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Abstract

Least squares parameter estimation algorithms for nonlinear
systems are investigated based on a nonlinear difference equation
model. A modified extended least squares, an instrumental
variable and a new suboptimal least squares algorithm are considered.
The problems of input sensitivity, structure detection, model
validation and input signal selection are also discussed in the

nonlinear context.
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1. Introduction

Parameter estimation techniques for nonlinear systems depend
critically on the choice of model structure, the source of noise
within the system and the input excitation. Classically the model
structure used in nonlinear systems identification has been the
functional series expansions of Volterra or Wiener [Marmarelis,
Marmarelis 1978, Billings 1980]. Most of these expansions however
map past inputs into the present output and this inevitably means that
a very large number of coefficients are required to characterise the
process. For example, even a simple quadratic nonlinearity in
cascade with a first order linear dynamic system would require
typically 400-500 coefficients to specify the first and second order
Volterra kernels. Alternative system descriptions such as block-
structured models [Billings, Fakhouri 1982] alleviate most of these
difficulties provided the system under study belongs to the relevant
class of models. Identification based on the functional series or
block-oriented models is however often based on correlation methods
which dictate the use of Gaussian white input signals.

Input/output descriptions which expand the current output in
terms of past inputs and outputs provide models which can be used to
represent a broad class of nonlinear systems using a reasonable
number of terms. Moreover the coefficients in these models can be
estimated using parameter estimation algorithms which are not dependent
upon specialized input signals. Some important classes of models
which fall into this category include the Hammerstein model [Narendra
and Gallman 1966], polynomic state models [bary and Boziuk 1972,

Netravali and De Figueredo 1971] and classes of nonlinear difference



equations [bontag 1979, Normand-Cyrot 1982, Billings and Leontaritis
1981,1982]. Because the Hammerstein model can only be used to
represent a small class of systems and expansions based on the system
states imply that all the states can be measured only nonlinear
difference equations will be considered in the Present study.

Although nonlinear models based on expansions of lagged inputs
and outputs provide a vVery concise system representation any noise on
the measurements enters the model as product terms with the system
input and output. Most of the parameter estimation algorithms for
linear systems cannot therefore be applied directly because the
assumption that the noise terms in the model are independent of the
input is violated.

While the choice of input excitation is wide if parameter
estimation algorithms are employed the input must excite all the
dynamic modes of the system and cover the whole amplitude range of
interest. The choice of input can influence the parameter estimates
and pretreatment of the data can in some instances produce a model
which is input sensitive [Billings and Voon 1983].

The present study is an attempt to clarify some of the above
problems and to suggest some possible solutions. A nonlinear difference

equation model is introduced in Section 2 and the problems of mul ti-
_plicative noise, input sensitivity and detection of nonlinearities

are discussed. A modified extended least squares and an instrumental
variable algorithm based on this model expansion are introduced in
Section 3, together with a new sub-optimal least squares routine.

It is shown that many of these algorithms will only yield unbiased

estimates under various assumptions of the noise. The problems of



residuals and indicate which of the least squares algorithms

will yield unbiased parameter estimates, The choice of input

signals for nonlinear systems is considered in Section 5 and simulation
results which illustrate some of the points in the text are included

in Section 6.

2. System Representation
——— ~tpresentation

If a system is linear then it is finitely realizable and can be

Tepresented by the linear difference equation model

n n
. y u
yt) = - 7§ (a;y(t-i)) + 7J (b u(t-i)) (1)
=1, i=]1

if the Hankel matrix of the System has finite rank. Almost all the
parameter estimation algorithms for linear systems have been based on
this model [boodwin and Payne 1977] which provides a very concise
system Tepresentation, When the system is nonlinear g similar
Tepresentation can pe derived by considering the observability of
nonlinear systems and utilizing results from automata theory to yield

the nonlinear difference equation model [Billings and Leontaritig 1981,

y(t) = F*fy(t-l),y(t-2)...y(t—ny),u(t-—l)...u(t—nu)l (2)

where F*f-] is some nonlinear function of u and V. Whereas the

Volterra series model [Marmarelis and Marmarelig 1978]



ye) = 7 gy (u(i),...u(r)) (3)
=1

to as ga nonlinear ARMAX or NARMAX mode] . The Hammerstein, Wiener,
bilinear, State-affine ang other well known nonlinear models can be
shown to pe special cases of thig Fepresentation [}illings and
Leontaritig 1981,1982] .

