The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Application of Time-Domain Analysis in Process Control Using
Approximate Models.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/76437/

Monograph:

Owens, D.H., Wang, H.M. and Chotai, A (1982) Application of Time-Domain Analysis in
Process Control Using Approximate Models. Research Report. ACSE Report 224 .
Department of Control Engineering, University of Sheffield, Mappin Street, Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

APPLICATION OF TIME-DOMAIN ANALYSIS IN

PROCESS CONTROL USING APPROXIMATE MODELS

by

D. H. Owens, B.Sc., A.R.C.S, Ph.D., A.F.I.M.A., C.Eng., M.I.E.E.
and

H. M. Wang *
and

A. Chotai, B.Sc., Ph.D.

Department of Control Engineering,
University of Sheffield,
Mappin Street, Sheffield. S1 3JD.

Research Report No. 224

December 1982

This work is supported by SERC under grant GR/B/23250

* Visitor on leave from Shaanxi Institute of Technology, China.



1, Introduction

Controller design for multivariable systems whose models are unknown
or highly complex are frequently based upon the use of a simple, approximate
and very often rough-and-ready model. References (1)(2)(3) give both
frequency domain and time domain design techniques using approximate models.
These techniques require only a knowledge of a plant's open—loop step response
Yo(t) from any source.

This report continues the theme of Ref.(4) by using the time domain
design method. The frequency domain techniques suffer from the general
problem of the frequency domain methods, i.e. it is difficult to make pre-
dictions about the details of the closed-loop transient performance if the
real plant model are not available. The use of time domain methods in
stability assessment is unusual but it may have some advantages over frequency
domain method, particularly in the multivariable case. In the examples
considered in this paper it gives less conservative designs and only requires
simpler calculations than that in the frequency domain. A more important
benefit of time domain methed is, however, the possibility of providing bounds
on the deterioration in predicted transient performance to be expected due
to the approximation used.

For convenience's sake we summarize the techniques of time domain
described by Ref. (2) and (3) as following:

Suppose that the controller K stabilizes the model GA (Fig. 1b) and that
simulations are undertaken to reliably calculate the matrix

BT & (2)
W, () = W, (€)5eeeentl, " (1) |

Where WA(J)(t) is the response from zero initial conditions of the system
(1+KFGA)_1KF to the input vector E(J)(t) defined by
1 2
B ey, 2P | (1)

E(t) = ¥, () - ¥, (1) =



-.2...

Where Yo(t) and YAO(t) are open-loop unit step responses of real plant
and approximate model respectively.
Then the controller K will stabilize the real plant G (Fig. la) if
(a) The composite system KF is both controllable and observable and
(b) The following inequality holds.

vl | (2)
where y is any available upper bound for the spectral radius Y(NE(WA))

and Ni(f) is a norm defined by

) . K" (1) .
N (£) = sup(|f(o™)| + ¥ [ECt)-f(e, )] + |f(T)-f(tk)| ) (3)
T>0 k=1

*
where ( = t0<t1<t2< ++.. are the local maxima and minima of f and k (T) is the

largest integer satisfying t =T,

k

Moreover an alternative result can be derived if the following inequality

holds
YD (V,))<1 (4)
where
t T 7
v, () = g Hp(t=t ) H . (t))de’ (5)
and

(a) the demand signal R is the response from zero initial conditions of a
mxm stable system Ho to the step vy(t)=o, t>o
(b) Y(O)(t) is the response from initial conditions of an mxm stable, proper

system H, to the step y(t)=R, t>o, and

1
(¢) n(t) is the mxl vector defined by the convolution integral

t
n(t) = i HE(t"t'){HKHO(t')u - HKFHl(t')B} dr' (6)

Under these conditions for all €>0, the response y(t) of the real feedback
scheme Fig. la from the zero initial conditions to the demand R(t) satisfies

the bound ]Yj(t) - Y(13 (t) ] 5_ej(t) 1<j<m (7)



£
where 1(t)
ey = | 1| Eaalon Wegsw [y P ey enl @
& (£) S LE ’
BNk

and Y(l)(t) = YA(t)+n(t) where YA(t) is the known respomnse of Fig. 1(b)
from zero initial conditions to the demand R.
In formulas (5) and (6), HE(t} has the form
- (1) (%)
(0 = (1" 0.0, M o) | (9)
where HE(J%t) is the response from zero initial conditions of the proper

system (I+GAKF)_1 to the jth co lumn E(J)(t) of the error matrix E(t).

