
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is the author’s post-print version of an article published in the SIAM Journal
on Computing, 42 (3)

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/id/eprint/76432

Published article:

Dyer, M and Richerby, D (2013) An effective dichotomy for the counting
constraint satisfaction problem. SIAM Journal on Computing, 42 (3). 1245 - 1274.
ISSN 0097-5397

http://dx.doi.org/10.1137/100811258

AN EFFECTIVE DICHOTOMY FOR THE COUNTING
CONSTRAINT SATISFACTION PROBLEM

MARTIN DYER∗ AND DAVID RICHERBY†

Abstract. Bulatov (2008) gave a dichotomy for the counting constraint satisfaction problem
#CSP. A problem from #CSP is characterised by a constraint language Γ, a fixed, finite set of
relations over a finite domain D. An instance of the problem uses these relations to constrain an
arbitrarily large finite set of variables. Bulatov showed that the problem of counting the satisfying
assignments of instances of any problem from #CSP is either in polynomial time (FP) or is #P-
complete. His proof draws heavily on techniques from universal algebra and cannot be understood
without a secure grasp of that field. We give an elementary proof of Bulatov’s dichotomy, based on
succinct representations, which we call frames, of a class of highly structured relations, which we
call strongly rectangular. We show that these are precisely the relations which are invariant under
a Mal’tsev polymorphism. En route, we give a simplification of a decision algorithm for strongly
rectangular constraint languages, due to Bulatov and Dalmau (2006). We establish a new criterion
for the #CSP dichotomy, which we call strong balance, and we prove that this property is decidable.
In fact, we establish membership in NP. Thus, we show that the dichotomy is effective, resolving the
most important open question concerning the #CSP dichotomy.

1. Introduction. The constraint satisfaction problem (CSP) is ubiquitous in
computer science. Problems in such diverse areas as Boolean logic, graph theory,
database query evaluation, type inference, scheduling and artificial intelligence can
be expressed naturally in the setting of assigning values from some domain to a
collection of variables, subject to constraints on the combinations of values taken by
given tuples of variables [17]. CSP is directly equivalent to the problem of evaluating
conjunctive queries on databases [22] and to the homomorphism problem for relational
structures [17]. Weighted versions of CSP appear in statistical physics, where the total
weight of solutions corresponds to the so-called partition function of a spin system [16].

For example, suppose we wish to know if a graph is 3-colourable. The question we
are trying to answer is whether we can assign a colour (domain value) to each vertex
(variable) such that, whenever two vertices are adjacent in the graph, they receive a
different colour (constraints). Similarly, by asking if a 3-CNF formula is satisfiable,
we are asking if we can assign a truth value to each variable such that every clause
contains at least one true literal.

Since it includes both 3-colourability and 3-sat, this general form of the
CSP, known as uniform CSP, is NP-complete. Therefore, attention has focused on
nonuniform CSP. Here, we fix a domain and a finite constraint language Γ, a set of
relations over that domain. Having fixed Γ, we only allow constraints of the form, “the
values assigned to the variables v1, . . . , vr must be a tuple in the r-ary relation R ∈ Γ”
(we define these terms formally in Section 2). We write CSP(Γ) to denote nonuniform
CSP with constraint language Γ. To express 3-colourability in this setting, we
just take Γ to be the disequality relation on a set of three colours. 3-sat is also
expressible: to see this, observe that, for example, the clause ¬x∨ y ∨¬z corresponds
to the relation {t, f}3 \ {t, f, t}, where t indicates “true” and f “false”, and that the
other seven patterns of negations within a clause can be expressed similarly.

Thus, there are languages Γ for which CSP(Γ) is NP-complete. Of course, we can
also express polynomial-time problems such as 2-Colourability and 2-Sat. Feder

∗School of Computing, University of Leeds, Leeds, LS2 9JT, UK.
†Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK.

This research was supported by EPSRC grants EP/E062172/1 “The Complexity of Counting in
Constraint Satisfaction Problems” and EP/I012087/1 ”Computational Counting”.

1

and Vardi [17] conjectured that these are the only possibilities: that is, for all Γ,
CSP(Γ) is in P or is NP-complete. To date, this conjecture remains open but it is
known to hold in special cases [1,20,26]. Recent efforts to resolve the conjecture have
focused on techniques from universal algebra [12].

There can be no dichotomy for the whole of NP, since Ladner [23] has shown that
either P = NP or there is an infinite hierarchy of complexity classes between them.
Hence, assuming that P 6= NP, there exist problems in NP that are neither complete
for the class nor in P. However, it is not unreasonable to conjecture a dichotomy for
CSP, since there are NP problems, such as graph Hamiltonicity and even connectivity,
that cannot be expressed as CSP(Γ) for any finite Γ. This follows from the observation
that any set S of structures (e.g., graphs) that is definable in CSP has the property
that, if A ∈ S and there is a homomorphism B → A, then B ∈ S; neither the set
of Hamiltonian nor connected graphs has this property. Further, Ladner’s theorem is
proven by a diagonalisation that does not seem to be expressible in CSP [17].

In this paper, we consider the counting version of CSP(Γ), which we denote
#CSP(Γ). Rather than ask whether an instance of CSP(Γ) has a satisfying assignment,
we ask how many satisfying assignments there are. The corresponding conjecture was
that, for every Γ, #CSP(Γ) is either computable in polynomial time or complete for
#P. We give formal definitions in the next section but, informally, #P is the ana-
logue of NP for counting problems. Again, a modification of Ladner’s proof shows
that there can be no dichotomy for the whole of #P. Note that the decision version
of any problem in NP is trivially reducible to the corresponding counting problem
in #P: if we can count the number of solutions, we can certainly determine whether
one exists. However, the converse cannot hold under standard assumptions about
complexity theory: there are well-known polynomial-time algorithms that determine
whether a graph admits a perfect matching but it is #P-complete to count the perfect
matchings of even a bipartite graph [28].

Dichotomies for #CSP(Γ) are known in several special cases [10, 11, 13, 15, 16],
each consistent with the conjecture that #CSP(Γ) is always either polynomial-time
computable or #P-complete. However, Bulatov recently made a major breakthrough
by proving a dichotomy for all Γ [2, 3].

Bulatov’s proof makes heavy use of the techniques of universal algebra. A relation
is said to be pp-definable over a constraint language Γ if it can be defined from
the relations in Γ by a logical formula that uses only conjunction and existential
quantification. Geiger [19] showed that an algebra can be associated with the set of pp-
definable relations over Γ and Bulatov examines detailed properties of the congruence
lattice of this algebra.1 The structure of quotients in this lattice must have certain
algebraic properties, which can be derived from tame congruence theory [21] and
commutator theory [18]. Bulatov constructs an algorithm for the polynomial-time
cases, based on decomposing this congruence lattice and using the structure of its
quotients. However, he is only able to do this, in general, by transforming the relation
corresponding to the input instance to one which is a subdirect power. It is even
nontrivial to prove that this transformation inherits the required property of the
original. His paper runs to some 43 pages and is very difficult to follow for anyone
who is not expert in these areas. The criterion of Bulatov’s dichotomy, which is based
on infinite algebras constructed from Γ, was not shown to be decidable. It also seems
difficult to apply his criterion to recover the special cases mentioned above.

Our main results are a new and elementary proof of Bulatov’s theorem and a

1We will not define these terms from universal algebra, as they are not needed for our analysis.

2

proof that the dichotomy is effective. Thus, we answer, in the affirmative, the major
open question in [3]. We follow Bulatov’s approach by working with the relation
over Γ determined by the input, but we require almost no machinery from universal
algebra. The little that is used is defined and explained below. We develop a different
criterion for the #CSP dichotomy, strong balance, which is based on properties of
ternary relations definable in the constraint language. We show that it is equivalent
to Bulatov’s congruence singularity criterion.

Using strong balance, we construct a relatively simple iterative algorithm for the
polynomial-time cases, which requires no algebraic properties. In fact, the bound on
the time complexity of our counting algorithm is no worse than that for deciding if
the input has satisfying assignments.

We then use our criterion to prove decidability of the #CSP dichotomy. We
show that deciding strong balance is in NP, where the input size is that of Γ. Of
course, complexity is not a central issue in the nonuniform model of #CSP, since Γ
is considered to be a constant. It is only decidability that is important. However, the
complexity of deciding the dichotomy seems an interesting computational problem in
its own right.

1.1. Our proofs. Our proofs are almost entirely self-contained and should be
accessible to readers with no knowledge of universal algebra and very little background
in CSP. We use reductions from two previous papers on counting complexity, by Dyer
and Greenhill [16] and by Bulatov and Grohe [8]. We also use results from Bulatov
and Dalmau [6], but we include short proofs of these. The papers [6, 8] deal partly
with ideas from universal algebra, but we make no use of those ideas. We use only one
idea from universal algebra, that of a Mal’tsev polymorphism. This will be defined
and explained in Section 2 below.

The proof is based around a succinct representation for relations preserved by
a Mal’tsev polymorphism. We call such relations strongly rectangular for reasons
which will become clear. Our representation is called a frame, and is similar to the
compact representation of Bulatov and Dalmau [4]. Frames are smaller than compact
representations, since they avoid some redundancy in the representation.

We define a frame for a relation R ⊆ Dn to be a relation F ⊆ R with the
following two properties. First, whenever R contains a tuple with ith component a, F
also contains such a tuple. Second, for 1 < i ≤ n say that a set S ⊆ D is i-equivalent
in R if R contains tuples which agree on their first i − 1 elements and whose ith
elements are exactly the members of S. Any set that is i-equivalent in R must also
be i-equivalent in F , but note that there may be several common prefixes for S in
R when only one is required in F . We show that every n-ary strongly rectangular
relation over D has a small frame of cardinality at most |D|n, whereas R may have
cardinality up to |D|n. Further, we show how to construct such a frame efficiently and
how to recover a strongly rectangular relation R from any of its frames.

Now, suppose we have an instance Φ of #CSP(Γ) for some strongly rectangular
constraint language Γ, with m constraints in n variables. Using methods similar to
those of Bulatov and Dalmau [4], we construct a frame for the solution set of Φ in
polynomial time, by starting with a frame for Dn and introducing the constraints one
at a time. A frame is empty if, and only if, it represents the empty relation so, at this
point, we have re-proven Bulatov and Dalmau’s result that there is a polynomial-time
algorithm for the decision problem CSP(Γ) for any strongly rectangular constraint
language Γ. We give an explicit time complexity for this algorithm, which is O(mn4)
for fixed Γ. Bulatov and Dalmau [4] gave no time estimate, showing only that their

3

procedure runs in polynomial time.

Any ternary relation R ⊆ A1 × A2 × A3 (where the Ai need not be disjoint)
induces a matrix M = (mxy) with rows and columns indexed by A1 and A2 and with

mxy = |{z : (x, y, z) ∈ R}| .

We say that R is balanced if M ’s rows and columns can be permuted to give a block-
diagonal matrix in which every block has rank one, and that a relation R ⊆ Dn for
any n > 3 is balanced if every expression of it as a ternary relation in Dk ×D` ×Dm

(k, `,m ≥ 1, k+ `+m = n) is balanced. A constraint language Γ is strongly balanced
if every relation of arity three or more that is pp-definable relation over Γ is balanced.
Via a brief detour through weighted #CSP, we show that #CSP(Γ) is #P-complete
if Γ is not strongly balanced.

If Γ is strongly balanced, we compute the number of satisfying assignments to a
CSP(Γ) instance as follows. Let R ⊆ Dn be the set of satisfying assignments. First,
we construct a small frame F for R, as above. If R is unary, we have F = R so we
can trivially compute |R|.

Otherwise, for 1 ≤ i < j ≤ n, let Ni,j(a) be the number of prefixes u1 . . . ui such
that there is a tuple u1 . . . un ∈ R with uj = a. In particular, then, summing the
values of Nn−1,n(−) gives |R|. Since the functions N1,j can be calculated easily from
the frame, we just need to show how to compute Ni,j for each j > i, given Ni−1,j for
each j ≥ i. Writing [k] for the set {1, . . . , k}, we can consider the set pr[i]∪{j}R to be
a ternary relation on pr[i−1]R × priR × prjR. R is strongly balanced so the matrix
given by Mxy = |{u : (u, x, y) ∈ pr[i]∪{j}R}| is a rank-one block matrix and the sum
of the a-indexed column of the matrix is Ni,j(a).

By taking quotients with respect to certain congruences, we obtain another rank-
one block matrix M̂ , whose block structure and row and column sums we can deter-
mine. A key fact about rank-one block matrices is that this information is sufficient
to recover the entries of the matrix. This allows us to recover M and, hence, compute
the values Ni,j(a) for each j and a. Iterating, we can determine the function Nn−1,n

and, hence, compute |R|.
Finally, we show that the strong balance property is decidable. Our proof of

decidability rests on showing that, if Γ is not strongly balanced, then there is a
counterexample with a number of variables that is only polynomial in the size of
Γ. We do this by reformulating the strong balance criterion for a given formula Ψ
as a question concerning counting assignments in a formula derived from Ψ. This
reformulation enables us to apply a technique of Lovász [24]. The technique further
allows us to recast strong balance in terms of the symmetries of a fixed structure, that
is easily computable from Γ. We are thus able to show that deciding strong balance
is in NP, where the input size is that of Γ.