Consider the NARMAX model of eqn (2) and introduce gz time delay d

y(t) = F*Efy(t—l),...y(t—ny)u(t-d),...u(t—d-nu+1)J (4)

where ny is the order of lagged outputs, n the order of lagged inputs

and ¢ Tepresents the degree of nonlinearity, Expanding F*[-] as a

Polynomial ang defining v. = ¥OE-13,...v = y(t=n_ ), v = alt=d),;eus
1 n y ny+1

VS = u(t—d—nu+1) where § = ny+nu, the model of eqn (4) can pe

€Xpressed gag

y(t) = F*R[Vl,v ,...VS] ' (5)

which expanded vields

s S g
y(t) = i§1eivi + igl jglsijvivj 1
S s S g
+ E 3 . ) eij_._mnvivj...vmvn (6)

i=1 j=1 m=1 n=]

% times



Assume that the system output y(t) is corrupted by zero mean

additive noige e(t) to yield the measured output signal

z(t) = y(t) + e(t) (7)
Substituting in eqn (6) yields
n n
y u
2(t) = ] 6. (z(t-i)-e(t-1)) + I 8, ,;(u(t-d-i+1))
i=1 * 1=]1 v
n n
y .y
+ 7 7 9..(Z(t—i)—e(t—i))(z(t—j)—e(t~j))
i=1 j=1 *J
n ‘Ilu
*2 3 9. . (z(t—i)—e(t—i))(u(t—d-j+1))
i=1 jzl tongt]
n n

u u
) P O .n | (u(t=d=i+1) (u(t-d-j+1)) + ...
i=1l j=1 Y41 y+j

+ higher order terms up to degree f+e(t)
(8)

Inspection of eqn (8) shows that even though the noise enters the
Process as an additive signal at the output it appears in the model
as multiplicative terms with the system input and output, Thus
although the model isg linearhin~the—parameters the inclusion of lagged
Process outputs introduces cross-product terms between the noise and
the process input-output signals., Equation (8) can be expressed

more concisely as
gt} = F'ﬁ?(t—l),...z(t—ny)u(t-d),...u(t—d—nu+1),
e(t-l),...e(t—nyﬂ+e(t) - (9)

In general noise may corrupt internal measurements within the
system. Because the process is nonlinear the superposition principle

does not apply and internal noise cannot be translated to be additive



at the output as is usually assumed in linear identification. This

situation can however be represented by the model
z(t) = Fz[z(t—l),...z(t—ny),u(t—d),...u(t-d—nu+l),

e(t),e(t—l),...e(t*ny)l (10)

Notice that in eqn (10) the term e(t) is included as an argument
within Fg[-]. The special case of eqn (9) when additive output
noise always results in an isolated term e(t) will not always exist
when the noise source is internal. However, in general.gqn (10)

can be used to represent a wide class of nonlinear systems whatever

the noise source.

2.1. Input Sensitivity

It is vitally important in system identification that the model

which is fitted to the data should be valid for a wide range of input

excitation signals, This property always holds whenever the system
and model are linear. When the system and model are nonlinear
however the model may become input sensitive. That is the model

is only valid for a very small class of input signals. To illustrate

this phenomena consider a noisefree first order dynamic model expanded

as a second degree polynomial with an input signal u(t)+b, u(t) = O

2
y() = 8y(t-1)+0,(u(t-1)+b)+6, y° (t-1)
+0] )y (t=1) (u(t-1) +b)+6,,, (u(t=1)+b) (11)
Following the standard procedure of removing the output mean yields
. - - 2 )
¥ () = y(ty-y = 0, (y(t=1)-y)+8,u(t-1)+6,, (v (t-1)-y")

+6,, (y(e-1)u(t-1)-yu - by)

+822(u2(t—l)—u2+2bu(t—l)) (12)



Inspection of eqn (12) shows that any model relating y'(t) and u(t)

will be input sensitive. That is the model will be dependent upon

' ; : 2 p i
the mean level b ‘and the variance uz(t) = Uu of the input and will
only yield the correct predicted output for inputs with exactly these
statistics. This is a severe limitation and means a new model must

be identified every time it is required to compute the predicted

. ; ; 2
process output for any input with a variance unequal to g, -

This problem can be alleviated by measuring the average output

yb(t) of the system with zero input u(t) = 0

b+ o, B2 (13)