HKF(t) is the gxm impulse response matrix of the composite system KF,

HKFHl(t) and HKHb(t) are the impulse response matrices ofKFHl and KHO
respectively.
If we choose H =1
o m

(Im+GAKF)_1GAK (i.e. feedback system Fig. 1(b))

2=l
i

a = B
then Y(o)(t) = YA(t) (10)
So I[Y(l)(t) - Y(o)(t)Hp in (8) is replaced by !In(t)l|p and hence
plu] = (I« NE(VA))“1 NE(VA) §52'<I” n(e) || . (11)
Throughout this report we shall assume that this is the case unless otherwise
stated.

In this report, we first consider some examples to illustrate the
application of these design techniques. Also, we will point out that in some
cases, a less conservative result can be obtainea by using time domain method
than that by using frequency domain method. In section 3.1 we will give an
improved bound, the use of which provide a more accurate prediction on the

transient performance. Moreover, a less conservative necessary condition

for including integral action in the controller is derived in section 2.3.1.



2 Stability Assessment

2.1 Example Plant and Fheir Approximate Model

As ref. (4), we consider a multivariable plant that has an "unknown"

transfer function matrix (TFM)

“T 8
G By + (12)
T8 +1°
“ J Lxm
and the two particular examples
" 1564 ~18.68 6.3 ewla,es
,(s) = 812,85+1° 904s +1 (13)
55 § e—ll&s 109.7 e—17.5s
766.38+1 7155+1
. )
[ -3.78 ~2.92s
119.3 " - 124.6  70F
%, Cad = 812.85+1 9045+1
2 (14)
0.7 __ T8 4099 733
766, 35+1 7156+1
X )

(Gl is of less open-loop interaction but longer time delay, and G2 is of
more open—loop interaction but with smaller time delay.)

We wish to design forward path controller K using a simple approximate
model to guarantee the real feedback system is stahle and has certain perform—
ance specification. In this section we focuss our attention to the stability
problem and leave the performance assessment to sectionm 3.

As stated previously, the open-loop responses are assumed given from plant
trials or model simulations. Throughout this report we also assume that G(s)

is both controllable and observable and GO) or Sfo(w) is nonsingular.
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Following Ref. (4), we can choose approximate model as table (1).

Table (1)
No. pseudo—diagonal model No. EFirst order model
G. = (AS+) "
A o} 1
1
G, = diag { 1 P &
1 # 1#ne 1 A L lim s G(s) (or dY )
) = S0 =__‘2
| dt t=0
: where ¢ 1s a scalar constant
P is a constant matrix i | .
A, = lim G(s) (or = Y (=))
s+o0 o
G, = (A S+ ) !
A o 1
2 |6 =di 3 G(0) Real (G (iw)) A, (see Ref.4)
A iag TiaTa o 2 e iw)) —-A; see Ref.
J
where «. are scalar constants s (G_l(iw) B m
‘] (e]
A =G(o) ! (or = Y (=))
1 fe}
o o
A
o o M
2
A, = 6(0) (or = Y ()
1 or o
4 A by iterative choice
2.2 Proportional Control

As an example, for the real plant Gl(s), we will choose the first order

model No. 1 (see Table 1) as the approximate model. Which 1is



( 119.3 62.3 ) (8.79  -3.95
Al | B1Z8 904 i
o) - (8)
55.3 109.7
766.3 15 i 4.128  -8.37
~ ) ~ J
119.3 -62.3 r0.01137 ~0.00646
A__]-: A = ’
1 1
55.3 -109.7 | , 0.00573, -0.01237

