The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Geometric Conditions for Generic Structure of Multivariable
Root-Loci.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/76435/

Monograph:

Owens, D.H. (1983) Geometric Conditions for Generic Structure of Multivariable Root-Loci.
Research Report. ACSE Report 227 . Department of Control Engineering, University of
Sheffield, Mappin Street, Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

GEOMETRIC CONDITIONS FOR GENERIC

STRUCTURE OF MULTIVARIABLE ROOT-LOCI

by

D.H. Owens B.Sc., A.R.C.S., Ph.D., A.F.I.M.A., C.Eng., M.I.E.E.

Department of Control Engineering,
University of Sheffield,
Mappin Street, Sheffield S1 3JD.

Research Report No. 227

June 1983

This research is supported by SERC under grant GR/B/79455



Indexing Terms: Root-loci; asymptotic analysis; multivariable control

systems; feedback systems.

ABSTRACT
Properties of the inverse (A—pBC)_l are used to characterise the
parameters of the infinite zeros of the root-locus of an invertible,
multivariable feedback system S(A,B,C) as the solutions of constrained
eigenvalue problems 'and to generate generic subspace conditions that
guarantee only integer order infinite zeros in terms of the subspaces

in the {A,B}-invariant subspace algorithm.

1. Introduction

The root-locus of an m—input/m-ocutput linear time-invariant system
n
S(A,B,C) described by the model in R

x(t)

A x(t) + B u(t)

C x(t) (L)

y(t)
is the loci of the poles of the system generated by use of the input
u(t) = - py(t) = - p C x(t) as the scalar gain parameter p varies from
zero to infinity. At each gain p, the closed-loop poles arersolutions of
the characteristic equation |s(p) In - A + p BC| = O or the equivalent
eigenvalue equation

(A - p BC) x(p) = s(p) x(p) (2)
where the eigenvector x(p) # 0 and will be assumed to lie on the unit
sphere in Rn. The behaviour of the finite and unbounded solutions s (p)
as p > + ® has now been well-studied using return-difference techniques
combined with complex variable theory on Riemann surfaces [1], Markov
parameter matrices [2] and transformation techniques [3]. The generic

structure of the ihfinite zeros has been identified to be of the form [ﬁ]



l/\)j
S, == i + % r
32(9) P Ny Ejz(p)
=14y
lim p J EjQ(P) =0 , l<2<v, ,1<3j<m (3)
e .

where vj, 1 f.j < m, are the integer structural invariants of the Morse

group [5] and 1,

jg' 1< f_vj, are the distinct vjth roots of a non-zero

complex number.

The nature of the genericity of (3) has recently been identified
using [6] input/output Markov parameter methods. More precisely, it has
been seen that the characterization (3) holds for systems
S(A + BF + KC , BM , NC) with (F,K,M,N) in an open, dense subset of
I g R R | and, in particular, in {0} =x {0} x {Im} X
with § open and dense in L' ". The details can be found in [6}. The
problem with Markov analysis is that it provides no direct insight into
the state space geometry of the root-locus. In particular, it provides
no simple computational framework in the state-space and sheds little
light on the relative subspace structure of the triple (A,B,C) that
guarantees the validity of the generic structure (3). A preliminary

attempt at this problem was provided [7] by the author by examination of

the set of eigenvalue equations generated by (2)

k
(3 - pBO)" x(p) = (s x(p) , k> 1 (4)

Although successful, the conditions generated are highly complex and
have no clear system theoretical connections or interpretation. The
purpose of this paper is to provide a simple and thorough treatment of
the problem by considering the related eigenvalue problems
-k k
(A - pBC) (s(p)) =x(p) = x(p) , k>1 (5)

derived from (4) and the properties of the polynomial matrix inverse



-1
(A - pBC) relative to the {A,B} - invariant subspace algorithm [8],

v = Rn
o
-1 .
= >
Vi TNONATRE) +V) , j2o (6)
which generates a nested sequence VO:D Vl:D V2:3 -... converging to the

*
maximal {A,B} - invariant subspace V in the kernel of C and “the dual

sequence [ﬂ 'roc:'rlc:'r2c: - ++. generated by

T ={0}
@]
Tj+l=R(B)+AﬁjﬁN(C)) + J 20 (7)

*
and converging to T .