¥ 2

%127

s 7
Vp = Op¥p 8,0+ 0,y

to yield the input/output description

7'p(®) = y(DF, = 0 G(e-1)Fp)+0,ue-1)rey, (v (1) y2)

= 2
+812(y(t—l)u(t—l)+b(y(t—l)—yb)) * 622(u (t-1)+2u(t=1)b)
(14)
The dependence of the model on the higher order moments (>2) of the
input has therefore been removed but the model will only be valid

for inputs around the operating point b,

2.2. Detecting Nonlinearity

Prior to applying parameter estimation algorithms the data should
be analysed to determine if it is worthwhile fitting a nonlinear model.
This can easily be achieved either by comparing z(t) and E;TET or by
computing ¢ (1) [Billings and Voon 1983]. Inspection of eqns (11)

2%zt
and (13) shows that zb(t) = z(t) iff the system is linear and this can




be used as a very simple test for detecting nonlinearities.
Alternatively, if it is possible to inject an input u(t)+b into
the process where all the odd order moments of u(t) are zero the

correlation test ¢ 2(T) = E[z'(t+r)(z’(TE?1 will only be zero
1 1]
z'z
for all t iff the process is linear. Whenever ¢ 2(1) # 0
zilg!
therefore this indicates that the system under test is nonlinear.

It has been found in practice that ¢ 2(T) usually provides a
z, 'z !

much clearer indication of nonlinear B b effects compared with
¢ 2(T) and the former test should therefore be used whenever
1]

z'z
zb'(t) is available.

3. Parameter Estimation

When the system under test is nonlinear it will in general be
impossible to solve eqn (10) for e(t) and consequently the noise
source e(t) and the prediction errors e(t) will not be equal.
Reformulating eqn (10) into a prediction error model gives the

general form

2(t) = F'Q[z(t—l),...z(t-ny),u(t—d),...u(t—d—nu+l),
E(t—l),...e(t—ny)]+e(t) (15)

where e(t) = z(t)-z(t) (1l6)

and E[g(t) |z(t-1),z(t~2),...,u(t—d),u(t-d—l)..] =0 (17)

Since in general the noise source e(t) can neither be measured nor
computed from eqn (10) all the parameter estimation algorithms will

be developed based on eqn (15).



Expanding eqn (15) and re-grouping terms yields
zu
z(t) = G z(t*l)...,z(t—ny),u(t—d)...u(t—d~nu+1)]+
qug[é(t—l),...z(t-ny),u(t—d),...u(t—d—nu+l),s(t—1),...E(t—ny)]
+GE[;(t—1),...e(t—ny)]+e(t) (18)
where qufil is a function of z and u only, GZUEI-] represents all
the cross product terms involving e(t) and GE[-] is a polynomial

function of the prediction errors only. Separating out the unknown

parameters gives

2(t) = ¥(t) o(t-1)+e(t)
8 (t-1)
_ T T T zu
= [y, oy, "oy L(®)] 0 ey +e(t)  (19)
zZue
8 (t-1)
£
where qu[-] = WZUT(t)Bzu(t—l)
zZug T
¢ []= ¥Youe (00, (£-1)
¢°[] = WST(t)ee(t—l) (20)

and the definitions of the ¥'s and 6's follows easily. Grouping all
terms involving e¢(t) and defining

v' (e (-1 ()0 (£-1)+e(t) (21)
ZUue Zue £ €

el

gives

2(6) = ¥ (D)o (t-1)+g(n) (22)

Inspection of eqn (21) shows that E(t) is highly correlated with the

elements of WTzu(t). Direct application of least squares will therefore
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yield biased estimates and alternative algorithms must be developed
to overcome this difficulty.

All the algorithms presented in the following sections will be
based on the following unified algorithm [Soderstrom, Ljung and

Gustavsson 1974]

é(t+1)

1}

8 (t)+K (t+1) e (t+1) (23)

K(t+l) = P(t)zz(t+l) (24)

A(t+1)+p (e+1) TP (£) 22 (£+1)

T
P(E+1) = |P(t) - P(t)ZZ(t+1)w(;+l) BLt) /A(t+1)  (25)
ACE+1) = W(t+1) "P(t) zz(t+1)
A(t+l) = on(t)+(1—xo) (26)
e(t) = z(t+l)=p(t+1) 6 (t) (27)

where A(t) is a variable forgetting factor and the definition and
computation of the quantities 6(t), e(t), v (t), andzz(t) are given

below.