~

The open-loop response error E(t) are shown in Fig. 2.
Choose the controller to be of the form(S)'
K= kAo = Al (15)
and supposing that F = T, Then we can calculate

W, (t) = - (I+KFGA)_1KFE

=37 «e, 6 e

A
gl -1, -1 -1
=4 6, " (6, ) T xm
-1 -1
-4 (ST+A)A ") (kA -A))E (16)
S+ k

Because we just know E(t) in date form in general rather than in transfer
function form, so E can be considered as a sequence of impulse in calculating.

We then check condition (2) to decide the largest gain k that can be used.
In general, the smaller the spectral radius Y is, the more robust the design
will be. The bigger the value of y and hence the higher the gain, the faster
the response and smaller the steady-state error.. For simplicity, we choose our
design to ensure that v<0.8 (choosing v = ¥y (Ni(WA)). By this means we get the
largest gain that can be used to be approximately k = 0.013. The response WA

is shown in Fig. 3 with the norm :



-7 =

0.659 0.056

g

NW(WA? = spectral radius y(Nz(WA))= 0.78
0.809  0.405 | ,

The closed-loop response of both real system and approximate system are

shown in Fig. 4. The response bend, i.e. the bend between
Y. #* ntg

can be calculated from formulas (5) - (11) and are shown by dotted line in the
same figure. From there we can see that the bend is too wide to give a
usefully accurate prediction of response. We will discuss this problem in
section 2.4,

2.3 Proportional Plus Integral Control

In most cases the pure proportional control system generates steady-state
error particularly in low gain control. To offset the steady-state errors,
integral action should be included in the controller.

2.3.1 Necessary Condition for Inclusion of Integral Action.

The necessary condition for the theory to enable the inclusion of integral
action in the frequency domain approach is given as following (Ref. 4).
-]
Y(Il G o) E <1 (L3
e, ol el
Here we consider this problem from time domain view-point. When choosing
y=Y(N:(WA)), condition (2) becomes
P
’Y(Nm(WA)kl (18)
It is clear that
N )z || W, @)
o AT A P
and hence
E o
YL @y ([ W@ (19)
Then the necessary condition for satisfying conditionm (18) is that
vl W@l <1 (20)
By definition,

W ey =L T ) TRees)-¢, () 3 (21)
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So the final value of WA is

W, (=) = Ll,f: W, (t) = if:: s. (I+KGA)‘1K(G(S)-GA(3)) -é
= (I#K(0)G, (0)) ™K (0) (6(0) G, (0)) (22)

But in the other hand

M@==S§Euy=;§s.<mwﬂﬁw>§=cw»cgw (23)
substituting (23) into (22), we get

W, (=) = (T4K(0)G, (0)] "K(0)E(=) (24)
or

W, (=) = U(0)E(=) (for brevity)
where

U(s) = (T4K(s)G,(s)) 'K(s)
The necessary condition (20) is then

vl vz | H<a (25)
when the controller includes integral action, lim K(s) = =
then e

U(o) = GA(o)_l
so the condition (25) replaced by

vll 6@ LB || 3y (26)

This is the necessary condition for including integral action in the controller,
because it is clear that

Y(|!GA_I(O)-E(”)l|p)§_Y(!fGA_1(0)||p-i|E(m)|[p)
and hence the condition(26) is less conservative than (17). In other words,
using the time domain method the integral action is more easily included in
the controller than it is in the frequency domain method. If we choose GA
such that G(o) = GA(o), then E(~) = 0 and hence (26) can always be satisfied,

i.e., integral action can always be included in the controller. This point

is the same with ref. (4).
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2.3.2 For Pseudo-Piagonal Model