(Remark: Throughout the paper the notation R(L) and N(L) will be used
to represent the range and kernel of the linear map L respectively, the
symbol L|V will denote the restriction of L to a linear subspace V and
V will denote a matrix whose columns are a basis for V).

On the Structure of (A - peC) '

Equation (4) indicates that the polynomial matrix (A—pBC)_l has a
direct connection with root-locus structure. We first indicate that the

inverse is well-defined:

Proposition 1: If S(A,B,C) has no zero at the origin of the .complex plane,

then (A-pBC) exists at all but a finite number of complex gains p.
Furthermore, under these conditions
=2
+ L S 8
1 P A2 (8)

the series converging absolutely for all large enough gains p.

-1 -1
(A-pBC) = AO +p A

Proof: For the first part, it is sufficient to prove that |a - pBc| # O.
Suppose the converse and hence that, for each p, there exists a non-zero

¢(p)€5 R such that (A-pBC) y(p) = 0. Without loss of generality, take
¥(p) on the unit sphere and let Y be an arbitrary cluster point of

{rp(p}}p>0 as p > .. Clearly y & N(C) - {0} and A ) & R(B) indicating



that S has a zero at the origin contrary to assumption. Next, to prove
T -1
the validity of {8), note that (A - PBC) is a matrix of rational func-

tions of p and hence can be expanded in the form

_l o —
(A-pBc) = ) & p J (9)
=k J

.

J

for some finite integer k > o and for all large enough gains p. Suppose

that k > 1 and A—k # 0. Substitution of (9) into the obvious identity
-1

(A - pBC) (A- pBC) = In and equating coefficients leads in particular,

to the equations

BCA, =0 , AA_ - BC B4 =0 (10)

and hence the inclusion R(A k)C: N(C) N A_lR(B). The assumption that §
has no zero at s = o ensures that the right-hand-side is {0} and hence

that A e O contrary to assumption. The result is hence proven.

The assumption that S(A,B,C) has no zero at s=o 1s fundamental to
the following development due to its simplifying effect on (A - pBC)—l
as expressed by (8). Although on apparent restriction, we note that it
will almost always be satisfied in practice and can be arranged by the

following easily proved construction:

Proposition 2: Suppose that S(A,B,C) is invertible. Then S(A - a In,B,C)

has no pole or zero at the origin of the complex plane for all but a

finite number of shifts q.

Throughout the remainder of this paper we will therefore assume that
S(A,B,C) is invertible with no pole or zero at the origin of the complex

plane. The invertibility assumption cannot be removed but if S(A,B,C)



has a pole or zero at s = o, it will be assumed that a suitable 'shift'
has been implemented to remove it. The effect of the shift on the root-
locus is easily estimated by noting that the map A + A — o I induces the
eigenvalue map s + s - g i.e. the root-locus is shifted by q!

The coefficients Aj i J > o, will play an important role in the
paper. The following resultis easily obtained by using (8) in (A-pBC)

=T =
(A-pBC) = In and (A - pBQC) l(A~pBC) ='In and equating ccefficients.

Proposition 3: (a)

BCA = o
o
AR - BCA =1
fe) 1 n
AAj - BCAj+l =0 ’ j>o (11)
(b) A BC = o
o
AA-A BC=1I
(o] i n
A - A BC = j 12
Aj 41 C=0 ' j>o0 (12)

The properties of AO and Al will prove to be particularly important.

Some basic properties are described below:

Proposition 4:

]

N(A ) R(B) , (13)
o

R(AO) N(C) (14)
Proof: Using (11), (12) AOBC = 0 indicates that R(B) N(AO), but if
x € N(AO) then x = (AAo -BC Al)x =B C Al X & R(B) proving (13). To
prove (l4) note that B C AO = 0 implies R(AO)C: N(C). But (13) indicates

tha rank AO = n-m and hence equality must hold as dim N(C) = n-m.