3.1. Extended Least Squares

Extended least squares for linear systems has been widely studied
and is often referred to as Panuska's method, the extended matrix
method of approximate maximum likelihood [Coodwin and Payne 19773.

The extension of the algorithm to nonlinear systems is straightforward.
From eqn (19) the algorithm eqn (23) to (27) vields the extended

least squares estimate with the following definitions

et = [T ce)e” ey Teen)] (28)
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6(t)

1
[ézu(t)ezue(t)eg(t)] (29)

zz(t) y(t) (30)

For example, a first order dynamic system with second degree polynomial

expansion would be represented as

tp(t+1)T = [z(t),u(t),e(t),zz(t),z(t)u(t),z(t)e(t),
w? (1), u(0)e (), e2(0)]

" oo A B " " = - o T
O6) = [01,8510458111015,8,3,0,,,0,;,0,.] (31)

The convergence properties of this algorithm when applied to
linear systems is well documented and is known to depend upon the
positive realness of the noise pulse transfer function [Soderstrom,
Ljung and Gustavvson 197ﬂ i These results do not carry over when
the model is nonlinear because the noise model includes multiplicative
terms between the prediction errors €(t) and the measured input/output
sequences. Although simulations have shown that the algorithm has
good convergence properties a theoretical study of the method when
applied to nonlinear systems is in progress.

The major disadvantage of the extended least squares algorithm
when applied to nonlinear systems is the need to include noise or
prediction error terms in the estimation vector. The maximum number

of entries in the 6(t) vector is given by

n

il
It~

il + '_ .
_ [_ni_l(ny ntn +i-1)]/i (32)
1=1
n = 1
0
and if the nonlinearity within the system is severe the dimension of
6(t) increases rapidly. In an attempt to limit the dimension of the

vector 9(t) both instrumental variables and a new suboptimal least

squares algorithm were developed.
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3.2. Instrumental Variables

The principle of instrumental variables has been applied to
linear system identification in several ways [Goodwin and Payne 1977}.
The off-line description of these algorithms is based on the linear
model Y = ¢B+e and the selection of an instrument matrix VT which

satisfies the conditions

lim %-V ¢ = R a nonsingular matrix
. 1.7 o
lim ﬁ-V (Y ¢80) = 0 (33)

where 80 denotes the true parameter vector and lim refers to limit in

probability. The conditions of eqn (33) ensure that the estimate
£ T <=1 T
8 = (V¢) vy (34)

is unbiased. There are a number of ways of satisfying eqn (33) the

most popular use either delayed inputs to form VT or define VT to have
the same structure as ¢T but with the measured outputs replaced by
predicted outputs [}oung 1970]. This latter algorithm is often
referred to as the auxiliary model algorithm. Unfortunately
instrumental variables can only be applied to nonlinear systems
providing certain properties of the system noise are satisfied.

Consider the NARMAX model of eqn (22)

: T
z(t) ¥ Zu(t)ezu(t-l) + £(t) (35)

where

vT oo (e-1) + vT (00 (t-1) + e(t) (36)
ue ZUe & €

Z

£(t)

For a sequence of N output measurements define
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z = [z2(1),...2a0]"

= [t (1)...‘PTZU(N)]T (37)

Zu

e = [e),...ean]t

to yield the description
Z = ¥ 8 +& (38)

—Zu Zu

Forming an instrument matrix V' using the auxiliary model algorithm

gives the instrumental variable estimate

6 = iy ylyTy (39)
zZu -z —_

which will in general be biased whenever the process under test is
. ' i i . T
nonlinear. A,s;mllar conclusion follows even if V© is formed from

delayed inputs. This problem arises because in general

lim l~VT(Z—‘P 5} O) = 1lim l-VT(\PT 0 Y 6 +e) #£ 0 (40)
N — —ZUu Zu N — 2Ug ZUE —€ € —

A typical term in eqn (40) takes the form
lim %—VT[zluJEkj for some 1,7,k and
will not in general be zero even when e(t) is a zero mean white noise
sequence. For example consider a simple NARMAX model
2 2
y(t) = ely (t=1) + 82u(t—1) + 83u (t=1) (41)
with output additive noise
z(t) = y(t) + e(t) (42)
The model to be estimated takes the form
2 2
z(t)y = 612 (t—1)+82u(t—1)+63u (t—l)—281z(t—l)e(t—l)