As an example, we choose the pseudo-diagonal model No.2 to approach

the real plant Gl(s). i.e,

Bl
G, = diag “1+a.s G(o) (27)
A ]
where
119.3  -62.3 o) = 850
G(o) =
55..3 -109.7 s az = 750

The open—loop response error are shown in Fig. 5.
Choose the controller to be of the form
' T @,
K = G(o) = diag {kj + 3} (28)
S

and hence obtain

(o) =f _1(I+KGA)_1KE

‘i_l(I-I;G( )_ld' {k +c-:-i} diag ¢{ 1 4 G(o)‘1 G(o)_l diag{k. +
- o iag 4% g 1+ﬁjSI ) iag :

& ;

_J:, E

5 }
- G(O)_li ~¥ diag {(1+aj8)(kjs+‘cjl } E (29)

a.52+(1+k.)S+C.
J J 3

As stated previously, E can be handled as a series of impulse in calculating.
By the same means described in section 2.2, gains kj and cj can be obtained
to satisfy Y(NE(WA))ﬁp-S g T

kl = k2 = 5.8

©1 7 %

The response WA(t) is shown in Fig. 6 and has norm

il

0.003
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0.527  0.147
P
N, (W) =
0.734  0.373

The spectral radius is
P
y(Nw(wA)) = 0,79
The closed-loop response of both real and approximate system and the
response bend are shown in Fig. 7. Note that we again suffer from the
problem of wide error bands.

2.4, Discussion

For purpose of comparison, we summarize the computational results in table
(2), where the frequency result are quoted from Ref. (4).

From table (2) we can see that for Gl’ (i.e. less open-loop interaction
but larger time delay), the time domain method produces much less conservative
result, The gain can be used is about twice of those obtained by using
frequency domain method.

In contrast for G2, the difference between the results of two domains is quite

small. Clearly, frequency domain methods may sometimes procure less conser-—
vative results than those of the time domain techniques. It depends on the
error matrix and the form of model and controller. Despite the general proof
of the conclusion has not been presented, it is the authors' opinion that one
should use both time domain and frequency domain as the frequency domain ideas
are more familiar and give better insight into system robustness.

Now we give a short discussion of the robustness of the design. The

design is said to be robust in the sense that if the plant change to a "new

-~ -~

plant" G with step response YO, stability of scheme Fig la will be retained if

-Y 1 N
(YO O) is small enough

A ~

Suppose that the error matrix (YO—YAO) for the new plant is E, and

~

W, (t) = ] Lo

2 ke (30)



- Tl =

No. Model!. Controller Frequency Time domain
domain
For G1
pseudo~diagonal P control
1 3 k=2.3 k=5.0
1 =]
G,= 0 G(o) | K=G(o) “{k}
A |1+800S P
1 v(s)=0.8 Y(NW(WA))=O'79
©  T+s00s
2 \ P + I control k1=k2=2.8 k1=k2=5.8
: 0 f €3
G,= [1+850S G(o) | K=G(o) “diag{k,+<} |c,=c =0.002 | c.=c.=0.003
A 1 j s | 1 =2
0 r—————anees
147508, v(8)=0.8 Y(NE(7,))=0.79
3 First order P control
GA=(AOs+A1)"1
- k=0.006 k=0.013
A T=1limsG(s) =kA =-A
O o1 Y(s)=0.8 YN (W,))=0. 78
-1_ @A
Al =G(o0)
=]
4 GA=(AOS+A1) p+L control
k=0.004 k=0.0085
0 ¢ ke
A =[“1 '}A K= (k+CH)A —A) ¢=0.0003 c=0.0003
o 1 s’ o
0 o ¥(8)=0. 83 YO (7,))=0.79
-1 o, = 770 A
A1 = G(o)
0y = 800
For G2
5 GA = (A S+A )—1 p+I control
o 1 k=0.0037 k=0.0040
=50 52
A=
© ke
= K=(k+c+ —)A —Al c=0,0001 c=0.0001
-55 50 5 ° '
=1 P
A, "=G(o) Y(s)=0.8 Y(N¥ (W,))=0.78
6 GA='(AOS+A1)_1 p control
y = [7.97  -52.16 k=0.0037 k=0.0038
)
54.59 -55.68 K=kA -
¢ o Al NP
Y =0, =0. 8
o 7.5 -114.7 WE0.8 Y, (W,))=0
Al =
112.4 -115.7 J
Y
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> ; o
The norm of WA can be easily found and, for simplicity, represented as