1.2. Organisation of the paper. The remainder of the paper is organised as
follows. Preliminary definitions and notation are given in Section 2. In Section 3,
we define the notion of strong rectangularity that we use throughout the paper and,
in Section 4, we further study the properties of strongly rectangular relations and
introduce frames, our succinct representations of such relations. We give an efficient
procedure for constructing frames in Section 5. In Section 6, we introduce counting
problems and, in Section 7, we define the key notion of a strongly balanced constraint
language and prove that #CSP(Γ) is solvable in polynomial time if Γ is strongly
balanced and is #P-complete otherwise. In Section 8, we show that our dichotomy

4

is decidable, in fact in the complexity class NP. Some concluding remarks appear in
Section 9.

2. Definitions and notation. In this section, we present the definitions and
notation used throughout the paper. We defer to Section 8 material relating to certain
classes of functions that are used only in that section.

For any natural number n, we write [n] for the set {1, . . . , n}.

2.1. Relations and constraints. Let D = {d1, d2, . . . , dq} be a finite domain
with q = |D|. We will always consider q to be a constant and we assume that q ≥ 2
to avoid trivialities. A constraint language Γ is a finite set of finitary relations on
D, including the binary equality relation {(di, di) : i ∈ [q]}, which we denote by =.
We will call S = (D,Γ) a relational structure. We may view an r-ary relation H
on D with ` = |H| as an ` × r matrix with elements in D. Then a tuple t ∈ H is
any row of this matrix. We will usually write tuples in the standard notation, for
example (t1, t2, . . . , tr). For brevity, however, we also write tuples in string notation,
for example, t1t2 . . . tr, where this can cause no confusion.

If R is an n-ary relation and i = (i1, . . . , ik) are distinct elements of [n], we
write priR for the projection of R on i, the relation {(ai1 , . . . , aik) : (a1, . . . , an) ∈
R for some values of the aj , j /∈ i}. For I ⊆ [n], we write prIR as shorthand for priR,
where i is the enumeration of I’s elements in increasing order. For the relation {t},
where t is a single n-tuple, we write prit rather than pri{t}.

We define the size of a relation H as ‖H‖ = `r, the number of elements in its
matrix, and the size of Γ as ‖Γ‖ =

∑
H∈Γ ‖H‖. To avoid trivialities, we will assume

that every relation H ∈ Γ is nonempty, i.e. that ‖H‖ > 0. We will also assume that
every d ∈ D appears in a tuple of some relation H ∈ Γ. If this is not so for some d,
we can remove it from D. It then follows that ‖Γ‖ ≥ q.

Let V = {ν1, ν2, . . . , νn} be a finite set of variables. An assignment is a func-
tion x : V → D. We will abbreviate x(νi) to xi. If {i1, i2, . . . , ir} ⊆ [n], we write
H(xi1 , xi2 , . . . , xir) for the relation Θ = {x : (xi1 , xi2 , . . . , xir) ∈ H} and we refer to
this as a constraint. Then (νi1 , νi2 , . . . , νir) is the scope of the constraint and we say
that x is a satisfying assignment for the constraint if x ∈ Θ.

A Γ-formula Φ in a set of variables {x1, x2, . . . , xn} is a conjunction of constraints
Θ1∧· · ·∧Θm. We will identify the variables with the xi above, although strictly they
are only a model of the formula. Note that the precise labelling of the variables in
Φ has no real significance. A formula remains the same if its variables are relabelled
under a bijection to any other set of variable names.

A Γ-formula Φ describes an instance of the constraint satisfaction problem (CSP)
with constraint language Γ. A satisfying assignment for Φ is an assignment that
satisfies all Θi (i ∈ [m]). The set of all satisfying assignments for Φ is the Γ-definable
relation RΦ over D. We make no distinction between Φ and RΦ, unless this could
cause confusion.

2.2. Definability. A primitive positive (pp) formula Ψ is a Γ-formula Φ with
existential quantification over some subset of the variables. A satisfying assignment for
Ψ is any satisfying assignment for Φ. The unquantified (free) variables then determine
the pp-definable relation RΨ, a projection of RΦ. Note that any permutation of
the columns of a pp-definable relation is, itself, pp-definable. Again, we make no
distinction between Ψ and RΨ.

The set of all Γ-definable relations is denoted by CSP(Γ) and the set of all pp-
definable relations is the relational clone 〈Γ〉. If Γ = {H,=}, we just write 〈H〉. An

5

equivalence relation in 〈Γ〉 is called a congruence.

2.3. Polymorphisms. A k-ary polymorphism of Γ is any function ψ : Dk → D,
for some k, that preserves all the relations in Γ. By this we mean that, for every r-ary
relation H ∈ Γ and every sequence u1, . . . ,uk of r-tuples in H,

ψ(u1,u2, . . . ,uk) =
(
ψ(u1,1, . . . , uk,1), ψ(u1,2, . . . , uk,2), . . . , ψ(u1,r, . . . , uk,r)

)
∈ H .

It is well known that any polymorphism of Γ preserves all relations in 〈Γ〉 (see
Lemma 4).

A Mal’tsev polymorphism of Γ is a polymorphism ϕ : D3 → D such that, for all
a, b ∈ D, ϕ(a, b, b) = ϕ(b, b, a) = a. (So, in particular, ϕ(a, a, a) = a.) We will usually
present calculations using ϕ in a four-row table. The first three rows give the triple of
“input” tuples t1, t2, t3 and the fourth gives the “output” ϕ(t1, t2, t3). For example,
the table below indicates that ϕ(au, av, bw) = (b, ϕ(u,v,w)).

a u
a v
b w
b ϕ(u,v,w) .

2.4. Complexity. For any alphabet Σ, we denote by FP the class of functions
f : Σ∗ → N for which there is a deterministic, polynomial-time Turing machine that,
given input x ∈ Σ∗, writes f(x) (in binary) to its output tape. #P is the class of
functions f : Σ∗ → N such that there is a nondeterministic, polynomial-time Turing
machine that has exactly f(x) accepting computations for every input x ∈ Σ∗.

Completeness for #P is defined with respect to polynomial-time Turing reduc-
tions [29], also known as Cook reductions. For functions f, g : Σ∗ → N, a polynomial-
time Turing reduction from f to g is a polynomial-time oracle Turing machine that
can compute f using an oracle for g. A function f ∈ #P is #P-complete if there is a
Cook reduction to f from every problem in #P.

The class #P plays a role in the complexity of counting problems analogous to
that played by NP in decision problems. Note, however, that, subject to standard
complexity-theoretic assumptions, #P-complete problems are much harder than NP-
complete problems. Toda has shown that P#P includes the whole of the polynomial-
time hierarchy [27], whereas PNP is just the hierarchy’s second level.

3. Rectangular relations. A binary relation B ⊆ A1×A2 is called rectangular
if (a, c), (a, d), (b, c) ∈ B implies (b, d) ∈ B for all a, b ∈ A1, c, d ∈ A2. We may view
B as an undirected bipartite graph GB , with vertex bipartition A1, A2 and edge set
EB = {{a1, a2} : (a1, a2) ∈ B}. Note that we do not insist that A1 ∩ A2 = ∅ but,
if a ∈ A1 ∩ A2, a is regarded as labelling two distinct vertices, one in A1 and one
in A2. Formally, A1 and A2 should be replaced by the disjoint vertex sets {1} × A1

and {2} × A2 but this would unduly complicate the notation. We will assume that
priB = Ai (i = 1, 2), so that GB has no isolated vertices. The connected components
of GB will be called the blocks of B.

Rectangular relations have very simple structure.
Lemma 1. If B is rectangular, GB comprises k bipartite cliques, for some k ≤

min{|A1|, |A2|}.
Proof. Let k be the number of connected components of GB . Every vertex is

included in an edge so k ≤ min{|A1|, |A2|}. Consider any component C and suppose
it is not a bipartite clique. Let a ∈ A1 ∩ C, z ∈ A2 ∩ C be such that {a, z} /∈ EB .

6

Thus, a shortest path in C from a to z has length at least 3. If a, b, c, d are the
first four vertices on such a path, then {a, b}, {b, c}, {c, d} ∈ EB , but {a, d} /∈ EB

as, otherwise, there would be a shorter path from a to z. But this is equivalent to
(a, b), (c, b), (c, d) ∈ B and (a, d) /∈ B, contradicting rectangularity.

Where appropriate, we do not distinguish between B and GB . For example, we
will refer to a connected component of GB as a block.

Corollary 2. The relations

θ1(x1, x2) ≡ ∃y
(
B(x1, y) ∧B(x2, y)

)
and θ2(y1, y2) ≡ ∃x

(
B(x, y1) ∧B(x, y2)

)
are equivalence relations on pr1B, pr2B respectively. The equivalence classes of θ1

and θ2 are in one-to-one correspondence.
Proof. The blocks of B induce partitions of A1 and A2 which are in one-to-one

correspondence. These clearly define the equivalence classes of θ1 and θ2.
Corollary 3. If Γ is a constraint language and B ∈ 〈Γ〉 is rectangular, then

the relations θ1 and θ2 of Corollary 2 are congruences in 〈Γ〉.
Proof. Since B has a pp-definition, so too do θ1 and θ2.
We say that a relation R ⊆ Dn for n ≥ 2 is rectangular if every expression

of R as a binary relation in Dk × Dn−k (1 ≤ k < n) is rectangular. We call a
constraint language Γ strongly rectangular if every relation B ∈ 〈Γ〉 of arity at least 2
is rectangular. If R ⊆ Dn is a relation, we say that it is strongly rectangular if 〈R〉
is strongly rectangular. If R ∈ 〈Γ〉 for a strongly rectangular Γ, then R is strongly
rectangular, since 〈R〉 ⊆ 〈Γ〉.

From the definition, it is not clear whether the strong rectangularity of Γ is
even decidable, since 〈Γ〉 is an infinite set. However, it is decidable, as we will now
show. The following result is usually proven in an algebraic setting. That proof is
not difficult, but requires an understanding of concepts from universal algebra, such
as free algebras and varieties [12]. Therefore, we will give a proof in the relational
setting. Moreover, we believe that this proof will provide rather more insight for the
reader whose primary interest is in relations.

First, we require the following lemma, which is well-known from the folklore; we
provide a proof for completeness.

Lemma 4. ϕ is a polymorphism of Γ if, and only if, it is a polymorphism of 〈Γ〉.
Proof. Let ϕ be a polymorphism of Γ and let R ∈ 〈Γ〉. We prove that ϕ is a

polymorphism of R by induction on the structure of the defining formula of R. The
base case, atomic formulae (H(x) for relations H ∈ Γ) is trivial.

Suppose R is defined by ∃y ψ(x, y). If a1,a2,a3 ∈ R, then there are b1, b2, b3
such that aibi ∈ ψ (i ∈ {1, 2, 3}). If ϕ is a polymorphism of ψ, then it follows that
cd = ϕ(a1b1,a2b2,a3b3) ∈ ψ, which means that c ∈ R, as required.

Finally, suppose R is defined by ψ(x) ∧ χ(x). If a1,a2,a3 ∈ R, then ai ∈ ψ ∩ χ
for each i. If ϕ is a polymorphism of ψ and of χ then c = ϕ(a1,a2,a3) ∈ ψ ∩ χ and,
therefore, c ∈ R, as required.

Conversely, Γ ⊆ 〈Γ〉 so every polymorphism of 〈Γ〉 is a polymorphism of Γ.
Lemma 5. A constraint langauge Γ is strongly rectangular if, and only if, it has

a Mal’tsev polymorphism.
Proof. Suppose Γ has a Mal’tsev polymorphism ϕ. Consider any pp-definable

binary relation B ⊆ Dr × Ds. By Lemma 4, ϕ is also a polymorphism of B. If
(a, c), (a,d), (b,d) ∈ B then we have (ϕ(a,a,b), ϕ(c,d,d)) = (b, c) ∈ B, from the
definition of a Mal’tsev polymorphism. Thus, B is rectangular and hence Γ is strongly
rectangular.

7

Conversely, suppose Γ is strongly rectangular. Denote the relation H ∈ Γ by
H = {uH

i : i ∈ [`H]}, where uH
i ∈ DrH. Consider the Γ-formula

Φ(x) =
∧
H∈Γ

∧
i1∈[`H]

∧
i2∈[`H]

∧
i3∈[`H]

H
(
xH
i1,i2,i3

)
,

where xH
i1,i2,i3

is an rH -tuple of variables, distinct for all H ∈ Γ, i1, i2, i3 ∈ [`H]. Thus,

the relation RΦ has arity rΦ =
∑

H∈Γ rH`
3
H and |RΦ| =

∏
H∈Γ `H

`3H.
Clearly RΦ has three tuples u1, u2, u3 such that the sub-tuple of uj corresponding

to xH
i1,i2,i3

is uH
ij

for each j ∈ {1, 2, 3} and each i1, i2, i3 ∈ [`H]. Then U = {u1,u2,u3}
has the following universality property for Γ. For all H ∈ Γ and every triple of (not
necessarily distinct) tuples t1, t2, t3 ∈ H, there is a set I = I(t1, t2, t3) with I ⊆ [rΦ],
|I| = rH such that prIRΦ = H and prIui = ti (i = 1, 2, 3).