Proposition 5: (a) R(AO)(\ R(Al) = {o} (15)
hak
(by R = R(AO)GB R(Al) (16)
(¢) R(A.) = R(A_B) = N(A A) = A_lR(B) (17)
1 i o

(d) BCA |B=-1I (i.e.CA B=-1) (18)
1 1 m



Proof: By assumption ]A[ # O and hence rank AA_ = rank AOA = rank AO

= n-m by proposition 4. Clearly rank AlBC < m with equality holding as
the identity AOA » AlB C = Im (equation (lé)) also indicates that rank

Al BC> n - rank Ao A = m. Conditions (a) and (b) are now trivially
proved. To prove (d) use (11) and (13) to verify that B = (AAO - BCAl)B
= - BCAlB. Finally, to prove (c) note that (d) indicates that dim Al R(B)
= dim R(B) = m. 1In fact, dim Al R(B) = dim R(Al) = m as dim R(Al) = dim
Al R(B) = m whilst (equation (11)) AAl - BCA2 = 0 indicates that dim R(Al)
< dim R(B) = m. A dimension argument now indicates that Al R(B) = R(Al).
Next note that x & N(AOA) together with (12) indicates that x = (AO A -

A BC)x = - Al BC x & R(AlB) whilst x & R(AlB) yields AO Ax=x+A BC

1 1
xE R(AlB) .~ Clearly AO Ax = o from (15) and the cobservation that AO A x

e R(AO) N R(Al). This proves that R(AlB) = N(AOA). Finally, N(AOA)

A'lN(AO) = 2 R (p) by (13).

Proposition 6: (a) R(AAO) N N(AO) ={o} (19)
() R = R(AA)@® N(A ) (20)
(o] o]
(c) N(Al) = N(BCA.) = R(AA ) = A N(C) (21)
1 o]
(@ AA |R@A) =1 (22)
(o] (@]

Proof: The proof is similar in structure to that of Proposition 5 and is
outlined below. Note that rank AAO = rank AO = n-m and also that rank
BC,Al = m as rank BCA:L < rank B = m and the equation AAO - BCAl = I

indicates that rank BCA:L > n - rank AAO = m. Conclusions (a) and (b)

n

follows directly from the identity AAO = BCAl = In by a dimension argument.
To prove (d), simply note that x & R(Ao) = N(C) together with AOA -

AlBC' = In indicates that x = AOA X. To prove (c), note that R(AAO) =

AN(C) by (14). Next note that N(BCA;) = R(AA ) as x € N(BCA,) together .,

with (11) indicates that x = AAO X & R(AAO) whilst x & R(AAO) plus (11) ""\i_:.:f,‘,

. &

indicates that x - AAOX = BCAl xe& R(AAO) N N(AO) by (13). Part (a)

vields immediately that BCAlx =0 i.e. x GN(BCAl). Finally, N(Al)



= N(BCAl) as Al X = o implies BCAl X = o whilst BCAl X = o0 indicates
that A, x € N(C) = R(A)) i.e. A X € R(Ao) al R(A)) = {o} by (15) and

hence x € N(Al) i

These results are sufficient to provide a simple characterization
of AO and Al that is suitable for computation:

Propositien 7: Let N and M be, respectively, (n-m) x n and nx(n-m) full

rank matrices satisfying the annihilator equations
NB=0 , CM=0 (23)

Then Ao and Al can be computed from the formulae

M(naM) "Ly (24)
=

A
o

1l

-1 - -
A -A "B(Ca lB) 2c A (25)

i §
Proof: Proposition 4 indicates that Ao = MON for some nonsingular (n-m)x

(n-m) matrix Q whilst (22) indicates that M = AO AM=MOQNAM and hence

that Q NAM = In—m proving (24). 1In a similar manner (17) and (21) indicate

-1 -1
that Al = A BPCA for some nonsingular mxm matrix P. Condition (18)
. =1 =1 . ] PR .
then yields - Im =C Al B = (CA "B)P(CA "B) i.e. P = -(CA B) proving
(25) .

It is of interest to note the presence of the term NAM in AO. This
term also appears in the theory of zero computation [Q,IQI using anfiihilators
One could conjecture at this stage that AO has a strong connection with the
zero structure of the system. This will be made more precise below by

relating AD to the subspace sequence {Vj}j>O defined by (6).

Proposition 8: Vj = R(Ag) ¢ 12w (26)

* * —k —k
Moreover AOV =V and AOV K =V for some nonsingular matrix K whose eigen-

values are the zerosof S(a,B,C).