P D
Nm(WA) k] uNm(WA) (31)

Where p is a scalar constant, the value of which indicates the magnitude of
the change in the plant.
WA is the response matrix to the "original" error matrix that is used

in the controller design.

It follows that the spectral radius is

YA W,)) < w2 w,)) (32)
o™ A o™ A
and that the largest value of p permitted is given by
1
BE (33)
)

where AO=Y(NE(WA)) is the spectral radius that is used in the controller
design process.

Formulas (31) and (33) give in fact a numerical limit to the change in the
plant that guarantee that the scheme of Fig. la is still stable.

For example, if we use the gain value obtained by using frequency

domain (see Table 2) for plant G,, but check the stability condition by

19
time domain (The reason of choosing lower gain will be mentioned in section 3),
the spectral radius y(Nz(WA)) is about 0.5. That means NZ(WA) can be twice of
NE(WA) and the real system will still be stable. By checking the condition

in both domains, we get more confidence about the robustness of the design.

3. Performance Assessment

3.1 TImproved Bounds on Transient Performance Deterioration

As stated previously, (8) or (11) gives a bound to limit the performance
deterioration due to the approximation. But from Fig. 4 and Fig. 7 we can see
that the response band is too wide to give a usefully accurate prediction of

the real system response.



Y= 1 -

The partial reason of the presence of wide band is because the gain is
too big. It is trivially verified that when the gain increases, the Ni(VA)
and n(t) increases and hence e(t) increases (see formula (11)). 1In other
words, the use of higher gains necessarily leads to wider response bands.
So, in the following design (see section 3.3) we prefer to use a lower gain to
ensure that the response band is rather narrow even at expense of transient
performance.

We next noté& that e(t) monotonmically increases as time increases. This
is unfortunately not appropriate to the response in practice, because, for a
‘stable system, the closed-loop response approaches its steady-state value when
time approaches the setting time. In the particular case when integral action
is included in the controller, the final value of both YA and Y are unity
(for unit step input) and hence the value of deterioration due to the approximation
appraoches zero as time approaches the setting time. That means that it should
be easier to predict the performance when time is near to the setting time.
On the other hand, it would be useful to get a accurate prediction to the final
value of the response (because the steady-state error is one of the most
important performance specification). Any way, there is the necessity and
possibility of modifying the theory to decrease the size of ¢ and, in particular,
to remove the property of monotonicity. In this direction, we have got a
"improved bounds'" which is stated as foolowing. (The proof of which will be
given in a future paper).

Under the condition stated in section 1, suppose that

H =1
o}
s it
H) = (I+GAKF) G, K (34)
a = B
then the response bounds are given by
v, - YJFl)(t) | <5 (35)

where

(1)
Yj (t) = YA(t) + () (36)
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and

e(t) = B_l(I—NE(BVA))_lNE(BVA). sup  |Bn(t")] (37)
o<t'<t

In formula (37), B is a diagonal exponential function matrix. i.e.
o:t
B = diag {eJ ] (38)
where aj can be any real value.
The only condition to use (35) —(38) is that
P
Y(NEBY)) <1 (39)

3.2 Some Analysis about n(t)

We note that n(t) plays an important role in the response band. In fact
Yl = YA + n
is the central line of the response band. So n represents the difference
between YA_and the central line of response band. Here we give a simple
analysis about n(t), in particular, its final value n(=).
From (6), we can immediately get

n(s) = HE(S)* HC(S) (40)

where

Ho(s) = (I46,(s)K(s)) E(s)

1 (146, (s)K(5)) "1 (6(s)-C, () (41)

Hc(s) is Laplace transform of {HKHOu - HKFHIB}

when we choose HO,HI;G and B as in (34) we obtain

Hc(s) K(s)(I—Hl(s))u

n

K(s) (1~ (146, (s)K(s)) G, (s)K(s))a (42)
where o is a constant vector.