+8152(t-1)+s(t) (43)
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and the matrices in eqn (37) are given by

v (0 = [z25(e-1),u(t-1),0% (e-1)]" (44)
8. = [o,,6.,0,]" (45)
zu 1.2

szue(t)azue(t—l) = -20 2(t-1)e(t-1) (46)

¥ (06 (t-1) = 9162(t—1) (47)

. ; T . o ;
Formulate the instrument matrix V using the auxiliary model technique
and assume that an unbiased estimate of the predicted output z(t) = y(t)

is available. A typical column v, in V7 takes the form

v, = [;2(t—1),u(t~l),uz(t—l)]T

Substituting into eqn (40)

lim L VT(WT 8 - WT 8 + g)
N ZUE ZUE £ €

5

[ n 29 ~2 2 D

) [-20,2 (t=1)z(t-1)e(t-1)+6, 2" (t=1)e” (t-1)+2z" (t-1) e(t) ]
. t=1

= lim %

[—Zelu(t—l)z(t-l)s(t—l)+elu(t~l)ez(t—1)+u(t—1)e(t)]

| ~12

t
i

[~26) 0% (t-1)2(e-1) e e-1) v, u? (e-1) e (e-1) wu (e-1) e(0)]

o~

Tt
—

(48)

which taking the most favourable assumptions that u(t) is zero mean and
e(t) is a zero mean white noise sequence which is independent of u(t)
reduces to
-6
LAMOTING

. (49)
~6,6, ()$__(0)
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Clearly the matrix in eqn (49) will not be zero as required by eqn (33)
and biased estimates of the process parameters will therefore result,
In general therefore the instrumental variable algorithm will yield
biased estimates when the system under investigation is nonlinear.

The degree of bias does depend upon the particular model expansion
used in each case and may even go to zero if k in the expression

lim %'VT[ziujskJ is odd or the terms of £(t) are small compared to qu.
One particular special case of the NARMAX model which always satisfies

these conditions arises when the noise terms are represented within

the model as a linear map L[-]
2(t) = FE\Ez(t—l),...z(t-ny),u(t—d),...u(t—d—nu-*-l):[
+ L[s(t-1),...a(t—n€)] + e(t) (50)

These conditions can however only be tested after the parameter
estimation is complete. Details of how this can be achieved are
presented in Section 4.

The off-line instrumental variable estimator as defined in eqn (39)
can be implemented using the recursive equations (23)-(27) with the

following definitions of the matrices

b+ T = [‘{’Tzu(t+1)]
o) = [o, ()] (51)
zz(t) = [v Eu(t+1)]
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3.3. Suboptimal Least Squares

The number of parameters to be estimated in the NARMAX model
increases significantly if the noise model is included in the
estimation vector, as in the extended least squares algorithm for
example. It would therefore be advantageous if unbiased process
parameter estimates could be obtained without specifically estimating
a noise model. This can be achieved for the NARMAX model whenever
the noise enters as an additive signal at the output by using a
new sub-optimal least squares algorithm described below.

Consider the NARMAX model wi th output additive noise defined by

eqns (6),(7) and expressed concisely as
z(t) = F'ﬂfz(t—l),...z(t-ny),u(t-d),...u(t—d—nu+l),
e(t—l),...e(t—nyﬂ+e(t) (52)

The expansion of eqn (52) in terms of a polynomial function induces
cross—product terms between the output additive noise and the measured
process inputs and outputs. If however y(t) the noisefree process
output or predicted output could be monitored eqn (52) could be

expressed as

BCEY = F'g[y(t—l),...y(t-ny),u(t—d)...u(tud—nu+l)]+e(t)
(53)
~~and all the cross-product noise terms are eliminated. Parameter
estimation based on equation (53) would therefore require significantly
less compﬁtational effort compared with extended least squares.
Although the signal y(t) is unavailable for measurement it can be

estimated by recursively computing the predicted output using

; o s
y(t) = wﬁu (t)eyu(t—l) (54)
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The noisefree output y(t) in eqn (53) is therefore effectively
replaced by the estimate ;(t). This algorithm which was derived
independently by the authors specifically for nonlinear systems has
recently been published by Moore (1982) who considered the linear
case and established convergence results.