Now, for each set of identical columns in U, we impose equality on the correspond-
ing variables in Φ, to give a Γ-formula Φ′. Let U ′ be the resulting submatrix of U,
with rows u′1, u′2, u′3. Observe that U ′ is obtained by deleting copies of columns in U.
Therefore U ′ has no identical columns and has a column (a, b, c) for all a, b, c ∈ prkH
with H ∈ Γ and k ∈ [rH].

Next, for all columns (a, b, c) of U ′ such that b /∈ {a, c}, we impose existential
quantification on the corresponding variables in Φ′, to give a pp-formula Φ′′. Let U ′′

be the submatrix of U ′ with rows u′′1 , u′′2 , u′′3 corresponding to u′1, u′2, u′3. Then
U ′′ results from deleting columns in U ′ and U ′′ has columns of the form (a, a, b) or
(c, d, d). Thus, after rearranging columns (relabelling variables), we will have

U ′′ =

u′′1
u′′2
u′′3

 =

 a c

a d

b d

 ,
for some nonempty tuples a, b, c, d. By strong rectangularity, this implies that
u′′ =

[
b c

]
∈ RΦ′′ .

Removing the existential quantification in Φ′′, u′′ can be extended to u′ ∈ RΦ′ .
Now, if column k of U ′ is (a, b, c) say, we define ϕ(a, b, c) = u′k. This is unambiguous,
since U ′ has no identical columns. Thus, u′ = ϕ(u′1,u

′
2,u
′
3) ∈ RΦ′ . If, for any

a, b, c ∈ D, ϕ(a, b, c) remains undefined, we will set ϕ(a, b, c) = a unless a = b, in
which case ϕ(a, b, c) = c. Clearly ϕ satisfies ϕ(a, b, b) = ϕ(b, b, a) = a, for all a, b ∈ D,
and so has the Mal’tsev property.

Removing the equalities between variables in Φ′, u′ can be further extended to
u = ϕ(u1,u2,u3) ∈ RΦ. This is consistent since u satisfies the equalities imposed
on Φ to give Φ′. Now, for any t1, t2, t3 ∈ H, the universality property of U implies
that, for some I, prIu = ϕ(t1, t2, t3) ∈ H. Thus, ϕ preserves all H ∈ Γ, so it is a
polymorphism and hence a Mal’tsev polymorphism.

Remark 1. Observe that the proof of Lemma 5 uses all the elements of pp-
definability. Thus, if Lemma 5 is to hold true, the definition of strong rectangularity
cannot be significantly weakened.

Remark 2. The proof of Lemma 5 is constructive and, hence, implies an algo-
rithm for deciding whether Γ is strongly rectangular and, if so, determining a Mal’tsev
polymorphism ϕ. However, we describe a more efficient method in Lemma 8 below.

Note that strong rectangularity is invariant under permutations of the columns
of a relation, both by Lemma 5 (since permutations of columns do not affect Mal’tsev
polymorphisms) and by the fact that permutations are pp-definable. We will use this

8

fact repeatedly and consider a relation R ⊆ Dn for some n > 2 to be a binary relation
on Dk×Dn−k or a ternary relation on Dk×D`×Dn−k−`, for any appropriate values
of k and `.

In the algebraic setting, the result corresponding to Lemma 5 is that 〈Γ〉 has
a Mal’tsev polymorphism if, and only if, Γ is congruence permutable. See, for ex-
ample, [12]. This has the following meaning. If ρ1 and ρ2 are congruences on a
pp-definable set A ⊆ Dr, define the relational product ψ = ρ1 ◦ ρ2 by ψ(x,y) =
∃z
(
χ(z) ∧ ρ1(x, z) ∧ ρ2(z,y)

)
, where χ is the formula defining A. Then ρ1, ρ2 are

permutable if ψ(u,v) implies ψ(v,u) for all u,v ∈ A or, equivalently, ρ1 ◦ρ2 = ρ2 ◦ρ1.
Now Γ is congruence permutable if every pair of congruences on the same set A is
permutable. For completeness, we will prove the following.

Lemma 6. Γ is strongly rectangular if, and only if, it is congruence permutable.

Proof. Suppose Γ is strongly rectangular. If ρ1, ρ2 are congruences on a pp-
definable set A ⊆ Dr, let ψ be the relational product, as defined above. Clearly ψ is a
pp-definable binary relation on Dr. Then, if (u,v) ∈ ψ, we have (u,u), (u,v), (v,v) ∈
ψ, since ρ1 and ρ2 are congruences. But this implies (v,u) ∈ ψ since ψ is rectangular.
Thus, Γ is congruence permutable.

Conversely, if Γ is congruence permutable, consider a pp-definable relation B ⊆
Dr×Ds. Define a relation ∼1 on B by (x1,y1) ∼1 (x2,y2) if, and only if, (x1,y1) ∈ B,
(x2,y2) ∈ B and x1 = x2. This is pp-definable, by B(x1,y1)∧B(x2,y2)∧ (x1 = x2),
and is clearly an equivalence relation. Hence it is a congruence. Similarly, define a
congruence ∼2 on Dr+s by (x1,y1) ∼2 (x2,y2) if, and only if, (x1,y1), (x2,y2) ∈ B
and y1 = y2. Let ψ =∼1 ◦ ∼2.

Suppose
(
(a, c), (b,d)

)
∈ ψ. Then there exists (u,v) ∈ B such that (a, c) ∼1

(u,v) ∼2 (b,d). Thus, (u,v) = (a,d) and, hence, (a, c), (a,d), (b,d) ∈ B. Congru-
ence permutability implies

(
(b,d), (a, c)

)
∈ ψ. Hence there exists (u′,v′) ∈ B such

that (b,d) ∼1 (u′,v′) ∼2 (a, c). Thus, (u′,v′) = (b, c). Therefore we have (b, c) ∈ B
and Γ is strongly rectangular.

Corollary 7. Γ is congruence permutable if, and only if, it has a Mal’tsev
polymorphism.

Proof. This follows directly from Lemmas 5 and 6.

We will now consider the complexity of deciding whether Γ is strongly rectangular.

Lemma 8. We can decide whether Γ is strongly rectangular in O(‖Γ‖4) time and,
if so, determine a Mal’tsev polymorphism ϕ.

Proof. Observe that there are at most qq(q−1)2 possible Mal’tsev operations D3 →
D. This follows since there are q(q − 1)2 triples a, b, c ∈ D which have b /∈ {a, c}.
For all other triples, the value of ϕ(a, b, c) is determined by the condition that ϕ is
Mal’tsev. Thus, there are O(1) possibilities for ϕ. For an r-ary relation H ∈ Γ with
` tuples, we can check in O(`4r) = O(‖H‖4) time whether H is preserved by any of
them. If so, we have ϕ ; if not, Γ is not strongly rectangular.

Remark 3. We have assumed that q is a constant in Lemma 8. We revisit this
question in Section 8, where we make no such assumption.

In view of Lemma 8, we may assume that we have determined a Mal’tsev poly-
morphism ϕ for any given strongly rectangular Γ.

Strongly rectangular constraint languages have another useful property. For each
a ∈ D, define the constant relation χa = {(a)}. Then the constraint χa(xi) fixes the
value of xi to be a.

Lemma 9. If Γ is strongly rectangular, then so is Γ′ = Γ ∪ {χa}.
Proof. By Lemma 5, Γ is preserved by a Mal’tsev polymorphism ϕ. Since

9

ϕ(a, a, a) = a for any a ∈ D, ϕ also preserves χa. Thus ϕ preserves Γ′, so Γ′ is
strongly rectangular, by Lemma 5.

In the light of Lemma 9, we may assume that {χa : a ∈ D} ⊆ Γ whenever Γ is
strongly rectangular.

Remark 4. More generally, the property of a polymorphism ψ that we have
used in Lemma 9, that ψ(x, x, . . . , x) = x for any x ∈ D, is called idempotence in the
algebraic literature on CSP.

4. The structure of strongly rectangular relations. Let R ⊆ Dn be a
strongly rectangular relation. For any i ∈ [n], we say that an n-tuple t ∈ R is a
witness for a ∈ priR if ti = a. We will abbreviate this by saying that t witnesses
(a, i). If t = (u, a,v) ∈ R, we call u a prefix for a. Now define a relation ∼i on priR
by a ∼i b if, and only if, there exists u ∈ Di−1 which is a common prefix for a and b.
That is, there exist va,vb ∈ Dn−i such that (u, a,va), (u, b,vb) ∈ R.

Lemma 10. ∼i is an equivalence relation on priR and a congruence in 〈R〉.
Proof. Consider the binary relation B on pr[i−1]R × priR defined by B(u, a) =

∃yR(u, a,y). Then ∼i is the equivalence relation θ2 of Corollary 2, which is a con-
gruence by Corollary 3.

Let Ei,k (k ∈ [κi]) be the equivalence classes of ∼i for κi ∈ [q], i ∈ [n]. Observe
that κ1 = 1, since all a ∈ pr1R have witnesses with the common empty prefix. More
generally, we make the following observation, which follows directly from the block
structure of the relation B in the proof of Lemma 10.

Corollary 11. There is a common prefix ui,k ∈ Di−1 for all a ∈ Ei,k (k ∈
[κi], i ∈ [n]) and we can choose ui,k to be any prefix of any a ∈ Ei,k.

Following Bulatov and Dalmau [4], if H is any relation and ϕ a Mal’tsev operation
(i.e., a ternary function that is not necessarily a polymorphism but has the property
that ϕ(a, b, b) = ϕ(b, b, a) = a for all a, b ∈ D), then clϕH is the smallest relation
that contains H and which is closed under ϕ. Clearly clϕH is a strongly rectangular
relation with polymorphism ϕ and we say that the H generates clϕH. The following
observation, from [4], gives a simple but important fact.

Lemma 12. Let H be an n-ary relation. If I ⊆ [n], then clϕprIH = prIclϕH.
Proof. Consider generating clϕprIH while retaining all n columns of H. Each row

of the resulting n-ary relation will be in clϕH, so we have clϕprIH ⊆ prIclϕH. But
further operations to generate clϕH cannot add new rows to clϕprIH. So, in fact, we
have clϕprIH = prIclϕH.

Let S = {t1, t2, . . . , ts} be a set of n-tuples, presented as an s× n matrix. If I ⊆
[n], we will need to compute a relation T ⊆ clϕS such that prIT = clϕprIS = prIclϕS.

Lemma 13. If ` = |prIclϕS| and s = |S|, then a relation T ⊆ clϕS such that
prIT = prIclϕS can be computed in time O(n`3 + s`4).

Proof. Consider the algorithm Closure, on the following page.
The correctness of Closure is trivial. At termination, all `3 triples (k1, k2, k3)

with k1, k2, k3 ∈ [`] have been considered for generating new n-tuples (in line 6),
so we have computed clϕprIS. The analysis is equally easy. There are `3 triples
(k1, k2, k3). For each triple, the generation in line 6 takes O(n) time and the search
in line 7 requires O(s`) time, with the obvious implementations. Thus, the total is
O(n`3 + s`4).

The procedure outlined in [4] has complexity O(n`4 + s`5), since the same triple
(k1, k2, k3) can appear Ω(`) times. The procedure Closure simply avoids this.

The time complexity of Closure could be improved, for example, by using a
more sophisticated data structure to implement the searches in line 7. However we

10

procedure Closure(I)

1: `← s, j1 ← 2
2: while j1 ≤ ` do
3: for j2 ∈ [j1] do
4: for j3 ∈ [j2] do
5: for all permutations (k1, k2, k3) of {j1, j2, j3} such that k2 /∈ {k1, k3} do
6: u← ϕ(tk1

, tk2
, tk3

)
7: if there is no j ∈ [`] such that prItj = prIu then
8: `← `+ 1, t` ← u
9: j1 ← j1 + 1

do not pursue such issues here, or elsewhere in the paper.
Now we define a frame for an n-ary relation R to be a set F ⊆ R such that
(a) priF = priR for each i ∈ [n]; and
(b) there is a vi,k ∈ Di−1 for each equivalence class Ei,k of ∼i (k ∈ [κi], i ∈ [n])

such that, for each a ∈ Ei,k, there exists a wa ∈ F with pr[i]wa = vi,ka.
Clearly, R itself satisfies the definition of a frame, so every relation has at least

one frame. However, we will show that strongly rectangular relations have frames that
can be much smaller than R and we call a frame for a strongly rectangular relation
R ⊆ Dn small if |F | ≤ n(q − 1) + 1.

