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Abstract

Recent papers have examined the problem of robustness of the
stability of multivariable feedback systems to perturbations AG in
matrix form. Attention has been primarily focussed on the use of
the maximal singular value 5(&G). This paper considers how structured
information on the uncertainty in each element Aij(s) can be used in

a similar way based on eigenvalue and singular value analysis.

L. Introduction

The effects of uncertainty on the stability of multivariable
feedback systems has recently been apprcached using singular values[li
(or principal gains [2]) and plant step data {3]. In particular,
the problem of the stability of a unity negative feedback system with
forward path controller K(s) and an m-input, m—output, invertible
nominal plant G(s) subjected to additive perturbations

G>G+AG , p—
a

multiplicative input perturbations

. coa
G » G(Im AlG} s (2)
and multiplicative output perturbations

G = (Im+AOG)G el (3D

have been considered with perturbations bounded in their maximal

singular value

o(AG(s)) < 4(s) el (4)



on the Nyquist 'infinite' D-contour. These ideas have been shown

[1] to give powerful insight into the problem of design in the
presence of uncertainty but they rely on the characterization of
uncertainty in the singular value form of equation (4). In practice,
however, uncertainty may be more structured and hence more easily

characterized by bounds on the elements of the perturbation, l<i, j<m,

}(Ac(s))ijJ < 25508 ; sED 135 05D

written in the form

lac(s)f| , < L(s) i sED oo (6)

where L(s) is the matrix of elements iij(s) and [3], for any n, xn,

matrix M,
; ;
M ] LA
A _ |
mll = ’ r (7)

. |esaines M | |
nll n1n2 J

denotes its matrix-valued 'absolute value’. The inequality in {6)

is with respect to the partial ordering A<B iff Aij . Bij’ 1<i, jem.

The purpose of this note is to present some results on robust
stability paralleling those described in [l} in terms of the uncertainty
described by (5) or (6). The work is strongly related to the recent
independent results of Kantor and Andres {7} but we concentrate here
on the use of both eigenvalue and singular value information which are
described together with a discussion on problems in eigenvalue use at
branch points. For simplicity, only the case of additive perturbations

will be considered. The extension to multiplicative perturbations is

achieved by similar analyses.



2 Robust Stability and Eigenvalues and Eigenvectors

Following Owens and Chotai [3], the fundamental result is stated

as follows:

Theorem 1: If K stabilizes the nominal plant G, it will also
stabilize the plant G+AG if

(a) AG is stable,

(b) (G+AG)X is both stabilizable and detectable, and

(¢) sup r((I_+KG) 'KAG) < 1 s sl
m
s&€D
(Note: the spectral radius of the £x matrix M is r(M) & max[mi|
i

where m, ,m .My are the elgenvalues of M)

12y s

The problem with (8) is that AG is known only in terms of bounds
(5) on its gains and hence it cannot be checked directly. It is

convenient therefore to use the following results [3}:

Lemma 1: If Ml and M2 are complex matrices, then

[h:0 0 | ) o Lo (9)
1"l p e 1Ml p

Lemma 2: If M is a square complex matrix, then

() < o (]| v £10)

Lemma 3: If A and B are real, square matrices satisfying 0<A<B, then

r(a) < r(B) e




An immediate consequence of these results is that theorem 1

can be replaced by the result [3}, [7]:

Theorem 2: The conclusions of theorem 1 remain valid if (e¢) is

replaced by

sup T( || (L +6) K[| [L(s)) < 1 . (12)
s€D

Proof: Simply note that

H(I+KG)-1KL\.GH p < H(I+KG)_1KH b » SED W}

by lemma 1 and equation (8) and use lemma 2,3 to prove that equation

(12) implies equation (8).

This result was used in [3} to obtain a stability criterion
based on open-loop plant step data. In this section however we
concentrate on results based on eigenvalue or characteristic locus
analysis [4], [5]. More precisely, let GK (and hence KG) have
eigenvalues ql(s), qz(s),..ﬁ,qm(s) and suppose that there exists a
similarity transformation T(g) defined almost everywhere on D such
that

=1, : .
T "KGT = diag {ql,..,,qm} . (1D

(Note: this assumption is generic and holds at all but branch points

of XG on D).

As spectral radii are invariant under similarity transformation,

condition (8) can be written in the form



sup r(diag{ 1+j } T—IG_IAGT) 21 4 a1 5)
s€D . l<j<m
Noting that
q.