The algorithm is computationally simple and can be implemented

using eqns (23)-(27) with the following definitions

1,1;(t+1)T = W§UT(t+1)
0(t) = o, (0] (55)
zz(t) = Y(t)

Notice that if the noise enters the system internally, from
eqn (10), cross product terms between the inpﬁt, output and noise
are inherenfly a part of the output signal. These cross product
terms if they exist cannot be eliminated, they appear in ?Tzus(t)

and may induce bias. Fortunately this situation can be detected

using the model validity tests discussed in Section 4.

4. Model Validation

It can easily be shown that the traditional linear covariance
tests of computing the autocorrelation of the residuals and cross-
correlating the input and residuals often fail to indicate a
deficient model when the process is nonlinear [Billings and Voon 1983].
This may mislead the investigator into believing that there is no
further information in the residuals when additional nonlinear terms
may exist which if omitted will induce biased estimates. When the
system is nonlinear the residuals should be unpredictable from all

linear and nonlinear combinations of past inputs and outputs [Billings
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and Voon 1983] and this condition will hold iff

opp(m) = 8(1)
¢u£(r) = 0¥ ¢ -
bepa (™ = E[EOOEG-1-tyulk-1-1]] = 0 ¥ 1

where E£(t) represents the residuals.

The conditions of eqn (56) must always be satisfied when using
the Extended Least Squares algorithm which includes a noise model in
the estimation vector. Instrumental variables and suboptimal least
squares do not specifically estimate a noise model and consequently
the residuals may be coloured. Specific tests are required for use
in conjunction with these two methods therefore which test the
validity of the process model without testing the whiteness of the
residuals. When using the instrumental variables routine or sub-
optimal least squares any terms in quf-] = WZUT(t)Bzu(t—l) or

T 2 ¢ . 3
(fuﬁzj =y zug(t)ezus(t—l) as defined in eqn (20) which appear in
the residuals will induce biased estimates. The condition that none

of these terms exists in the residuals will hold iff

dqu(T) = Q% 7
¢, (0= 9, () =0¥r1 (57)
u g u 'g

) 21 2('r) = 0¥ 1
u £
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5 Choice of Input Excitation

The choice of input excitation can significantly influence
the results of any identification study and whenever possible the
input should be selected to excite all the modes and amplitudes of
interest in the system. Because of the ease of generation of
pseudo random sequences and the fact that they can be tailored to
the process and exhibit an autocorrelation function which approaches
an impulse they have become widely used in linear system identification.
Unfortunately, this success has not been carried over for
nonlinear systems. Initially pseudo random sequences were studied
as a replacement for Gaussian white noise which forms the basis of
many nonlinear identification algorithms based on correlation analysis.
However, it can be shown [Barker and Pradisthayon 1970] that unless
the system has a particular structure and a compound input is used
[Billings and Fakhouri 1979,1980J anomalies which occur in the higher
even order autocorrelation functions induce errors in the estimates.
This problem arises because the higher order moments of pseudo random
sequences do not approach those of Gaussian white noise. Whilst
this latter property is of great importance in correlation analysis
it is not a requirement when using parameter estimation techniques.
Indeed one of the advantages of parameter estimation methods is that
the choice of inputs is very wide. Even with this relaxation of
requirements a pseudo random input sequence appears to be inappropriate
whenever the system is nonlinear. The input excitation for nonlinear
systems must excite all the dynamic modes over the complete amplitude
range of interest. The first requirement specifies the spectral

density of the input the second the probability density function.
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It is this latter requirement whiﬁh is vitally important whenever
the system under test is nonlinear. If a system with a nonlinearity
at the input was excited by a pseudorandom binary sequence for
example only the two points corresponding to the amplitude levels

of the prbs would be excited on the nonlinear characteristic and

the overall model fitted may well turn out to be linear because the
probability density function of the input consists of two impulse
functions. In a similar manner a Gaussian input to the same system
effectively weights the parameter estimates with the probability
density function such that characteristics around the mean of the
input will be estimated with a greater accuracy than those either
side. The ideal input in this situation would be a uniformly
distributed signal with a flat probability density function over

the whole amplitude range of interest. More work is required to
establish suitable inputs for nonlinear system identification but

in the meantime the uniformly distributed sequence appears to offer

a reasonable compromise.