A witness function for a frame F of the relation R is a function ω : D × [n]→ F
such that ω(a, i) witnesses (a, i) for all a ∈ priR and i ∈ [n] and pr[i−1]ω(a, i) =
pr[i−1]ω(b, i) when a ∼i b. That is, ω(a, i) returns a witness for (a, i) and, if (a1, i),
. . . , (ak, i) have witnesses with a common prefix, then ω returns such witnesses.

Lemma 14. Let F be a frame for a strongly rectangular relation R ⊆ Dn. We can
determine a small frame F ′ for R and a surjective witness function ω′ : D× [n]→ F ′

in time O(‖F‖2).
Proof. In time O(‖F‖)2, we can compute the relations ∼i (i ∈ [n]) and common

prefixes for each ∼i-equivalence class. Hence, we can compute a witness function ω
for F . Further, we may delete from F any tuple t for which ω−1(t) = ∅. Because
ω is a witness function, the resulting set is still a frame for R and has size at most∑

i∈[n] |priR| ≤ nq.
Now we construct F ′ and ω′ as follows. Choose any f ∈ F and set F ′ = {f}.

Then, for each i ∈ [n], do the following. Let g = ω(fi, i) and set ω′(fi, i)← f . Now,
consider in turn each a 6= fi such that a ∼i fi and let h = ω(a, i). Note that g and h
have the same prefix u′ ∈ Di−1, since F is a frame, and suppose f has prefix u ∈ Di−1.
Then set h′ ← ϕ(f ,g,h), F ′ ← F ′ ∪ {h′} and ω′(a, i)← h′. Since

f : u fi v
g : u′ fi v′

h : u′ a va

h′ : u a ϕ(v,v′,va) ,

this ensures that F ′ retains property (b) of a frame. Having performed these steps for
each i ∈ [n], we deal with those a ∈ priF with a 6∼i fi by setting F ′ ← F ′ ∪ {ω(a, i)}
and ω′(a, i)← ω(a, i).

The final size of F ′ can be bounded as follows. The tuple f witnesses (fi, i) for
all i ∈ [n]. Then, for each i ∈ [n], there is at most one tuple in F ′ witnessing (a, i)
for each a ∈ priR \ {fi}. Since there are, in total,

∑n
i=1

(
|priR| − 1

)
≤ n(q − 1) such

pairs (a, i), it follows that F ′ is a small frame.

11

The time bound is easy. Given the function ω, we can determine the h′ in O(n)
for each i ∈ [n]. All other operations require O(1) time for each i ∈ [n]. Thus, we
can need only O(n2) = O(‖F‖2) time once we have determined ω, which can also be
done in O(‖F‖2) time.

Remark 5. The upper bound for the size of a small frame is achieved by the
complete relation Dn. We exhibit a small frame for Dn in Lemma 18 below. However,
a frame can be much smaller than this upper bound n(q − 1) + 1. Consider, for
example, the n-ary relation R = {(a, . . . , a) : a ∈ D}. It is easy to show that R is
strongly rectangular. However, it is also easy to see that F = R is a frame, with
ω(a, i) = (a, . . . , a) (i ∈ [n]) and |F | = q.

Remark 6. The compact representations of Bulatov and Dalmau [4] are not
necessarily frames and can have size nq2/2. However, it appears that a frame could
be constructed efficiently from such a representation using methods similar to those
of Lemma 14.

We will suppose below that all frames are small. If necessary, this can be achieved
using Lemma 14. Note that we do not assume that a frame for R can actually generate
R, since this is entailed by the following.

Lemma 15. If R is strongly rectangular with Mal’tsev polymorphism ϕ and F is
a frame for R, then clϕF = R.

Proof. F ⊆ R so clϕF ⊆ clϕR = R. It remains to show that R ⊆ clϕF .
We show by induction on i ∈ [n] that pr[i]R ⊆ pr[i]clϕF . The base case, i = 1,

is trivial as pr1R = pr1F by definition. Suppose that pr[i−1]R ⊆ pr[i−1]clϕF and let
t = (t1, . . . , tn) = (u, ti,v) ∈ R. By the inductive hypothesis, we have u ∈ pr[i−1]clϕF
so there is a tuple t′ = (u, t′i,v

′) ∈ clϕF ⊆ R. Therefore, t′i ∼i ti, which means there
are tuples (u′, ti,w) and (u′, t′i,w

′) in F witnessing (ti, i) and (t′i, i), respectively.
Thus, we have

u t′i v′

u′ t′i w′

u′ ti w
u ti ϕ(v′,w′,w) .

Therefore, (t1, . . . , ti) ∈ pr[i]clϕF , continuing the induction.
Given ϕ and the matrix for F , the procedure of Lemma 15 can be used to decide

t ∈ R in time O(n2). There is no need to generate the whole of R; we just keep
track of the tuple (u, ti, ϕ(v′,w′,w)) that witnesses that (t1, . . . , ti) ∈ pr[i]clϕF . If the
procedure succeeds, we have demonstrated that t ∈ clϕF = R; otherwise, we conclude
either that t /∈ R or that R is not strongly rectangular.

We now show how, given a frame for R, we can determine a frame for the relation

R(a1, . . . , ai, xi+1, . . . , xn) = {t ∈ R : (t1, . . . , ti) = (a1, . . . , ai)} .

Lemma 16. Given a small frame F for R(x1, x2, . . . , xn), we can construct a
frame for R(a, x2, . . . , xn) in O(n2) time.

Proof. We abbreviate R(a, x2, . . . , xn) to R(a, ·). For each i = 2, . . . , n, determine
clϕpr1,iF = pr1,iclϕF = pr1,iR. Note that |pr1,iR| ≤ q2 and ‖F‖ = O(n) so this
requires O(n) time for each i, and O(n2) time in total. We have (a, b) ∈ pr1,iR if,
and only if, b ∈ priR(a, ·). Also, we have calculated a witness (with respect to R)
for each b ∈ priR(a, ·). Let ∼i be the usual congruence for R and ∼′i the correspond-
ing congruence for R(a, ·). Clearly b ∼′i c implies b ∼i c, since there are witnesses

12

(a,u, b,v), (a,u, c,v′) ∈ R. On the other hand, if b ∼i c and b ∈ priR(a, ·), then
c ∈ priR(a, ·) and b ∼′i c, since we have

a u b v
a′ u′ b v′

a′ u′ c v′′

a u c ϕ(v,v′,v′′) .

Thus, the equivalence classes of ∼′i are a subset of those of ∼i. Therefore we can
easily construct ∼′i and a witness for each b ∈ priR(a, ·), using F and the n-tuples
from the calculation of pr1,iR.

The following corollary is immediate, by iterating the Lemma 16 i ≤ n times.
Corollary 17. Given a frame F for the relation R(x1, x2, . . . , xn), a frame for

R(a1, . . . , ai, xi+1, . . . , xn) can be constructed in O(n3) time.

5. Constructing a frame. If R is Γ-definable, then t ∈ R can be decided in
polynomial time by checking that t satisfies each of the defining constraints. We
cannot use this method to decide R = ∅ efficiently but this can be done trivially using
any frame F for R, since R = ∅ if, and only if, F = ∅. If F 6= ∅, then any f ∈ F is a
certificate that R 6= ∅. Similarly, given a frame for R and any tuple (a1, . . . , ai), we
can determine whether there is any t ∈ R such that (t1, . . . , ti) = (a1, . . . , ai), using
the method of Corollary 17.

However, we must be able to construct some frame F for R efficiently. If Γ is
strongly rectangular, we will show how to determine a frame for a Γ-formula Φ having
m constraints in n variables, in time polynomial in m, n and ‖Γ‖. This is achieved,
as in [4], by adding constraints sequentially.

If the m constraints are Θ1,Θ2, . . . ,Θm, let Φs = Θ1 ∧ Θ2 ∧ · · · ∧ Θs. Thus,
Φ0 = Dn, the complete n-ary relation on D, and Φm = Φ. We begin by constructing
a frame for Φ0.

Lemma 18. A small frame F0 for Φ0 can be constructed in O(n) time.
Proof. Let d be any element of D and let F0 = {td} ∪ {ta,i : i ∈ [n], a ∈ D \ d},

where

tdj = d and ta,ij =

{
a if j = i

d otherwise
(j ∈ [n]).

Clearly all these tuples are in Φ0. Also ω(d, i) = td and ω(a, i) = ta,i (a 6= d), for
all i ∈ [n], is a witness function. Further, we have pr[i−1]t

a,i = pr[i−1]t
d = (d, . . . , d).

Thus, F0 satisfies the conditions for being a frame. We have |F0| = n(q − 1) + 1, so
F0 is small.

Note that |F0| matches the upper bound for the size of a small frame.
Now, we show how to determine a frame for Φs given a frame for Φs−1. We first

show that this can be done in polynomial time when ‖Γ‖ = O(1). This is nonuniform
CSP, the most important case.

Lemma 19. Given a frame F for Φ and a constraint Θ, a frame F ′ for Φ′ = Φ∧Θ
can be constructed in O(n4) time.

Proof. Suppose that Θ = H(xi1 , xi2 , . . . , xir), where H ∈ Γ has arity r. We will
assume that xi1 , xi2 , . . . , xir are distinct since, otherwise, we can consider a smaller
relation H ′ over the distinct variables. Let I = {i1, i2, . . . , ir}. For each i ∈ [n], let
Ji = I ∪ {i} and determine Ti ⊆ Φ such that prJi

Ti = clϕprJi
Φ using Closure. If

` = |prIΦ|, then |Ti| ≤ q`, so this takes time O(n`3 + r`4) by Lemma 13. But, since

13

‖Γ‖ = O(1), we have r = O(1), ` ≤ qr = O(1) and O(n`3 + r`4) = O(n). The entire
computation for all i therefore takes time O(n2) and we have

∑
i |Ti| = O(n).

Determine Ui, the set of tuples in Ti that are consistent with Θ, so Ui ⊆ Φ′. Now
Ui contains a witness for each a ∈ priΦ

′, since

prJi
Ui = (prJi

Ti) ∩Θ = (clϕprJi
F) ∩Θ = (prJi

Φ) ∩Θ = prJi
(Φ ∧Θ) = prJi

Φ′ .

Thus, in particular, priUi = priΦ
′. We now do the following for each i ∈ [n].

Let A ← priUi and repeat the following until A = ∅. Choose t ∈ Ui such that
ti ∈ A. Determine a frame F ? for Φ(t1, . . . , ti−1, xi, . . . , xn) in O(n3) time, using
Corollary 17. Clearly t ∈ clϕF

?, so F ? 6= ∅. Now determine the intersection of Θ with
the relation R? = Φ(t1, . . . , ti−1, xi, . . . , xn) generated by F ?, using Closure, as was
done for Φ above. This takes O(n) time; let the resulting relation be R◦. Now, by
Corollary 11, priR

◦ is the equivalence class E = {a : a ∼′i ti} of ti in Φ′. For each
a ∈ E , we can find a witness ω′(a, i) ∈ R◦ for a ∈ priΦ

′ and these have the common
prefix (t1, . . . , ti−1). We set A ← A \ E , and repeat.

At the end of this process, ω′ is the witness function for a frame F ′ for Φ′. The
total time required is O(n3|F ′|) = O(n4).

Lemma 20. A frame F for Φ can be constructed in time O(mn4).
Proof. Construct Φ0 in O(n) time. Then, apply Lemma 19 to construct a frame

Fi for Φi from a frame Fi−1 for Φi−1, for each i ∈ [m]. At termination, set Φ← Φm

and F ← Fm.
Since a relation has ∅ for a frame if, and only if, it is empty (and ∅ has no other

frame), we can determine in time O(mn4) whether there is a satisfying assignment
to a CSP instance in a fixed strongly rectangular vocabulary. By Lemma 5, we have
re-proven the main result of [4].

We assumed above that ‖Γ‖ = O(1). However, we can still perform the compu-
tations of Lemma 19 in time polynomial in m, n and ‖Γ‖.

Lemma 21. A frame for Φ can be constructed in time O(mn4 +mn2‖Γ‖4).
Proof. We indicate how the proof of Lemma 19 must be modified. It is only the

computation of the Ui that requires improvement, which we achieve by using a device
from [4]. Suppose we wish to add a constraint Θ = H(xi1 , xi2 , . . . , xir) to Φ. Instead,
we add in turn the r constraints Θk = Hk(xi1 , xi2 , . . . , xik), where Hk = pr[k]H for
each k ∈ [r]. Thus, |H1| ≤ q and Hr = H. Letting Ψ0 = Φ, we successively calculate
frames for Ψk = Ψk−1 ∧Θk (k ∈ [r]), so Ψr = Φ′.

If Ik = {i1, i2, . . . , ik} (k ∈ [r]), we have

`k = |prIkΨk−1| ≤ q|prIk−1
Ψk−1| ≤ q|Hk−1| ≤ q|H| .