It is trivially verified that the final value of n(t) is

n

n(=) = lim §n(s)=(146,(0)K(0)) (6(0)=G, (o)} H_(0)

50

(1+6, (0)K(0)) T (G(0)=C, (0)) "K(0) (I-¥ , (=) (43)
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where YA(m)=(I+GA(0)K(o)f1GA(0)K(0L_ it is the final value of closed-loop
response for unit step input of Fig. 1(b).
We then analyse the following cases:
(1) If choose approximate model such that

G(0) = G, (o)

it is then clearly true that

n(=) =0

(ii) When G(o) # GA(O)’ but integral action is included in the controller,

I and hence

Il

then YA(w)

n(=)

0

(iii) When G(o) # GA(O) and no integral action is included in the controller,
then n(x) is a non zero vector, that is

n(») = (I+GA(0)K(0))_1(G(o)—GA(o»K(o)(I-YA(m))a (44)

3.3  Procedure of Application

Suppose the stability assessment has been done by means of section 2.
Then turn our attention to find the response band. As as example, choose a
first order model as the approximate model and use proportional plus integral
control. The form of model and controller is exactly the same as No 4 of
Table 2, but the values of the gains are chosen to be the same as values
obtained by using frequency domain analysis, i.e. k = 0.004, C = 0.0003.
The open-loop response errors are illustrated in Fig. 8. These gain values,
the spectral radius is

NC(W,)) = 0.4317
YN, (W,)) = o.

Obviously the gain can be sonewhat increased from stability view-point,

but we prefer to use these value for obtaining a rather narrow response band.

The procedure is as follows:
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(1) Calculate VA(t) by formula (5)

t
v,(e) = Tl e R (e ae! (45)
where
H(t) =i_1(1+GAK)—1E(s) (46)

or equivalently

i"l(GA"1+K)"lc -1E

Hy (£) A

=I_1(AOS+fk+'o'+ ;o,k—c- )AO)_I(AOS+A1)E
o FL s -1
=7 GTO @y (ST*A, A)E (47)

In practical calculating E can be handled as a sequence of impulse.

When F = T

ke-A

B =l_1((k+c)Ao—Al + o

= ((k+c)A0-A1)-6(t) + kc-Ao-H(t) (48)
where 6(t) is unit impulse function (§(t) may be considered a square wave,
the area under which is equal to unity,) H(t) is unit step function.

The convolution integral can be approximately calculated as follows:

N-1
v, (L) = .Z HE(t—lﬂt)HKF(lAt)At (49)
i=o
£y
where At = T it is sufficiently small compared with the smallest time

constant, t1 is the largest integral time.

HE(T) =0 for Tt<o.
By this way, we get VA(t) which are shown in Fig. 9. From these the norm
NE(VA) and spectral radius Y(NE(VA)) can be calculated as following (It is not

necessary in this stage)

0,116 0,068
ND(V,) = Y(NZ(V,)) = 0.368
0.336 0.276
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The value of Y(Nz (VA})is near to the values of (NE(WA)).