6. Simulation Results

The parameter estimation routines developed in previous sections
have been tested on the two models defined below.
(i) A Hammerstein model with first order dynamics, third degree

nonlinearity and output additive noise

]

y(t) 0.8y (t-1) + 0.4[u(t—1)+u2(t*l)+u3(t-1)]

z(t) FLE)y + elt] (58)
was simulated to generate 500 input/output data pairs where u(t) was

a uniformly distributed signal with p(u) = 3}, =l<u(t)<l and e(t) was

a Gaussian white noise sequence N(0.0,0.2).
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The mean levels Eb =0, z = 0.7242 indicate that the process is

nonlinear and this is confirmed by inspection of the structure detection
tests illustrated in Fig.l, ¢ 2(T) #0, ¢
T

1 1]
Z Z Z Z
The application of recursive least squares prBduEed biased estimates

T2(1:) # 0.

(indicated in this example by ¢ (t) # &(1), ¢ (1) # 0,
Fig.2 £ & ug

¢€ ; u(T) = 0A)whereas the extended least squares algorithm gave
unbiased results (q)g ; (1) = &8(1), ¢u€ (1) = O,¢€_E Ll(T) =0¥r) as
did the instrumental variable and suboptimal least squares routines

= ! = 1 — 1
(¢u£ (1) =0, ¢2 (1) 0, ¢ 9 2(1) oY1), These results which

u” £ u £

agree with the theoretical predictions are summarised in table 1.

(i1) An implicit NARMAX model with first order dynamics and second

degree nonlinearity described as

v (t) 0.4y%(t-1) + 0.2u(t-1) + 0.6u’(t-1)

z(t)

(59)

y(t) + e(t)

was simulated with a sinusoidal input of amplitude 1.0 and a
Gaussian white noise sequence e(t) N(0.0,0.2) to generate 500 data

pairs. The structure detection test illustrated in Fig.3 shows
¢, 1 12(1) # 0

that ¢ 5(1) # O0,Andicating that a nonlinear model is appropriate and this is
ztz! confirmed by z,. = 0 and z = 0.4543.

As expected the model validity tests showed that the recursive least

squares estimates were biased, ¢ (1) # 8(1), ¢ . (1) # 0,
Fig.4 £e uf
¢ (1) = 0.  Because the system contains a nonlinearity in the

EEu
output the instrumental variable estimate is biased as predicted.
In this particular example this was indicated by the results
‘¢_2‘ (1) =0, ¢ ," (1) #0, ¢ (1) # 0. The model validity tests
. 2 9 u & s
us £ u &
indicated that both the extended least squares and suboptimal least

squares estimates were both unbiased. The results are summarised

in table 2.
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7. Conclusions

Least squares parameter estimation techniques have been
investigated based on a nonlinear difference equation model,
Although initially the problems appear to be a trivial extension
of the linear case further investigation shows that noise in non-
linear systems whether internal or additive at the output
considerably complicates the estimation problem. A modified
extended least squares and a new suboptimal least squares algorithm
were introduced as one possible solution to vield unbiased estimates
in the presence of multiplicative noise terms. Instrumental
variables which is widely used for linear systems was shown to
yield biased estimates whenever the noise model cannot be expressed
as a linear map.

Deficiencies in the well used residual tests based on first
order covariance functions may lead the experimentor to believe
that his models are correct when they are in fact strongly biased
due to omitted nonlinear effects. Two simple to compute second
degree correlation functions were introduced to overcome this problem.
Methods of detecting nonlinearities in the data prior to estimation,
input sensitivity and the selection of input signals were also

discussed.
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Coefficient | Theoretical | RLS ELS RIV SOLS
Value
z(t-1) 0.8 0.7483| 0.7865 | 0.7884 | 0.7867
u(t-1) 0.4 0.4315| 0.4198 | 0.4323 | 0.4232
u? (e-1) 0.4 0.4552] 0.4241 | 0.4056 | 0.4235
u3(t—1) 0.4 0.3703( 0.4001 | 0.3726 { 0.3909
e(t=1) -0.8 - |-0.8084 - -
Table 1. Parameter Estimates for model 1
Coefficient Theoretical RLS ELS RIV SOLS
Value’
u(t-1) 0.2 0.2574| 0.2066 | 0.2165 | 0.2067
2 Pl 0.4 0.2798| 0.3851 | 0.3634 | 0.3949
P (=T 0.6 0.6628| 0.5890 | 0.6023 | 0.6014
z(t=1)e(t-1) -0.8 - -0.7321 - s
2
e (t-1) 0.4 - 0.6600 - -

Table 2.

Parameter Estimates for model 2
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