Thus, for each k ∈ [r], the time required to compute Ui and R◦ in Lemma 19 be-
comes O(n2|H|3 +nr|H|4). In total, the time requirement is O(n2r|H|3 +nr2|H|4) =
O(n2‖H‖4) = O(n2‖Γ‖4).

6. Counting problems. We consider the problem of determining |RΦ|, which
we abbreviate to |Φ|, where Φ is a Γ-formula with m constraints and n variables. We
require the computations to be done in time polynomial in the size of the input Φ
and we assume ‖Γ‖ = O(1). In fact, the size of Φ can be measured by a polynomial
in n. A repeat of a constraint can be removed, since this does not change RΦ. Then
an r-ary relation in Γ can give rise to O(nr) constraints. We will assume that every
variable appears in at least one constraint. Otherwise, suppose n0 variables do not
appear: letting Φ′ be Φ with these variables deleted, we have |Φ| = qn0 |Φ′|. Hence
we will assume that m = Ω(n).

14

Following Bulatov and Dalmau [6], we call this computational problem #CSP(Γ).
If Γ = {H,=}, we write #CSP(H). We will use the following result from [6], which
we prove here for completeness. The corollary is immediate.

Theorem 22 (Bulatov and Dalmau [6]). Let S = (D,Γ), S′ = (D,Γ′) be
relational structures with Γ′ ⊆ 〈Γ〉. Then #CSP(Γ′) is polynomial-time reducible to
#CSP(Γ).

Proof. Let each H ′ ∈ Γ′ have pp-definition H ′(x) = ∃yH∗(x,y), with H∗(x,y)
a Γ-formula. If all relations in Γ have arity at most r and at most ` tuples and all
the formulae H∗ are conjunctions of at most k constraints, then each H∗ has arity at
most kr and |H∗| ≤ `k. Observe that k, ` and r are constants in #CSP(Γ′).

Consider any Γ′ formula Φ(x) = Θ1 ∧ · · · ∧ Θm, where x = (x1, . . . , xn). Now,
if Θi = H ′(x), let Θ∗i = H∗(x,yi), where the yi (i ∈ [m]) are new variables. Let
z = (y1, . . . ,ym) and consider the Γ-formula Φ∗(x, z) = Θ∗1 ∧ · · · ∧ Θ∗m. This is an
instance of #CSP(Γ), with at most km constraints and n+ krm variables. Now, for
x ∈ Φ, let

Ni(x) =
∣∣{yi : (x,yi) ∈ Θ∗i }

∣∣ ≤ |H∗| ≤ `k (i ∈ [m]),

and let N = max{Ni(x) : i ∈ [m], x ∈ Φ} ≤ `k. Now let

µj(x) =
∣∣{i ∈ [m] : Ni(x) = j}

∣∣ (j ∈ [N]).

Clearly
∑N

j=1 µj(x) = m for all x ∈ Φ. Let

M = {(µ1(x), . . . , µN (x)) : x ∈ Φ} .

Let L = |M|. Clearly, |M| < mN, so L has bit-size O(m). Now, for m ∈M, let

K(m) =
∣∣{x ∈ Φ : µj(x) = mj , j ∈ [N]}

∣∣ ≤ qn ≤ qm .

Thus, |Φ| =
∑

m∈MK(m). Now let J(m) =
∏N

j=1 j
mj < Nm. Thus, the J(m),

K(m) (m ∈ [M]) are numbers with O(m) bits. Then we have

|Φ∗| =
∑
x∈Φ

∏
i∈[m]

Ni(x) =
∑
m∈M

K(m)

N∏
j=1

jmj =
∑
m∈M

K(m)J(m) .

Now, for s ∈ [L], consider the Γ-formulae

Φ∗s(x, z1, . . . , zs) =
∧
i∈[s]

Φ∗(x, zi) ,

where zi (i ∈ [s]) are distinct variables. Then Φ∗s is an instance of #CSP(Γ), with at
most kms constraints and krms variables, and we clearly have

|Φ∗s| =
∑
m∈M

K(m)J(m)s.

Note that Φ∗s is of size polynomial in m. Therefore we can evaluate |Φ∗s| for all s ∈ [L]
using a polynomial number of calls to an oracle for #CSP(Γ), each having input of
size polynomial in m. It then follows, using [16, Lemma 3.2], that we can recover∑

m∈MK(m) = |Φ| from the values of the |Φ∗s| (s ∈ [L]) in time polynomial in L,
which is polynomial in m.

15

Corollary 23. If H ∈ 〈Γ〉 and #CSP(H) is #P-complete, then #CSP(Γ) is
#P-complete.

First, we apply Corollary 23 to give a short proof of the main result of [6]. (Bulatov
and Dalmau phrase the result in terms of the existence of a Mal’tsev polymorphism
but, by Lemma 5, our phrasing is equivalent.)

Lemma 24 (Bulatov and Dalmau [6]). If the constraint language Γ is not strongly
rectangular, then #CSP(Γ) is #P-complete.

Proof. Clearly #CSP(Γ) ∈ #P for any Γ. If Γ is not strongly rectangular, there
is an r-ary relation B ∈ 〈Γ〉 that is not rectangular when considered as a binary
relation over Dk ×Dr−k for some k with 1 ≤ k < r. Let G = (V,E) be a connected,
undirected bipartite graph with vertex bipartition V1, V2. Let Φ1 be the Γ-formula
with a constraint B(xi,xj) for each {νi, νj} ∈ E with νi ∈ V1, νj ∈ V2. Define Φ2

analogously, but with constraints B(xj ,xi). It follows that |Φ1|+ |Φ2| is the number
of graph homomorphisms from G to GB . This problem is #P-complete by [16], since
GB has a component which is not a bipartite clique. Thus, #CSP(B) is #P-complete
and, hence, #CSP(Γ) is #P-complete by Corollary 23.

There is an important generalisation of the counting problem to weighted prob-
lems which we now describe briefly; see [8,14] for details. The relations H ⊆ Dr in Γ
are replaced by functions f : Dr → Q+, where Q+ denotes the non-negative rationals.2

Thus, Γ is replaced by a set of functions F . We will call (D,F) a weighted structure.
The underlying relation of f ∈ F is {u ∈ Dr : f(u) > 0}. Note that a relation H
can be identified with a function fH : Dr → {0, 1}, where fH(u) = 1 if, and only if,
u ∈ H. Then H is the underlying relation of fH . Thus, we may just use H to denote
the function fH without further comment.

Now, using notation similar to the relational case, an instance I of #CSP(F)
is defined as follows. A constraint Θ has the form f(xi1 , xi2 , . . . , xir) for some r-
ary function f ∈ F . Thus, (νi1 , νi2 , . . . , νir) is the scope of the Θ. Suppose we
have constraints Θ1, . . . ,Θm, where Θs applies the function fs ∈ F . Write xs for
(xi1 , xi2 , . . . , xir), where (νi1 , νi2 , . . . , νir) is the scope of the Θs. Then, the weight of
an assignment x : V → D is

W(x) =

m∏
s=1

fs(xs) .

The computational problem #CSP(F) is then to compute the partition function,

Z(I) =
∑

x : V→D

W(x) .

If F = {f} for a single function f, we write #CSP(f).
We may view a binary function f : A1 × A2 → Q+ as a matrix with elements in

Q+, rows indexed by A1 and columns indexed by A2. If B is its underlying relation,
the submatrix of f induced by a block of B is called a block of f. If f1, f2, . . . , fk are
the blocks of f, then f will be called a rank-one block matrix, if each block of f is a
rank one matrix.

Lemma 25. If f : A1 × A2 → Q+ is a rank-one block matrix, its underlying
relation B is rectangular.

Proof. If B is not rectangular, there are (a, c), (b, c), (a, d) ∈ R such that (b, d) /∈
B. The 2×2 sub-matrix of f induced by rows a, b and columns c, d is included within

2More generally, we can take the function values to be non-negative algebraic numbers.

16

a single block and has determinant −f(a, d)f(b, c) 6= 0 and so has rank 2. Therefore,
f has a block of rank at least 2.

We will call a matrix f : A1 × A2 → Q+ rectangular if its underlying relation R
is rectangular. Thus, an alternative way of defining a rank-one block matrix is as a
rectangular matrix f, together with functions α1 : A1 → Q+, α2 : A2 → Q+, such that
f(x, y) = α1(x)α2(y) for all (x, y) ∈ B.

We can now state a theorem of Bulatov and Grohe [8, Theorem 14], which gen-
eralises the result of Dyer and Greenhill [16] to the weighted case. Although we give
the theorem for non-negative rational functions, in fact we only require the case for
non-negative integer functions.

Theorem 26 (Bulatov and Grohe [8]). Let f : A1 × A2 → Q+ be a binary
function. Then #CSP(f) is in FP if f is a rank-one block matrix. Otherwise #CSP(f)
is #P-hard.

In Section 7.1, we will use the following property of rank-one block matrices.
Lemma 27. If f : A1 × A2 → Q+ is a rank-one block matrix, it is uniquely

determined by its underlying relation and its row and column totals.
Proof. Let B be the underlying (rectangular) relation. Consider any block C of

B, with pr1C = S1, pr2C = S2. Then there exist α1 : S1 → Q+ and α2 : S2 → Q+

such that f(x1, x2) = α1(x1)α2(x2) for every x1 ∈ S1 and x2 ∈ S2. Now, let

f(x1, ·) =
∑

x2∈S2

f(x1, x2) = α1(x1)
∑

x2∈S2

α2(x2)

f(·, x2) =
∑

x1∈S1

f(x1, x2) = α2(x2)
∑

x1∈S1

α1(x1)

f(·, ·) =
∑

x1∈S1

f(x1, ·) =
∑

x1∈S1

α1(x1)
∑

x2∈S2

α2(x2)

be the row, column and grand totals of f(x1, x2) (x1 ∈ S1, x2 ∈ S2). A simple
calculation gives

f(x1, x2) =
f(x1, ·)f(·, x2)

f(·, ·)
.

7. The dichotomy theorem. We are now ready to describe the dichotomy.
We saw in the previous section that, assuming FP 6= #P, strong rectangularity is
a necessary condition for tractability. In this section, we introduce a stronger con-
dition, based on certain rank-one block matrices and show that it characterises the
dichotomy for #CSP, into problems in FP and problems which are #P-complete. As
one would expect, this condition turns out to be equivalent to the criterion in Bula-
tov’s dichotomy theorem. We defer the algorithm for the polynomial-time cases to
Section 7.1 and some technical results to Section 7.2. In Section 8, we will show that
the condition is decidable.

Let H(x, y, z) be a ternary relation on A1 × A2 × A3. We will call H balanced if
the balance matrix

M(x, y) = |{z ∈ A3 : (x, y, z) ∈ H}| (x ∈ A1, y ∈ A2)

is a rank-one block matrix. A relation of arity n > 3 is balanced if every expression
of it as a ternary relation on Dk ×D`×Dn−k−` (d, ` ≥ 1, k+ ` < n) is balanced. We
will say that Γ is strongly balanced if every pp-definable ternary relation is balanced.

17

We will prove the following dichotomy theorem.
Theorem 28. If Γ is strongly balanced, #CSP(Γ) is in FP. Otherwise, #CSP(Γ)

is #P-complete. Moreover, the dichotomy is decidable.
Proof. The first statement will be proved in Section 7.1. The second is proved in

Lemma 31 below. The third is proved in Section 8.
We first show that the condition of strong balance is strictly stronger than that

of strong rectangularity.
Lemma 29. Strong balance implies strong rectangularity.
Proof. This follows from the definition of strong balance. Suppose Γ is strongly

balanced and let B(x, y) be any definable binary relation. Let

H(x, y, z) = ∃wB(x, y) ∧B(z, w) ,

which must be balanced. Then M(x, y) = |{z : ∃wB(z, w)}| = |pr1B|, for all (x, y) ∈
B. If |pr1B| = 0 then B = ∅, which is trivially rectangular. Otherwise, the underlying
relation of M is B, which must be rectangular by Lemma 25.

The converse of Lemma 29 is not true, however.
Lemma 30. Strong rectangularity does not imply strong balance.
Proof. Consider the following example. Let A = {a0,0, a0,1, a1,0, a1,1, b} and let

D = A ∪ {0, 1}. Let Γ = {R}, where R is the ternary relation given by

R = {(i, j, ai,j) : i, j ∈ {0, 1}} ∪ {(0, 0, b)} .

Note that b is, in effect, a second copy of a0,0; the effect is essentially that of a weighted
relation where the tuple (0, 0, a0,0) has weight 2 and all other tuples have unit weight.
The balance matrix M for R is as follows (we omit the rows and columns for x ∈ A
as they have only zeroes):

M =
0
1

0 1[
2 1
1 1

]
.

M is clearly not a rank-1 block matrix, so R is not strongly balanced. Nonetheless,
we will show that R has a Mal’tsev polymorphism. Consider the following function,
where ⊕ denotes addition modulo 2.

f(x, y, z) =

x⊕ y ⊕ z if x, y, z ∈ {0, 1}
af(i,k,m),f(j,`,n) if x = ai,j , y = ak,`, z = am,n

a0,0 otherwise.