Y

(1i1)

Calculate n {t). Its general form is

n(e) = £ H (et ){Hm (t') gy (£ Yae (50)
For the case of H =TI, F=I, =R, and H -(I+G K) A

HKH = HK(t) which is found by (48)

H‘KH i K(I+G K) GK
-1 lK(G RS

_ (k+c)s+kc s (k+c)s+ke _ , -1
i (S=———4 -A) TET) ( . A TA) (51)

For our example, n(t) is shown in Fig. 10.
Calculate response bound ¢
(a) We first take aj = o0 and calculate € by (37) (in this case it is the
same with (11)) to get the "original bound" Eo(to distinguish the
"improved bound'")
(b) We next give a real value of aj(which can be either positive or
negative) and calculate el(t) by (37). Meanwhile check if

Yy (aiag (&35 v))<1 (52)
holds. If it holds, then & is one of the bound. If not, ignore

1

that part of ¢ More precisely, if

1

Y(Nt],? (diag (e“jt_')vA(t'))) =1 (53)
then ignore el(t) for tat'
(c) Repeat procedure (b) to get Eﬁ(t) for a variety of choices of aj.
The value of dj should be chosen such that €; becomes as small as
possible under the condition (52)
(d) The improved response bound e is

g = inf €y

for all i

By this means, the improved bound can be found. For our example,

the original and improved bound are shown in Fig. 11. We can see from there
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that the size of the bound has been evidently decreased, particularly
when the time approaches the settling time.
(iv) Calculate the closed-loop response and their bound.
For this example, the closed loop response of approximate system
is
5 (keTes((cve)T-A ~A)} = (54)

A a[ (s+k)(s+c
The upper bound 8 is

ARl PR (35)
and the lower bound Y, is
Yo = Yytn-e (56)

When the TFM of the real plant is known, the closed-loop response of
the real system Fig. 1(a) y can be found by any means.

Fig. 12 shows the closed-loop response YA’ vy and the response bound
¥ and Y

By the same means, we can apply the same calculations to system No 2
and No 3 of Table 2. The value of gains are the same as those obtained by
frequency domain methods, which are represented in 4th column of Table 2.
(These two systems were calculated in section 2.3 and 2.2 respectively.

When we use the higher gain value, their closed-loop response are shown in
Fig. 7 and 4 respectively). The closed-loop response and response bound
are shown in Fig. 13 and 14 respectively.

Comparing Fig. 13 with Fig. 7 and Fig. 14 with Fig. 4, we can see the
response bound has been evidently improved by using the improved bound method
and decrease the gain value.

From Fig. 12-14, we can say that the theory is a useful aid in stability
and performance assessment. The controller design using time domain method
is successful which is also indicated by the similar stability and overall
dynamics characteristics of the real and approximate schemes and the rather

accurate prediction on the response.
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3.4 A Note to The Improved Eound

Even though we can evidently decrease the response bound by using

the procedures (a)-(d) described in section 3.3 in most cases, sometimes

difficulties may occur. In that case, the response bound can not be decreased
very much. For example, using ﬁo. 5 approximate system of Table 2 for GZ’ we
do the same calculation with 3. 3. The origiﬁal and improved bound are shown
in Fig. 15. That is the best improvement that we can do. The reason may

be because that GZ(D)—l is bad conditioned (the eigenvectors of Gz(o)_1 are

more Skew than those of Gl(o)-l. But a useful general analysis of this

problem has not been achieved yet. The closed-loop response and this bound

are shown in Fig. 16. We can see the band is much wider than those in Fig.12-14,

4. Summary and Discussion

(1) In this report, controllers for multivariable process plants have been
designed by using a time domain method. The chéosing of the approximate model
and the form of controller are same as Ref. (4). In some cases the use of time
domain method may produce less conservative results than those using frequency
domain methods. So the authors suggest that one should parallelly use the two

domains method to check the stability criterion and hence to know how robust the

design is.

£2) The more important benefit of time domain method is that it can provide
a response bound to predict errors in the response of the real system. In
section 3.1 an improved bound method has heen outlined. By using the improved

method a more accurate bound can be found in most cases.

(3) In section 2.3 of this report, a less conservati?e necessary condition
for including integral action in controller is derived. In other words, using
time domains method, the integral action is easier to be included in controller

than it is by using frequency domain method.
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Fig. 1 (a) Real and
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