Proof: We prove (26) by induction. It is trivially true for j=0 so suppose

R(Ai). From the definition it is clear that A Vj < vj + R(B)

that Vj +1
and hence that A§5+l = 75 L j41 + B Mj+l for some Lj+l and Mj+l' Now (12)
indicates that (A A - A, B cﬁjﬂ = ?fjﬂ = AR _‘;j+1 as v, , & N(C). Clearly
§5+l = AOA Vs+l = Ab(vs Lj+l + B Mj+l) = AOVSLj+l by (13), and hence

j+1
Vj+lC: AOV. = R(Ai ). To prove the reverse inclusion (and hence equality)
use (ll1) in the form (AA - BCA )A:J = A:J to deduce that A R(Aj+l)c: R(Aj)
o 170 o o o
j+ -1
#R(B) =V, + R(B). Using (14), it follows that R(a) Lhenona

*

*
Vj+l as required. Finally, the statement Ao V. =V follows

(Vj + R(B))
* *
from (26) and the fact that Vj + V. AO V is clearly a bijection so the

existence of nonsingular K is trivially proved. using (ll) to write
—% aad * *

—k -t —
(A Ao - B C Al)V K =V K we deduce that AV =V K+ B C Al V K and hence

that the eigenvalues of K are the zeros of S(&,B,C).

The following result also relates AO to the subspace sequence {Tj}j>o

defined by 7).

Proposition 9: Tj = N(Ai) r J12>o0 (27)

Proof: Use induction noting that (28) is trivially true for j = o and

supposing that Tj = N(Ag). Take x & Tj+l in the form x = b + A w with
i+ i+ j+1
L A(J) l(b+AW)_=Z‘fi Aw

b & R(B) and w = Tj N N(C) and subsequently examine AO

j+L
o

(by (13)). Using (12) AAw = w as w € N(C) and hence A Ag(AOA w)
= Ajw =oasw & T, = N(Aj). This proves that T, . C N(Aj+l). To prove
o 3 o j+l o
J+1

; : j+1 i .
the reverse inclusion, take x & N(Ag ) and write AO X = o in the form

A XxE N(Ai)f\ N(C) = ijw N(C). Using (11) in the form x = A A % -

j+1
e hat N
BCA 1 x & A(Tj N N(C)) + R(B) Tj+l we conclude tha (AO o Tj+1

as reguired.




-9 -
Propositions 8 and 9 essentially relate {Vj} and {Tj} to the
Jordan structure of AO. To connect these ideas to the root-locus

structure in the next section we will also need the following results.

Proposition 10: For all k > 0,

{x : AkA x& R(Ak+l)} = A_l(N(C) + 1) (28)
[e} o 1: k

1

k k+ k
Proof: If A A x& R(A 1) then A/ (A.Xx - A z) = O for some z € R i.e.
—_— o1l o 171 o

k -1
- N &= by i # .
Al X Aoz = (AO) Tk ¥ (27) and hence using (14), x e Al (Tk N(C))

Conversely, if x€ All(N(C) + Tk) then Ax = Aoz + V for some z & B ana

k k+
V such that A v = 0 i.e. AkA X = Ak+l z & R(A l) and the proof is
o o1l (o} o
completed.
Proposition 11: R(B) N A_i(N(C) + Tk) =B C Ty k >o (29)

Proof: Suppose that x € R(B) and Al X & N(C) + Ty - Using (14), write

Ajx = Az +Dbwith b€ and z €R' and note from (11) that (An_ - BCA )x
=x=-BC Al X as on = 0 from (13). Eliminating Al X from this expression
yields x = - BC(AOZ +b) = -~BCb (from (14)) and hence x &BC Tk.

Conversely, if x € B C t. then x € R(B) is clear and x = B C V for some

k

——BCAlxas

Il
™
|

Ve Ty Again invoking (11), write (AAO - BC Al)x
AOX = 0 by (13). A simple calculation yields B C (Alx + V) = 0 and hence

AlX e Th + N(C) as required.

Combining Propositions 4,8 - 11 immediately yields

Proposition 12: For all k > o,

1

k k k+
R{Ao) N NRA)N {x - A A X ER(A )3

I

=T
Vk N R(B) N Al (N(C) + Tk)

vNBCT . (30)
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The subspaces kaj B C 1, will play an important role in the root-

k

locus theory of the following section. Noting that Vk and Tk are independent

of input mappings B -+ BK if |K| # 0, the following proposition highlights

a generic property of the family generated by taking K & G&(m).