Let g(b) = a0,0 and g(x) = x for all other x ∈ D. We define the function ϕ as follows:

ϕ(x, y, z) =

x if y = z

z if x = y

f(g(x), g(y), g(z)) otherwise.

In other words, ϕ behaves identically to f, except that it has the Mal’tsev property
and, for inputs where x 6= y and y 6= z, it “pretends” that any input of b is actually
an input of a0,0. Note that, for i, j, k ∈ {0, 1}, ϕ(i, j, k) = i⊕ j ⊕ k, regardless of the
Mal’tsev condition.

18

We claim that, as well as being Mal’tsev, ϕ is a polymorphism of R. To this end,
let x,y, z ∈ R, which we can write as x = (i, j, x′), y = (k, `, y′) and z = (m,n, z′),
where x′ = ai,j or, if i = j = 0, we may have x′ = b, and similarly for y′ and z′. So,
we have

ϕ(x,y, z) =
(
ϕ(i, k,m), ϕ(j, `, n), ϕ(x′, y′, z′)

)
=
(
f(i, k,m), f(j, `, n), f(g(x′), g(y′), g(z′)

)
=
(
f(i, k,m), f(j, `, n), af(i,k,m),f(j,`,n)

)
∈ R .

This establishes the claim.
Remark 7. The example in Lemma 30 can be extended to relations of arbi-

trary size by extending i and j in the tuples (i, j, ai,j) to longer binary strings and
interpreting ⊕ as bit-wise XOR (e.g., 0011⊕ 0101 = 0110).

Remark 8. Bulatov and Dalmau conjectured in [5] that a Mal’tsev polymor-
phism was sufficient for #CSP(Γ) to be in FP. That is a stronger claim than the
converse of Lemma 29. The conjecture was withdrawn in [6], with a counterexample
somewhat similar to that in the proof of Lemma 30.

Next, we strengthen Lemma 24 to prove one half of the dichotomy.
Lemma 31. If Γ is not strongly balanced, then #CSP(Γ) is #P-complete.
Proof. If Γ is not strongly balanced, there is an unbalanced ternary relation

H ∈ 〈Γ〉. Let E be a binary relation with V = V1 ∪ V2, V1 ∩ V2 = ∅ and priE = Vi
(i = 1, 2). Let Φ be the Γ-formula with a constraint H(xi, xj , zij) for each (νi, νj) ∈ E.
Thus, Φ has |V | + |E| variables and |E| constraints. Let M : V1 × V2 → Q+ be Φ’s
balance matrix.

We have |Φ| = Z(I), where Z(I) is the partition function for an instance I of
#CSP(M) with input E. But this problem is #P-hard by Theorem 26 and, hence,
#CSP(H) is #P-complete. Thus, #CSP(Γ) is #P-complete by Corollary 23.

In [3], Bulatov defined congruence singularity. Suppose Γ is a constraint language
and ρ1 and ρ2 are two congruences defined on the same pp-definable set A ⊆ Dr. Let
the equivalence classes of ρi be Eij (j ∈ [νi], i = 1, 2). Further, let

M(j, k) = |E1j ∩ E2k| (j ∈ [ν1], k ∈ [ν2]). (1)

Then Γ is congruence singular if M is a rank-one block matrix for every pair ρ1, ρ2

of congruences.3

Lemma 32. Γ is congruence singular if, and only if, it is strongly balanced.
Proof. Suppose Γ is strongly balanced, let A ⊆ Dr be defined by the formula χ

and let ρ1, ρ2 ∈ 〈Γ〉 be congruences defined on A ⊆ Dr with equivalence classes Eij

(j ∈ [νi], i = 1, 2). Then ψ(x,y, z) = χ(z) ∧ ρ1(x, z) ∧ ρ2(z,y) is a ternary relation.
Hence, for any x ∈ E1j and y ∈ E2k, the matrix

M(x,y) = |{z : χ(z) ∧ ρ1(x, z) ∧ ρ2(z,y)}| = |E1j ∩ E2k|

is a rank-one block matrix. But M has a set of identical rows for all x ∈ E1j (j ∈ [ν1])
and a set of identical columns for all y ∈ E2k (k ∈ [ν2]). The matrix M has one
representative from each of these sets. It follows that M is a rank-one block matrix.

Now, suppose that Γ is congruence singular and let H ∈ 〈Γ〉 be any ternary
relation. Define relations ρi = {(x,y) : x,y ∈ H and xi = yi} (i = 1, 2). These are

3In fact, Bulatov applies this term to the associated algebra, but with essentially this meaning.

19

trivially equivalence relations, and are pp-definable as H(x1, x2, x3) ∧H(y1, y2, y3) ∧
(xi = yi). Thus, they are two congruences defined on the same set, H, which is also
pp-definable. The equivalence classes of ρi clearly correspond to zi ∈ priH (i = 1, 2)
and we may index these classes by zi. Thus,

M(z1, z2) = |{(x1, x2, x3) ∈ H : x1 = z1, x2 = z2}|
= |{x3 : (z1, z2, x3) ∈ H}|
= M(z1, z2) .

Since M is a rank-one block matrix by assumption, so is M , and the conclusion
follows.

In [3], Bulatov established the following theorem, giving a dichotomy for #CSP
that is equivalent, using Lemma 32, to Theorem 28, except that the decidability of
the dichotomy remained open.

Theorem 33 (Bulatov [3]). If Γ is congruence singular, #CSP(Γ) is in FP.
Otherwise #CSP(Γ) is #P-complete.

7.1. The counting algorithm. This section is devoted to a proof of the poly-
nomial-time case of the dichotomy theorem.

Lemma 34. Let Γ be strongly balanced and let R ∈ 〈Γ〉 be an n-ary relation.
Given a frame F for R, |R| can be computed in O(n5) time.

Proof. If n = 1 then R = pr1R = pr1F = F so |R| = |F | and we are done. So we
may assume that n ≥ 2. Now, for 1 ≤ i < j ≤ n, define Ni,j : prjR→ N by

Ni,j(a) = |{(u, a) ∈ pr[i]∪{j}R}| .

Since we have

|R| =
∑

a∈prnR
Nn−1,n(a) ,

we need to compute the function Nn−1,n, which we do iteratively. For each j ∈
{2, . . . , n}, N1,j(a) = |{b ∈ pr1R : (b, a) ∈ pr1,jR}|. By Lemma 13, these quantities
can be computed by using F to determine pr1,jR, in total time O(n2). (Note, in
particular, that |pr1,jR| ≤ q2 = O(1) and F may be assumed to be small so |F | ≤
O(n).) To continue the iteration, we use Ni,i+1 and Ni,j to compute Ni+1,j for
j = i+ 2, . . . , n. We repeat these computations for each i = 1, . . . , n− 1.

Consider a particular i and j and suppose that we have computed Ni−1,k for all
k ≥ i. Let J = [i]∪{j} and let H = prJR, which we will express as a ternary relation

H = {(u, x, y) ∈ prJR : u ∈ pr[i−1]R, x ∈ priR, y ∈ prjR} .

Since R is strongly balanced, the matrix

M(x, y) = |{u ∈ pr[i−1]R : (u, x, y) ∈ H}|

is a rank-one block matrix. The block structure of M is given by the relation pri,jR,
since if (x, y) ∈ pri,jR, there is at least one t ∈ R with prit = x and prjt = y. By
Lemma 13, we can compute pri,jR in O(n) time, using F .

For notational simplicity, let us write Di = priR. Consider M(·, y), the y-indexed
row of M . We have∑

x∈Di

M(x, y) =
∑
x∈Di

|{u : (u, x, y) ∈ H}| = |{(u, x) : (u, x, y) ∈ H}| = Ni,j(y) . (2)

20

Now observe that the relation By(u, x) = {(u, x) : (u, x, y) ∈ H} is rectangular, by
Lemma 9. Let us write Sy(x) = {u : (u, x, y) ∈ H}. Then, by Corollary 2, there is an
equivalence relation on Dj

θy(x1, x2) = ∃u
(
H(u, x1, y) ∧H(u, x2, y)

)
such that Sy(x1) and Sy(x2) are equal, if θy(x1, x2), and disjoint, otherwise. Thus, if
S(y) ⊆ Di contains one representative of each equivalence class of θy, then∑

x∈S(y)

M(x, y) = |{u : ∃x (u, x, y) ∈ H}| = Ni−1,j(y) . (3)

Now, suppose that θy(x1, x2) and y′ 6= y. Thus, H(u, x1, y) and H(u, x2, y) for
some u, so (x1, y), (x2, y) ∈ C for some block C of pri,jR. There is u′ such that
H(u′, x1, y

′) if, and only if, (x1, y
′) ∈ C. But then we have

u′ x1 y′

u x1 y
u x2 y
u′ x2 y′,

and, hence, θy′(x1, x2). Thus, the equivalence relations θy depend only on the block
C containing y. Thus, we may deduce the classes of θy from pri,jR and those of the
relation ∼i,j , defined by

x1 ∼i,j x2 ⇐⇒ ∃u, y
(
H(u, x1, y) ∧H(u, x2, y)

)
.

We prove in Section 7.2, below, that the ∼i,j are congruences in 〈R〉. Thus, the matrix
M has identical columns corresponding to the equivalence classes of ∼i,j .

Similarly, there are identical rows corresponding to the equivalence classes of ∼j,i,
where

y1 ∼j,i y2 ⇐⇒ ∃u, x
(
H(u, x, y1) ∧H(u, x, y2)

)
.

(There is no ambiguity of notation between ∼i,j and ∼j,i since we have i < j.)
We prove in Section 7.2 that the ∼j,i are also congruences in 〈R〉. Now, if S ′(x)

contains one representative of each of the classes of the corresponding equivalence
relation θ′x, we have∑

y∈S′(x)

M(x, y) = |{u : ∃y (u, x, y) ∈ H}| = Ni−1,i(x) . (4)

The matrix M̂ , obtained by choosing one representative from each of the equiv-
alence classes of ∼i,j and ∼j,i, is also a rank-one block matrix. Moreover, we know

the block structure, row and column sums of M̂ , from pri,jR, ∼i,j , ∼j,i, (3) and (4).

Hence, by Lemma 27, we can reconstruct all the entries of M̂ . Then, using pri,jR,
∼i,j and ∼j,i, we can reconstruct the matrix M . Finally we compute the row sums,
as in (2), to give the value of Ni,j(a) for each a ∈ prjR.

The time complexity of the algorithm is O(n) for a given i and j, even in the
bit-complexity model. Since there are O(n2) pairs i, j, the overall complexity is O(n3).

To complete the proof, we must show how to compute the congruences ∼i,j and
∼j,i in O(n5) time. We do this in the following section.

21

The time complexity of this algorithm is O(n5). However, observe that the time
needed to compute F is already O(mn4). We may assume that m = Ω(n) as, oth-
erwise, there is a variable, x1 say, which appears in no constraint. Thus, x1 can be
removed to give a relation R1(x2, . . . , xn) such that |R| = q|R1|. Therefore, the time
complexity of the counting algorithm is no worse than the O(mn4) cost of computing
the frame F .

7.2. The congruences ∼i,j and ∼j,i. We now prove that the relations ∼i,j and
∼j,i used in the proof of Lemma 34 are congruences and that they can be computed
efficiently. Let Γ be strongly rectangular and let R be an n-ary relation determined
by a Γ-formula Φ. For 1 < i < j ≤ n, recall that

(i) a ∼i,j b (a, b ∈ prjR) if there are t, t′ ∈ R such that pr[i]t = pr[i]t
′, tj = a and

t′j = b;
(ii) a ∼j,i b (a, b ∈ priR) if there are t, t′ ∈ R such that prJt = prJt′, ti = a and

t′i = b,
where J = [i− 1] ∪ {j}.

Lemma 35. For all 1 < i < j ≤ n, ∼i,j and ∼j,i are congruences in 〈R〉.
Proof. Consider the binary relation B defined by B(u, y) = ∃z1, z2R(u, z1, y, z2)

on pr[i]R × prjR . This is rectangular and so induces a congruence θ2 on prjR by
Corollary 3. This congruence is ∼i,j .

The proof for ∼j,i is similar, using B defined by B(u, y) = ∃z1, z2R(x, y, z1, w, z2)
on prJR× priR, where u = (x, w).

Lemma 36. The set of congruences ∼i,j and ∼j,i (1 < i < j ≤ n) can be computed
in O(n5) time.

Proof. We compute the relations ∼i,j , with i < j, as follows. From the frame F ,
we compute pri,jR. For each b ∈ priR, this gives a tuple t such that prjt = b. We now
use Corollary 17, to compute a frame F ? for R(t1, . . . , ti, xi+1, . . . , xn) in O(n3) time.
Now prjF

? gives the equivalence class of ∼i,j containing b. We repeat this procedure,
as in the proof of Lemma 19, until we have determined all the equivalence classes.