. ol W

||diag{ ~—— } T ¢ seT|
1+qj 1<j<m P
93 -1 -1

< ( max f e \) |kl c R Y R g e (16)

1<j<m 1+qj P P P

we deduce the following robustness result:

Theorem 3: The conclusions of theorem 1 remain valid if (c¢) is replaced

by

q.
sup  max | ol

s€D 1<j<m ]

—IG—IH

r([l]l p lIT oLl <1 .an

Proof: Use the preceding discussion and lemmas 2,3 to note that (17)

implies (8) as r(AB) = r(BA) for any matrices A and B.

The result has the following graphical interpretatiom:

Corollary 3.1: Condition (17) is satisfied if the bounds gemerated

by the inverse Nyquist plots qj—l(s), s€D, l<j<m with circles

superimposed at each frequency of radius

e(s) = r(|lt ] . 1T e ) L L) L) ... (18)
P P P

do not contain or touch the (-1,0) point of the complex plane.



Proof: Write (17) as

|1+ qj_l(S)F » B(a) s€D , l<j<m wwis (19)

and interpret graphically.

The result provides a direct link between the element uncertainties
(represented by L(s)), the characteristic loci {qj(s)} and the
structure of the eigenframe T(s) and suggests that
(1) robustness is reduced if the characteristic loci move
close to the (-1,0) point of the complex plane,
(2) robustness is reduced if the uncertainty increases as,

if L'(s) > L(s), s€D, then

(1) |5 T 6T @ [ L' ) [ 5)
>x (1@ ], 1T @6 ) 5 L@ | )

s€D ... (20)

by lemma 3,

(3) robustness can be increased by replacing K by pK where p
is an overall gain and letting p become small. Note that
r(s) is independent of p and qj(s) is replaced by qu(s).

(4) robustness in a frequency range is reduced if the eigenvectors
of KG are skew in the sense that T is almost singular. This
always occurs in the vicinity of branch points as these

correspond to frequencies where KG has only a non-diagonal

Jordan form. In such situations T_1 is unbounded even 1if T

is bounded and hence r(s) can take arbitrarily large values.



Observation (4) is related to the problem of characteristic

locus methods noted in [1] albeit using a different framework and

uncertainty characterization. Consider the example in '1°,
; { ~475+2 565 |
s = oo ! (21)
2 Il
(geldise) { 428 B0s*2 |
with K = I2 generating the characteristic transfer functions
1 2 .
ql(s} = = s qz(s) il e s (B2)
and frequency independent (skew) eigenvector matrix
(7 8)
T(s) = ' (23}
6 7
This yields
3 97 112
[T | Sl cee(24)
84 97

with spectral radius equal to 194.0. Taking s = 0, then G(o) = 12
and if the uncertainty is represented by L(s) = 5(5)12 corresponding
to uncertainty in the diagonal terms of G only then r(o) = 194.0¢(0)
and the conditions of corollary 3.1 require that r(o) < 2. This
means that the permissible uncertainty in steady state characteristics
must be less than 17. This result should be compared with the system

s+1.5 05

1
BlE) i et o ... (25)
(s+1) (s+2) 0.5 5+1.5



generating characteristic transfer functions given in (22) with

orthogonal eigenvector matrix

[
T(s) = — i v (26)
V2 |11 }
Simple calculations then yield r{o) = 2e(o) and hence that we require
e(o) < 1.0 ie almost 100% uncertainties in diagonal steady state
characteristics is permissible!

The unboundedness of r(s) in the vicinity of branch points is

not present if branch peints are not present as proved by the

following result:

Proposition 1: If T(s) is uniformly bounded on D and inf\det T(s) | >¢ >0

for some scalar g, then r(s) is uniformly bounded on D.
m .
Proof: Let T(s) have characteristic polynomial t(X) = E ti(s)Al,
i=o
then the {ti(s)} are uniformly bounded on D and |to(s)| > g for all

sE€D. Write

m s
e w é ii) _z ti(s)Tl (s) o (27)

by the Cayley-Hamilton theorem and take norms.

Although uniformly bounded, r(s) could still be large if & is
small. This can be avoided if we use unitary transformations. The

following boundedness proposition is easily proved.




*
Proposition 2: If U is mxm and unitary thea [{U || p = HU’JPT and both

HUIIP and HU*HP have column and row sums of squares of moduli of
elements equal to unity. The spectral radius of ||UHP HUkiiP is less
than or equal to m.

