed in the next section.

4, Proportional Plus Integral Control

4.1. Necessary conditions

In this subsection we will indicate that the possibility of
including integral action in the controller is related to the model/
plant mismatch and the steady-state performance of the model. To
achieve this, we make the following observation. When integral is

included in the controller, lim K = «, and

s=0
% -1
lim A, = max 1lim l((I+KG ) "K(T-T,)G )..|
50 L l<i<g 520 j=1 4 ATATL]
& £
= max .Z [(cA (o)(T(o)—TA(o))GA(o))ij|
1<1<4 j=1
= s+ (38)
: -1
lim A, = max lim ) | ((1+KG,) KT(G-G,)). . |
) 1<i<g §0  j=1 1
. -1
= max ) | (e, (o)(G(o)—GA(o))ij| PR
1<1<8 j=1
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To satisfy condition (6), the necessary condition is
L

max E ](G

-1
(0) (G(0)-G,(0))..| <1 o5 (40)
l<i<g j=1 A ljl

A
In other words, this is the necessary condition to include integral
action in the controller. When we choose GA such that GA(O) = G(o)
(for example, choose P as G(o) in formula 12, 13, 29 and 31, or use
formula 28), the condition (40) is always satisfied and hence the
integral action can always be included in the controller.

The final value of response of the Smith scheme to a step demand
R is

Y(®) = 1lim (I+GK) 'GKR = R .o (41)
s=0

because lim K(s) = o, This means that no steady-state error exists

s+0
if integral action is included.

4.2. Pseudo-diagonal model

When model GA is chosen as (12), the controller can be of form

€y
£ o= B dias | kg o+ ?} } s C42)

The closed-loop TFM of scheme Fig.4 is

-1
HC(S) (I+GAK) GAK

k.S + ¢c.
diag{ —— J } v (43)
ujS +(1+kj)s+cj 1<j<g

When we choose GA as (13), then controller can be chosen as

C i
K = diag tk, + =L} P! oo (44)
d ® 1<i<e
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The closed-loop TFM of scheme Fig.4 is

k.S+c. -1
H (s) = P diagf % J }ooop ve o (45)
qu +(1+kj)S+cj

1<j<®

In both (43) and (45), the scheme Fig.4 is stable if and only if

k., > =1 § G 0
d J

Then the validity of condition (5) and (6) are checked by giving
some value of kj and cj in a similar manner to 3.1. For plant (25),
using model GA (12) and P = G(o), we find that kl = k2 = 1.5,
¢, = C, = 0.003 are the suitable gain values. The norms Al and kz
are shown in the Fig.l0 and the closed-loop response of Smith scheme
is illustrated in Fig.1l. The response of normal feedback scheme
using same controller is shown in the same graph for comparison.

The performance of the Smith scheme is good enough and just as we
expect, the steady-state error becomes zero. The overshoot and
interaction are both acceptable. Comparing two responses in Fig.ll

we see again the benefits of Smith scheme over the normal feedback

control.

4.3. First order model

The model GA can be chosen by the same means with subsection 3.2.

(3)

As suggested by Owens , the controller is of form

ke
K = (k+c+ ?;-)AO A1 ... (46)

The closed loop TFM of scheme Fig.4 is

{kcI+S((k+c)I~AO_lA1)} e (A7)

_ 1
HC(S) " (s+k) (s+c)

It is clear for any k>0, c¢>0 the scheme of Fig.4 is stable.
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For plant (25), using model (28) and controller (46), the
norms Al and Az are checked in the same way as section 3.1. A
suitable gain value can then be found which is k = 0.004, ¢ = 0.00085.
The corresponding norms Al and Az are shown in Fig.l2 as a function
of frequency. In this case, the response of Smith scheme and
normal feedback control are illustrated in Fig.13.

The performance of Smith scheme is good enough to satisfy all
specifications described in section 2.