There are O(n2) pairs i, j with i < j and computing each ∼i,j requires O(n3)
time. Thus, the we can compute all ∼i,j in O(n5) time.

Now consider the relations ∼j,i, with i < j. For each a ∈ priR, compute a frame
Fj,a for the relation Rj,a determined by Φ ∧ χa(xj). (Recall that χa is the relation
containing only a and we may assume that χa ∈ Γ by Lemma 9.) From Lemma 19,
we can do this in O(n4) time, so O(n5) time in total. Now, for each i < j, determine
pri,jR, using F . This requires O(n) time for each pair i, j, so O(n3) time in total.

Now, for each block C of pri,jR, choose a ∈ prjR so that (x, a) ∈ C for some
x ∈ priR. Then the congruence ∼i of Rj,a gives the equivalence classes of ∼j,i cor-
responding to C. These can be determined in O(n) time using Fi,a. Thus, the total
time to compute ∼j,i for all pairs i, j with i < j is O(n5).

Hence the total time needed to compute all of these congruences is O(n5).

8. Decidability. Having shown that #CSP has a dichotomy, we must consider
whether it is effective. That is, given a relational structure S = (D,Γ) can we decide
algorithmically whether the problem #CSP(Γ) is in FP or is #P-complete? This is
the major question left open in [3]. Here we show that the answer is in the affirmative.

We will construct an algorithm to solve the following decision problem.

Strong Balance

Instance : A relational structure S = (D,Γ).
Question : Is Γ strongly balanced?

22

Recall from Section 2 that we may assume that ‖Γ‖ ≥ q. Thus, we may take
‖Γ‖ as the measure of input size for Strong Balance. We bound the complexity
of Strong Balance as a function of ‖Γ‖. Complexity is a secondary issue, since
‖Γ‖ is a constant in the nonuniform model for #CSP(Γ). In the nonuniform model,
we are only required to show that some algorithm exists to solve Strong Balance.
However, we believe that the computational complexity of deciding the dichotomy is
intrinsically interesting.

Our approach will be to show that the strong balance condition is equivalent to
a structural property of Γ that can be checked in NP.

We must first verify that Γ is strongly rectangular, since otherwise it cannot be
strongly balanced, by Lemma 29. Thus, we consider the following computational
problem.

Strong Rectangularity

Instance : A relational structure S = (D,Γ).
Question : Is Γ strongly rectangular?

Lemma 37. Strong Rectangularity is in NP.

Proof. We use the method of Lemma 8. We can verify that a given function ϕ
is a Mal’tsev polymorphism in O(‖Γ‖4) time. Thus, we select a function ϕ : D3 →
D nondeterministically in O(q3) = O(‖Γ‖3) time and check that it is a Mal’tsev
polymorphism in a further O(‖Γ‖4) time.

The remainder of this section is organised as follows. We first give definitions
and notation that were held over from Section 2 because they are only used here. In
Section 8.2, we give a characterisation of rank-one block matrices that we use in our
decidability proof. The proof itself appears in Section 8.3.

8.1. Definitions and notation. An equivalent but different view of CSP(Γ)
from the one we have used is often taken in the literature. This is to regard Φ as
a finite structure with domain V and relations determined by the scopes of the con-
straints. Thus, we have relations H̃, where (i1, i2, . . . , ir) ∈ H̃ if H(xi1 , xi2 , . . . , xir)
is a constraint. Then a satisfying assignment x is a homomorphism from Φ to Γ.

The following definitions and notation will be used in the remainder of this section.
Let [D1 → D2] denote the set of functions from D1 to D2. Then a homomorphism
between two relational structures S1 = (D1,Γ1), S2 = (D2,Γ2) is a function σ ∈
[D1 → D2] that preserves relations. Thus, for each r-ary relation H1 ∈ Γ1 there is a
corresponding r-ary relation H2 ∈ Γ2 and, for each tuple u = (u1, . . . , ur) ∈ H1, we
have σ(u) = (σ(u1), . . . , σ(ur)) ∈ H2. We will write σ : S1 → S2 to indicate that σ
is a homomorphism.

Let [V ↪→ D] denote the set of all injective functions V → D and let [V ↔ D]
denote the set of all bijective functions V → D. If σ : S1 → S2 and σ ∈ [D1 ↪→ D2],
then σ is called a monomorphism and we will write σ : S1 ↪→ S2. If σ is a bijective
homomorphism and σ−1 is also a homomorphism, then σ is called an isomorphism
and we write σ : S1 ↔ S2. Then S1, S2 are isomorphic, so isomorphic structures
are the same up to relabelling. An endomorphism of a relational structure S is a
homomorphism σ : S→ S and an automorphism is an isomorphism σ : S↔ S. Note
that the definition of an endomorphism is identical to that of a unary polymorphism.
Note also that [D ↪→ D] = [D ↔ D], since D is finite, so an injective endomorphism is
always an automorphism. Clearly, the identity function is always an automorphism,
for any relational structure S.

We use the following construction of powers of S (see, for example, [25, p. 282]).

23

For any relational structure S = (D,Γ) and k ∈ N, the relational structure Sk =
(Dk,Γk) is defined as follows. The domain is the Cartesian power Dk. The constraint
language Γk is such that, for each r-ary relation H ∈ Γ, there is an r-ary Hk ∈ Γk,
which is defined to be the following relation. If ui = (ui,1, ui,2, . . . , ui,k) ∈ Dk (i ∈ [r]),
then (u1,u2, . . . ,ur) ∈ Hk if, and only if, (u1,j , u2,j , . . . , ur,j) ∈ H for all j ∈ [k]. Now,
if Ψ is a pp-formula in Γ, we define the corresponding formula Ψk to be identical to
Ψ, except that each occurrence of H ∈ Γ is replaced by the corresponding relation
Hk ∈ Γk. Observe that the relation Ψk is actually pp-definable in Γ, by the formula
Ψk(x) = Ψ(x1) ∧ Ψ(x2) ∧ · · · ∧ Ψ(xk), where xi (i ∈ [k]) are disjoint n-tuples of
variables. In particular, we have |Ψk| = |Ψ|k.

Using this construction, the definition of a polymorphism can be reformulated.
In this view of CSP(Γ), it follows directly that a k-ary polymorphism is just a homo-
morphism ψ : Sk → S.

8.2. Rank-one block matrices. In our decidability proof, we use a different
characterisation of rank-one block matrices, given by Corollary 40. This may seem
more complicated than the original definition but it is more suited to our purpose.

Lemma 38. A matrix A is a rank-one block matrix if, and only if, every 2 × 2
submatrix of A is a rank-one block matrix.

Proof. Let A be a k × ` rank-one block matrix and let

B =

[
air ais
ajr ajs

]
(i, j ∈ [k], i 6= j; r, s ∈ [`], r 6= s).

be any 2× 2 submatrix of A. If any of air, ais, ajr, ajs is zero, at least two must be
zero, since A is rectangular. Then B is clearly a rank-one block matrix. If air, ais,
ajr, ajs are all nonzero, B must be a submatrix of some block of A. Since this block
has rank one, B also has rank one.

Conversely, suppose A is not a rank-one block matrix. If its underlying relation
is not rectangular, there exist air, ais, ajr > 0 with ajs = 0. The corresponding
matrix B clearly has rank 2, but has only one block so is not a rank-one block matrix.
If the underlying relation of A is rectangular, then A must have a block of rank at
least 2. This block must have some 2×2 submatrix B with rank 2 and all its elements
air, ais, ajr, ajs > 0.

Lemma 39. A rectangular 2× 2 matrix A is a rank-one block matrix if, and only
if, a2

11a
2
22a12a21 = a2

12a
2
21a11a22.

Proof. This equation holds if any of a11, a22, a12 or a21 is zero. But then
rectangularity implies that at least two of them must be zero and A is a rank-one block
matrix in all possible cases. Otherwise, the equation is equivalent to a11a22 = a12a21,
which is the condition that A is singular. So A is one block, with rank one. The
argument is clearly reversible.

Corollary 40. A rectangular k× ` matrix A is a rank-one block matrix if, and
only if, a2

ira
2
jsaisajr = a2

isa
2
jrairajs for all i, j ∈ [k] and all r, s ∈ [`].

Proof. When i = j or r = s, the two sides of this equation are identical. Other-
wise, the equality follows directly from Lemmas 38 and 39.

Remark 9. It is possible to modify the above so that Corollary 40 involves
products of only five elements, rather than six, but we do not pursue this refinement.

8.3. Decidability. To show the decidability of strong balance, we relax the
criterion of strong balance, by noting the conditions sufficient for the success of the
algorithm in Section 7.1. Observe that only ternary relations on D × D × Di, for

24

i ∈ [n − 2], are required to be balanced. Therefore, let Ψ(x), with x = (x1, . . . , xn),
be an arbitrary formula pp-definable in Γ, which we consider fixed for the rest of this
section. Then, for the algorithm to succeed, it suffices that the q × q matrix

M(a, b) =
∣∣{x ∈ [V → D] : x ∈ Ψ, x1 = a, x2 = b}

∣∣ (∀a, b ∈ D)

is always a rank-one block matrix. Note that we can always assume that the under-
lying relation of M is rectangular, since Γ is known to be strongly rectangular.

Remark 10. Call this condition almost-strong balance. It is equivalent to strong
balance if FP 6= #P. If S is strongly balanced, it is clearly almost-strongly balanced.
Almost-strong balance implies that the algorithm of Section 7.1 succeeds, which im-
plies that #CSP(Γ) ∈ FP. Thus #CSP(Γ) is not #P-complete, which implies that it
is strongly balanced by Lemma 31. This chain of implications requires FP 6= #P, so
we make that assumption in the remainder of this section. If FP = #P, no dichotomy
exists and the property of strong balance ceases to be of computational interest.

We may therefore take almost-strong balance as the criterion for strong balance.
By Corollary 40, the condition for M to be a rank-one block matrix is that

M(a, c)2M(a, d)M(b, d)2M(b, c) = M(a, d)2M(a, c)M(b, c)2M(b, d), (5)

for all a, b, c, d ∈ D.
We can reformulate the condition for strong balance using the construction of

powers of S. If a = (a1, . . . , ak) and b = (b1, . . . , bk), the balance matrix Mk for Ψk

is the qk × qk matrix

Mk(a,b) =
∣∣{x ∈ [V → Dk] : x ∈ Ψk, x1 = a, x2 = b}

∣∣
= M(a1, b1)M(a2, b2) · · ·M(ak, bk) .

Using this, equation (5) can be rewritten as

M6(ā, c̄) = M6(ā, d̄) , (6)

where

ā = (a, a, a, b, b, b), c̄ = (c, c, d, d, d, c), d̄ = (d, d, c, c, c, d) . (7)

Fix ā, c̄, d̄ and, for notational simplicity, write S̄ for S6, Γ̄ for Γ6, Ψ̄ for Ψ6, M̄ for M6

and D̄ for D6. Then, from (6), we must verify that M̄(ā, c̄) = M̄(ā, d̄) for all relations
Ψ̄ which are pp-definable in Γ̄ and given ā, c̄, d̄ ∈ D̄. We use a method of Lovász [24];
see also [15]. For s̄ ∈ D̄, let

Homā,s̄(Ψ̄) = {x ∈ [V → D̄] : x ∈ Ψ̄, x1 = ā, x2 = s̄}
homā,s̄(Ψ̄) = |Homā,s̄(Ψ̄)| .

However, a homomorphism V → D̄ that is consistent with Ψ̄ is just a satisfying
assignment to Ψ̄. M̄(ā, s̄) is the number of such assignments with x1 = ā and x2 = s̄,
i.e., the number of homomorphisms that map x1 7→ ā and x2 7→ s̄. This proves the
following.

Lemma 41. Γ is strongly balanced if, and only if, homā,c̄(Ψ̄) = homā,d̄(Ψ̄) for all

formulae Ψ̄ and all ā, c̄, d̄ of the form above.
We will also need to consider the injective functions in Homā,s̄(Ψ̄). For s̄ ∈ D̄, let

Mon ā, eus(Ψ̄) = {x ∈ [V ↪→ D̄] : x ∈ Ψ̄, x1 = ā, x2 = s̄}
25

monā,s̄(Ψ̄) = |Monā,s̄(Ψ̄)| .

Lemma 42. homā,c̄(Ψ̄) = homā,d̄(Ψ̄) for all Ψ̄ if, and only if, monā,c̄(Ψ̄) =
monā,d̄(Ψ̄) for all Ψ̄.

Proof. Consider the set I of all partitions I of V into disjoint classes Ī1, . . . , ĪkI
,

such that 1 ∈ Ī1, 2 ∈ Ī2. Writing I � I ′ whenever I is a refinement of I ′, P = (I,�)
is a poset. We will write ⊥ for the partition into singletons, so ⊥ � I for all I ∈ I.