Proof: The result follows from the definition of conjugate transpose,
the orthogonality of the rows and columms of U and the Cauchy-8chwarz
inequality which yields ||U|| P![UkH g S M where M is an mxm matrix of

unity elements and hence of spectral radius <m.

Consider now the use of eigenvalue information as revealed by
unitary transformations. More precisely, there exists ([6}, plid)

a unitary transformation U(s) such that

U* (6) (1_+K()6(s) R()G(s)U(s) = D, (5) L. (28)

where Dl(s) is upper triangular with diagonal elements qj/1+q4, L<j<m.
J -
Writing

~ GAEARE i } .. (29
Dl(s) diag{ Th. Dz(s, (29)
i l2izm

where D2(s) is upper triangular with unit diagonal elements then the
kst }

following results are proved in a similar manner to theorem 3 and

corollary 3.1:

Theorem 4: The conclusions of theorem 1 remain valid if (c) is

replaced by



..]_0__

%
1+q.
qJ

sup  max

| * -]
r( ||u(s) | D (s)U (s)G ~(s) HL(sy | 2)

<1 s+ (30)

Corollary 4.1: The results of corollary 3.1 hold with the replacement

r(s) = r( HU(S)” 7 HDZ(S)U*(S)G_I(S)EIP HL(S)[[P)
wvaie Lk )

Consider the application of the result to the example of

equation (21) with

7 -6
ey < L | | e
B le 7

At 8 = 0, it is easily seen that G(o) = 12, Dz(o) = I and, with

2
Lg) = E(S)Iz, we obtain r(o) = 1.99=(0). Corellary 3.1 and 4.1
then require r(o) < 2 which is equivalent to e(o) < 1.0. The
improvement in the prediction of permissible steady state errors
over those due to corollary 3.1 are self-evident.

In conclusion, the use of unitary transformations can enable
the use of element information in robust stability analysis based on
characteristic locus behaviour without the singularity problems due
to branch points. Note however that the matrix DZ(S) depends on
the detailed structure of both K and G and hence must be recomputed
if K is changed. This 1s true even on the ray {pK}p>O, There 1s

therefore an incentive to try to make the eigenvector matrix T of

KG unitary when we can choose T = U and D2 = Im



_11_..

3a Robust Stability and Singular Values

The above ideas can also be used in the incorporation of element
uncertainty in robust stability analysis based on singular values [l].

More precisely, write
-1
(I+KG) 'KG = HV vu i L33

where H is hermitean, positive-definite and V is unitary. The
eigenvalues O<Ul<02<"'<gm,0f H are the singular values of
(I+KG)—1KG. Suppose that H is diagonalized by the unitary
transformation Uo’ then the following result follows in a similar

manner to theorem 3:

Theorem 5: The conclusions of theorem 1 hold if (c¢) is replaced by
-1
o(I+(KG) 7) > r(s) ; s&ED ... (34)

where
re) 2 r(flu ), U vee ) |, L) | )
woe (8]

Proof: It is easily shown that (c) can be replaced by

- - —_— o
sup o ((I+KG) TKG)r( HUD(S){gP iU, (s)V(s)c 1(S)HP HL(s)i]P) <1
S€D : (36)

which is equivalent to (34) as [1]

E((I+KG)“1KG) = (g(1+<z<c)“1))“l .+« (37)

This result should be compared with the equivalent result in

[1} where the robust stability criterion reduces to

o(r+xe) ™) > 56 taey ,  se&D .. (38)
Note however that theorem 5 provides a direct link between element
uncertainty and robust stability, hence removing the need to represent

structured uncertainties by unstructured bounds on singular values.



4, Conclusions

The paper has illustrated how structured uncertainty in the
elements of a multivariable plant G can be incorporated directly
into robust stability analyses. Ihe use of characteristic locus
structure of the nominal plant has been demonstrated and it has been
seen that skewness of the eiligenvector matrix has a significant
effect on robustness by reducing stability margins. In the worst
cases, the techniques are highly sensitive Lo uncertainty in the
vicinity of branch points. The use of unitary transformations
removes the problem both in the use of eigenvalues and singular
values but at the expense of increased complexity of the result as
the transformations interact with the uncertaintv to affect
stability margins. This is te be expected however as eigenvalue
and/or singular value information on nominal plant dynamics is not

defined in the natural input-cutput basis.
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