Proposition 13: Vkr\ B KC Ty = {o} k>0 (31)

for all K in an open-dense subset of Gf (m)

(Remark (i) the open-dense subset is in factthe complement of a proper
algebraic variety in G&(m),

(ii) the result can be strengthened to include the validity of

(31) in the presence of arbitrary state feedback, output
injection and change of basis in the input and output spaces
but these results are not needed here.)

Proof: Bearing in mind (13), (14), (26) and (27), consideration of the

Jordan structures of AO leads to the identity,

dim Vk(\ R(B) + dim C T, = M, k > o (32)

The result now follows from the cbservation that, for each k > o, B K C Tk

is a subspace of R(B) of dimension m - dim Vkr\ R(B) and that to each

subspace WkC: R(B) of that dimension there exists a K such that Wk BKC Tk.

Using a dimension arguement based on (32) it is clear that Wk F\Vk = {o}

for all K except those on a proper algebraic variety of G¢(m) and the
By

result is proven as there are only a finite number of distinct entries

in both {vj} and {Tj} and hence G&%(m) - L_) Ak is open and dense.
k>o

Root-locus Structure Theory

In this section we apply the results of section 2 in the construction
of an eigenvalue-like characterization of the asymptotic directions of the

infinite zeros of the root-locus and the identification of conditions that



- 1] =

guarantee‘the'generic structure of equation (3). To begin the analysis,
examine the eigenvalue equation (4) in the form of equation (5) with k=1
and use (8) to write it in the form

-1 -2
(AO +p Al +p A, + ...} s(p) x(p) = x(p) (33)

Suppose that p + o and that attention is focussed on a branch of the root-
locus corresponding to a cluster point x of {x(p)} on the unit sphere

n
in R'. If {s(p)3 has a finite cluster point s_ on this branch then (33)

*
indicates that AO S, ¥, = X . Proposition 8 indicates that X &V _.and

oo
recovers the well-known result [l—ﬂ that all finite cluster points of
the root locus are zeros of S(A,B,C). We therefore concentrate on the

case when |s(p)| + » and p + ».

First we note the following result:

Proposition 14: If Is(p)f + ® as p - © then gDEE N(AO) and phls(p)
remains bounded as p + .

Proof: Dividing (33) by s(p) and letting p + « reduces to onm = 0.
Next note that if p_ls(p) is unbounded then division of (33) by p_ls

yields A X + lim p AO x(p) = O and hence, using (28) and (29) with

L
p—)'m
k = o, we obtain meE B C By = {o} contradicting the assumption that

X # 0. The result is therefore proved.

Suppose that attention is restricted to unbounded branches of the

- 1 ——
root-locus such that p ls(p) has a cluster point A( ). From (33) it is
clear that A(l) and X satisfy the constrained eigenvalue problem

1 -2aPax era) , x €nm) - {o} (38)
n 1" e o ! © o

which can be written in the form



w i w

(1 - A(l)

r Al)xme Vo x_ & (R(B) N vo) - {o} (35)

This relation can, in principle, be used to calculate the asymptotic

directions of the first-order infinite zeros of S(A,B,C) by searching

(1)

There may however be zero solutions cor-

$ 1 _

for non-zero solutions )

responding to the existence of higher order infinite zeros. If 0

X

co-,

then it is clear that lim p_ls(p) = o and that lim Ao s(p)x(p)
pee o g
In order to produce an inductive procedure for characterization of the

higher order root-locus, it is convenient to introduce the following

property in a similar manner to the development of ref [i]:

Definition: -The property GA(k) holds true if

=1 k
lin p" (s(@)" = 0, Lin A% (s x(p) = x, (36)
Poeo pr®

(Remark: Note that GA(o) trivially holds true).

The main result of the paper can now be stated:

Theorem 1l: If GA(k) is valid and the condition

kaﬁ B C B ™ {o} (37)
holds true, then p_l(s(p))k+1 only has finite cluster-points R(k+l) that
can be obtained from the 'constrained' eigenvalue problem

(In = )\(k+l) A}; Al) x e L

x, € R(E)NA V) - {o} (38)
Moreover, if A}k+l) = 0, GA(k+l) holds true.