Let V/I denote the set of classes Ī1, . . . , ĪkI
of the partition I, so |V/I| = kI , and

let Ī1, Ī2 be denoted by 1/I, 2/I. Let Ψ̄/I denote the relation obtained from Ψ̄ by
imposing equality on all pairs of variables that occur in the same partition of I. Thus,
the constraints x1 = ā, x2 = s̄ become x1/I = ā, x2/I = s̄. Then we have

homā,s̄(Ψ̄) = homā,s̄(Ψ̄/⊥) =
∑
I∈I

monā,s̄(Ψ̄/I) =
∑
I∈I

monā,s̄(Ψ̄/I)ζ(⊥, I) , (8)

where ζ(I, I ′) = 1, if I � I ′, and ζ(I, I ′) = 0, otherwise, is the ζ-function of the poset
P. Thus, if monā,c̄(Ψ̄) = monā,d̄(Ψ̄) for all Ψ̄, then

homā,c̄(Ψ̄) =
∑
I∈I

monā,c̄(Ψ̄/I)ζ(⊥, I) =
∑
I∈I

monā,d̄(Ψ̄/I)ζ(⊥, I) = homā,d̄(Ψ̄) .

(9)
More generally, the reasoning used to give (8) implies that

homā,s̄(Ψ̄/I) =
∑
I�I′

monā,s̄(Ψ̄/I
′) =

∑
I′∈I

monā,s̄(Ψ̄/I
′)ζ(I, I ′) .

Now, Möbius inversion for posets [30, Ch. 25] implies that the matrix ζ : I×I → {0, 1}
has an inverse µ : I × I → Z. It follows directly that

monā,s̄(Ψ̄) =
∑
I∈I

homā,s̄(Ψ̄/I)µ(⊥, I) .

Thus, if homā,c̄(Ψ̄) = homā,d̄(Ψ̄) for all Ψ̄, then

monā,c̄(Ψ̄) =
∑
I∈I

homā,c̄(Ψ̄/I)µ(⊥, I) =
∑
I∈I

homā,d̄(Ψ̄/I)µ(⊥, I) = monā,d̄(Ψ̄) .

(10)
Now, (9) and (10) give the conclusion.

Lemma 43. monā,c̄(Ψ̄) = monā,d̄(Ψ̄), for all Ψ̄, if, and only if, there is an

automorphism η : D̄ ↔ D̄ of S̄ = (D̄, Γ̄) such that η(ā) = ā and η(c̄) = d̄.
Proof. The condition holds if S̄ has such an automorphism since, if Ψ̄(x) =

∃y Φ̄(x,y) for some Φ̄, then

monā,c̄(Ψ̄) = |{x ∈ [V ↪→ D̄] : x1 = ā, x2 = c̄, ∃y (x,y) ∈ Φ̄}|
= |{η(x) ∈ [V ↪→ D̄] : x1 = η(ā), x2 = η(c̄), ∃y (η(x), η(y)) ∈ Φ̄}|
= |{x ∈ [V ↪→ D̄] : x1 = ā, x2 = d̄, ∃y (x,y) ∈ Φ̄}|
= monā,d̄(Ψ̄) .

For the converse, suppose we have monā,c̄(Ψ̄) = monā,d̄(Ψ̄) for all Ψ̄. Consider
the following Γ̄-formula Φ̄ with domain D̄ and variables xi (i ∈ D̄),

Φ̄(x) =
∧

H̄ ∈ Γ̄

∧
(ū1,...,ūr)∈ H̄

H̄(xū1 , . . . , xūr) .

26

Then

Monā,s̄(Φ̄) = {x ∈ [D̄ ↪→ D̄] : xā = ā, xc̄ = s̄, x ∈ Φ̄} .

We have Monā,c̄(Φ̄) 6= ∅, since the identity assignment xi = i (i ∈ D̄) is clearly
satisfying. Thus, by the assumption, Monā,d̄(Φ̄) 6= ∅. Let η ∈ Monā,d̄(Φ̄), so η is an

endomorphism of S̄ with η(ā) = ā, η(c̄) = d̄. Since [D ↪→ D] = [D ↔ D], η : D ↔ D
is the required automorphism.

Corollary 44. S = (D,Γ) is strongly balanced if, and only if, for all a, b, c, d ∈
D and ā, c̄, d̄ as defined in (7), S̄ = (D̄, Γ̄) has an automorphism η such that η(ā) = ā
and η(c̄) = d̄.

Proof. This follows from (6) and Lemmas 41, 42 and 43.
This characterisation of strong balance leads to a nondeterministic algorithm.
Theorem 45. Strong Balance is in NP.
Proof. We first determine whether Γ is strongly rectangular, using the method of

Lemma 37. If it is not, then Γ is not strongly rectangular by Lemma 29.
Otherwise, we can construct S̄ = (D̄, Γ̄) in time O(‖Γ‖6). Let q̄ = q6 = |D̄| and

let Π denote the set of q̄! permutations of D̄. Each π ∈ Π is a function π : D̄ ↪→ D̄ and
so a potential automorphism of S̄. For each of the q4 possible choices a, b, c, d ∈ D,
we determine ā, c̄, d̄ ∈ D̄ in polynomial time. We select π ∈ Π nondeterministically
and check that π(ā) = ā, π(c̄) = d̄ and that π preserves all H̄ ∈ Γ̄. The compu-
tation requires O(q4‖Γ̄‖2) = O(‖Γ‖16) time in total, so everything other than the
O(q10) = O(‖Γ‖10) nondeterministic choices can be done deterministically in a poly-
nomial number of steps.

Remark 11. We have paid little attention to the efficiency of the computations in
Theorem 45. If the elements of D are encoded as binary numbers in [q], comparisons
and nondeterministic choices require O(log q) bit operations, rather than the O(1)
operations in our accounting. On the other hand, membership in H6 can be tested in
O(‖H‖) comparisons, rather than the O(‖H‖6) that we have allowed. This might be
reduced further by storing H in a suitable data structure, instead of a simple matrix.
We could also use Remark 9 to improve the algorithm of Theorem 45.

Remark 12. Theorem 45 and Lemma 32 together imply that the following
problem, posed by Bulatov [3], can also be decided in NP.

Congruence Singularity

Instance : A relational structure S = (D,Γ).
Question : Is Γ congruence singular?

Whether this can be shown directly, and not via Strong Balance, remains an
open question.

9. Conclusions. We have shown that there is an effective dichotomy for the
whole of #CSP. We have given a new, and simpler, proof for the existence of the
dichotomy and the first proof of its decidability.

The complexity of our counting algorithm is O(n5), whereas algorithms for most
known counting dichotomies are of lower complexity, often O(n). Can the complexity
of the general algorithm be improved to O(n4), or better? Since frames, on which
the algorithm is based, have size O(n), there is no obvious reason why this cannot be
done.

A second problem that we have not yet considered is an extension to a dichotomy
for weighted counting problems [8, 14]. We believe that this is possible. In fact, a
dichotomy for rational weights has already been shown in [7]. This gives an indirect

27

argument, using the unweighted dichotomy. Decidability of the dichotomy of [7] now
follows from Section 8 of this paper.

A third issue is to investigate whether known counting dichotomies can be recov-
ered from these general theorems. We have some preliminary results in this direction.
The characterisation of Lemma 43 appears to be useful in this respect.

A fourth problem is to determine the complexity of Strong Balance more
precisely, rather than just establishing membership in NP. Strong Balance seems
unlikely to be NP-complete as the automorphism tests required can be coded into a
single instance of the graph isomorphism problem. However, it is not obvious whether
the converse reduction is possible so it may be that Strong Balance is in P.

Finally, a deeper question that arises from our work is to what extent the detailed
properties of the algebras associated with CSP instances are of real significance. In
recent years, the algebraic approach has proven successful in the study of CSP, but it
is possible that these algebras are more complicated objects than the relations they
are intended to capture.

Note. Since this paper was written, Cai, Chen and Lu have extended and strength-
ened our methods to give an effective dichotomy for the weighted counting problem [9].

Acknowledgments. The authors are grateful to Jin-Yi Cai, Xi Chen and Andrei
Krokhin for carefully reading drafts of an earlier version of this paper. We are also
grateful to Andrei Bulatov for explaining parts of his proof, and to Leslie Ann Gold-
berg for useful discussions. We also thank a referee for pointing out the issue discussed
in Remark 10.

REFERENCES

[1] A. A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element
domain. Journal of the ACM, 53(1):66–120, 2006.

[2] A. A. Bulatov. The complexity of the counting constraint satisfaction problem. Electronic
Colloquium on Computational Complexity, 14(093), 2007. (Revised Feb. 2009).

[3] A. A. Bulatov. The complexity of the counting constraint satisfaction problem. In Proc. 35th
International Colloquium on Automata, Languages and Programming (Part 1), LNCS
5125, pp. 646–661. Springer, 2008.

[4] A. A. Bulatov and V. Dalmau. A simple algorithm for Mal’tsev constraints. SIAM Journal on
Computing, 36(1):16–27, 2006.

[5] A. A. Bulatov and V. Dalmau. Towards a dichotomy theorem for the counting constraint
satisfaction problem. In Proc. 44th Annual IEEE Symposium on Foundations of Computer
Science, pp. 562–573, IEEE, 2003.

[6] A. A. Bulatov and V. Dalmau. Towards a dichotomy theorem for the counting constraint
satisfaction problem. Information and Computation, 205(5):651–678, 2007.

[7] A. A. Bulatov, M. E. Dyer, L. A. Goldberg, M. Jalsenius, M. R Jerrum and D. Richerby. The
complexity of weighted and unweighted #CSP. arXiv:1005.2678 [cs.CC], May 2010.

[8] A. A. Bulatov and M. Grohe. The complexity of partition functions. Theoretical Computer
Science, 348(2–3):148–186, 2005.

[9] J.-Y. Cai, X. Chen and P. Lu, Non-negative weighted #CSPs: An effective complexity di-
chotomy, arXiv: 1012.5659 [cs.CC], December 2010.

[10] J.-Y. Cai, P. Lu, and M. Xia. Holant problems and counting CSP. In Proc. 41st Annual ACM
Symposium on Theory of Computing, pp. 715–724. ACM, 2009.

[11] N. Creignou and M. Hermann. Complexity of generalized satisfiability counting problems.
Information and Computation, 125(1):1–12, 1996.

[12] K. Denecke and S. L. Wismath. Universal Algebra and Applications in Theoretical Computer
Science. Chapman and Hall/CRC, 2002.

[13] M. E. Dyer, L. A. Goldberg, and M. R. Jerrum. A complexity dichotomy for hypergraph
partition functions. Computational Complexity, 19(4):605–633, 2010.

[14] M. E. Dyer, L. A. Goldberg, and M. R. Jerrum. The complexity of weighted Boolean #CSP.
SIAM Journal on Computing, 38(5):1970–1986, 2009.

28

[15] M. E. Dyer, L. A. Goldberg, and M. S. Paterson. On counting homomorphisms to directed
acyclic graphs. Journal of the ACM, 54(6), 2007.

[16] M. E. Dyer and C. S. Greenhill. The complexity of counting graph homomorphisms. Random
Structures and Algorithms, 17(3–4):260–289, 2000. (Corrigendum in Random Structures
and Algorithms, 25(3):346–352, 2004.).

[17] T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and con-
straint satisfaction: A study through Datalog and group theory. SIAM Journal on Com-
puting, 28(1):57–104, 1998.

[18] R. Freese and R. McKenzie. Commutator Theory for Congruence Modular Varieties. Cam-
bridge University Press, 1987.

[19] D. Geiger. Closed systems of functions and predicates. Pacific Journal of Mathematics, 27:95–
100, 1968.

[20] P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial Theory
(Series B), 48(1):92–110, 1990.

[21] D. Hobby and R. McKenzie. The Structure of Finite Algebras, vol. 76 of Contemporary Math-
ematics. American Mathematical Society, 1988.

[22] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint satisfaction. In
Proc. 17th ACM Symposium on Principles of Database Systems (PODS ’98), pp. 205–213,
New York, 1998. ACM.

[23] R. E. Ladner. On the structure of polynomial time reducibility. Journal of the ACM, 22(1):155–
171, 1975.

[24] L. Lovász. Operations with structures. Acta. Math. Acad. Sci. Hung., 18:321–328, 1967.
[25] J. Nešetřil, M. H. Siggers and L. Zádori. A combinatorial constraint satisfaction problem

dichotomy classification conjecture. European Journal of Combinatorics, 31(1):280–296,
2010.

[26] T. Schaefer. The complexity of satisfiability problems. In Proc. 10th Annual ACM Symposium
on Theory of Computing, pp. 216–226. ACM Press, 1978.

[27] S. Toda. On the computational power of PP and ⊕P. In Proc. 30th Annual Symposium on
Foundations of Computer Science, pp. 514–519. IEEE Computer Society, 1989.

[28] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8:189–201, 1979.

[29] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410–421, 1979.

[30] J. van Lint and R. Wilson. A Course in Combinatorics (2nd ed.). CUP, 2001.

29

	author_post-print_version_article_.pdf
	DR-2013.pdf