Summarizing subsections 4.2 and 4.3, we can say that the design
of proportional plus integral controls for the Smith scheme using
pseudo-diagonal and first order models is successful.

In Fig. 7, 9, 11 and 13, the output of predictor ZA are shown

by dotted line) in the meantime. That indicates physically how the

Smith scheme can improve the performance.

Dis Robustness

The design described previously should be robust in the sense
that, over a period of time, the real plant TG changes its dynamic
characteristics to ié, the Smith scheme is still stable if the change
is small enough. Reference (2) gives a theorem, which is:

If both T and G are BIBO stable, then the Smith scheme will
retain its BIBO stability if

(i, Y%
1 z ... (49)

3G + |ld-ne| < ~
| v k]|

Even though this theorem provides an upper bound on the change of

plant dynamic characteristics, it is too conservative sometimes.

For example, if the plant changes such that G = GA and T = TA, it is
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well known that the Smith scheme is stable. But in this situation,
condition (47) might not be satisfied when model/plant mismatch is

big in controller design. In this report we prefer recheck condition
(5) and (6) to investigate the robustness because it is less

conservative than condition (47).

5.1. When G changes

The change of G may often occur either because the change of
gains or of time constants. But we here 1look at another case where
G changes such that one element of which is of additive time delay.

We still use example (25) and suppose G changes to be

119.3  —(m~-1)x35x22.8S -62.3

i 1+812.85 © 1+904S

¢ = 55.3 -109.7 | -0
1+776S 1+7158

where m>1, is a scalar constant used to represent the change of time
delay. In other words, the plant changes are such that they are of

different time delays in the same line and can be expressed as 2nd

line of table 1. Suppose also that no change occurs in component T,
The approximate model GA’ TA are exactly the same as (26) and the
controller is designed as in subsection 4.2, i.e. kl = k2 = 1.5,

e = c2 = 0.003. We then recheck the condition (5) and (6) and

illustrate norm A and A

1 in Fig.l4 regarding m as a parameter. It

2

is expected that no change will occur in norm ), and that, the greater

1

the m value, the more evident the change of ) From Fig.l4 we

9
can see that the design allows 15% increase of time delay in the

(1,1) element.
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When G changes by changing of either gains or time constant,
we can check condition (5) and (6) by similar means and determine
if the change is allowed or not.

If the robustness of design is not enough for application, we
can increase it by reducing the gains of controller or improving the

model GA and TA.

5.2. When T changes

We consider the situation where the time delay of the plant
changes. The example is the same as (25) and (26). It is clear
that if the time delay of T decreases, then (T_TA) will become
and hence A, will decrease and the

a5 1

stability still holds. So we observe the other case where Tj

'smaller' until |%jf < |T

increases to be Tj.

Let us suppose that no change occurs in G and that T changes

to be T, where

e—mx35x22_88 e~30x22.88 0

e
]
L

]

e a —
0 " mx35x38 | A 0 o 30x38

The norm Al and Az are shown in Fig.l5 regarding m as a parameter.
Because the change of Tj effects both T and AT, so both Al and Az

changes as expected. The greater the value of m, the more evident

the change of Al and Az. From Fig.l5 the limitation of change of T

can be found.

As stated previously, the robustness of design can be increased

by reducing the gain of controller or improving the model.
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6. Conclusion

The report has considered the robustness of design problems for
Smith control scheme for multivariable cases. Because the theorem
of reference (1) is of great generality, the plant can be expressed
into separate form in most cases. Some technique of choosing model

G,, T, and controller K has been given for multivariable process

A’ TA

control. The technique has an evident benefit of simplicity and
hence is easy to use. By looking at an example, we illustrate that
the technique of design is successful. Compared with the normal

feedback control scheme, the benefits of the Smith scheme are self-

evident.
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Fig.3. Equivalent Smith Scheme

Fig.4. Delay-Free Control Scheme
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Normal Feedback Control Scheme
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