Before proving this result, it is vital to recognize its inductive

nature. More precisely provided that the subspace condition (37) is




S

satisfied ﬁhe result can be applied recursively for k=0,1,2,... to obtain
the asymptotic structure of the infinite zeros. It has already been noted
fhat (37) holds in the generic sense defined by proposition 13 and hence we
must conclude that it is exactly the state-space geometric counterpart to
the generic conditions dexrived in [é] based upon algebraic properties of

the Markov parameter sequence!

Proof of Theorem 1: Using (8) in (5) with k replaced by k+l yields

k+l =], ' k -2 k+1

-1 k+1
for some nxn matrix F, . Suppose that p s has an unbounded branch and

k
oo , -1 k+1 " 5
hence, dividing (39) by p s and using Proposition (14), that

x € r@aHh (40)
(> o)

(F,. A + Ak A )x = Ak A
k o o 1 o o] o]

L

k
where, using Proposition (14) and GA(k), xmei N(Ao)r] R(AO).

Proposition 12 then indicates that x & ka\ BC T, Oor x =o by (37).

-1 k+1 ;
This possibility has been excluded so we must conclude that p s remains

bounded. Equation (38) follows by letting p - « in (39) to yield

k (k+1)

. k+1 k+1
(In - (F AO + AO Al))\ )x_ = lim AO (s(p)) x(p) 7 (41)

p—)OD

and noting that onm = o by Proposition 14 and, together with GA(k) that

(k+1)

xweg N(Ao)r\ R(Ai)-—{o} = R(B) N vk - {o}. Finally, if X o then

-1 k+1 k+1 k+1
lim p s = o by definition and (41) indicates that x_ = 1lim AO (s(p))
P pe

x(p) proving the wvalidity of GA(k+l).

Finally, the condition GA(k) can be used to provide information

on the eigenvector x(p):
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Theorem 2: If GA(j) holds true for 1 < J £ k then

x(p) = x_+ (s(p))-lx + e + (s(p))_kx

1 + Ek(P) (42)

k

where ijE Tj+1' 1l < j <k, are any solutions of the algebraic equations
Xx =A x, , 1l<j<k (43)
and ek(p) has the properties that

T (mig) § e, (P) = O (mod )
pre ’

0<j<k (44)
Proof: Consider first the case of k=1 when GA (1) indicates that

- T éig Aos(p) x(p). Let xl be any solution of X = Abxl and note that
=

o=AX = Aixl so that xlég Ty by (27). Now write x(p) = x, + (s(p)) "x

o @ 1

+

gl(p) where éig gl(p) = o and %&g AbS(P) el(p) = 0. Clearly &;Q

(S(p))J sl(p) = 0 (mod N(Ai)) for j = 0,1 which, together with (27), verifies
(44) in the case of k=1. Proceeding by induction we suppose that the
result is true for k replaced by % < k and proceed to prove that the validity

of GA(L+1) ensures that the result is true with k replaced by 2+1. To do

241 2+1 2+1
hi te that GA(2+ = 1lim A = 1lim A
this note a (2+1) means that X lim " (s(p)) x (p) %@ 5

2+l 3 2+1 . .
(s(p)) Eg(?) as xjeg Tj+&_C:T£+1 - N(AO ), 1 <j < 2. Write
- (8+1) 2+1

& == d
X1 €£+l(p) where X A X and hence

eg(p} = (s(p)) o Xpal

+
x2+lE§ T2+2 as Ai 2x£+l = onm = 0. The function EE+1(P) has the property

that lim s7 €R+l(p) - éiﬁ 57 gg(p) = o (mod Tj) for 1 < j < & and é;g

+1 g4l
S

5 Ez+l(p) = 0 from the definition of x - The validity of the

2+1
inductive assumption is evident by writing this expression in the form

lim s£+l = 0 (mod N(A£+l)) = 0 (mod ), and the theorem is proved
€o+1 o - mod Tos1’ E :
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Conclusions

Using the properties of the inverse (AmpBC)*l the asymptotic directions
of the infinite zeros of the multivariable root-locus have been characterised
by constrained eigenvalue problems. Generic conditions for the existence

of only integer order infinite zeros have been identified in terms (equation

(37)) of the subspaces{vj} and {Tj} in the § A,B} invariance algorithm and

its dual. Major assumptions in the analysis are that the system is inver-

tible with no pole or zeros at the origin of the complex plane. Origin
shift techniques (proposition 2) indicate that there is no real loss of
generality here but it would be nice if future proofs do not need this
simplification.
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