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Experimental continuation of periodic orbits through a fold

J. Sieber
School of Engineering, University of Aberdeen, Kings College, Aberdeen, AB24 3UE, U.K.

A. Gonzalez-Buelga, S.A. Neild, D.J. Wagg, and B. Krauskopf
Faculty of Engineering, University of Bristol, Queen’s Building, University Walk, Bristol, BS8 1TR, U.K.

We present a continuation method that enables one to track or continue branches of periodic orbits directly in an

experiment when a parameter is changed. A control-based setup in combination with Newton iterations ensures

that the periodic orbit can be continued even when it is unstable. This is demonstrated with the continuation of

initially stable rotations of a vertically forced pendulum experiment through a fold bifurcation to find the unstable

part of the branch.

PACS numbers: 05.45.Gg,45.80.+r,02.30.Oz
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Characterizing a nonlinear dynamical system typically re-

quires the systematic investigation of stable and unstable

steady-states and periodic orbits in the relevant parameter re-

gion of the system. When a mathematical model is available

this task can be tackled efficiently by performing a bifurcation

analysis with the method of numerical continuation. It allows

one to find and follow (or continue) solutions when varying a

parameter — a technique that can also be used to map out sta-

bility boundaries (bifurcations) in multiple parameters. Several

software packages are available for this task; see the review

papers [1, 2] as an entry point to the literature.

In physical experiments the use of continuation methods has

proved much more difficult. One approach is a combination of

system identification and feedback control as applied by [3, 4]

to equilibria. In principle, it is also applicable to periodic orbits

[5] but, as is reported in [6], these methods do not generally

work well when applied to real physical experiments. An

alternative is extended time-delayed feedback (ETDF) [7, 8],

where the system is subject to a feedback loop with a delay

that is given by the period of the periodic orbit one wishes

to stabilize. This approach avoids system identification and,

thus, is easier to implement in real experiments [9]; see also

the recent collection of reviews [10].

An important prototype problem for experimental continu-

ation is the continuation of a stable periodic orbit through a

fold (saddle-node bifurcation). As one varies a system parame-

ter the stable periodic orbit gradually loses stability and then

becomes unstable as it ‘turns around’ at the fold point. One

problem is that ETDF and its modifications such as described

in [8] do not converge uniformly near a fold of periodic or-

bits, meaning that they can generally not be used for tracking

through a fold point; for a treatment of the autonomous case

see [11].

We present and demonstrate here a continuation method

that can be used directly in an experiment to continue periodic

orbits irrespective of their stability. Our method does not

require a mathematical model nor the setting of specific initial

conditions. Instead it relies on standard feedback control. The

feedback reference signal is updated by a Newton iteration

that converges to a state where the control becomes zero. The

(a) (b)

y
m

= 0

FIG. 1: Photographs taken during continuation tests showing when

the pendulum is at the top of a stable (a) and an unstable (b) rotation;

the horizontal line (ym = 0) denotes the zero position.

general ideas behind this method are described and tested

extensively in simulations in [12].

The implementation of feedback control requires one to mea-

sure some output of the experiment with sufficient accuracy

and to provide input into the experiment in a tunable way. This

requirement is quite naturally satisfied, for example, for exper-

iments in chemistry [4, 13] and on electrical circuitry [14], as

well as for hybrid stability tests in engineering. This type of

test, where a mechanical laboratory experiment of a critical

component is coupled bidirectionally to a numerical model of

the remainder of the tested system [15], is the motivating ap-

plication behind the development of experimental continuation

methods [16].

The goal of this paper is to demonstrate that our method can

indeed be used in an actual experiment to track periodic orbits

reliably through folds to reveal branches of unstable orbits. To

this end, we consider a classical mechanical experiment: the

vertically forced pendulum.
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In our experiment, a pendulum is attached to a pivot that

moves vertically along a trajectory ym(t), which is controlled

via a servo-mechanical actuator; this setup is as presented in

[17] and shown in the photos in figure 1. The actuator takes a

reference trajectory yr(t) as its input signal and aims to match

its output displacement ym(t) to this reference signal yr(t). If

yr(t) = psin(ωt) (1)

then the pendulum is harmonically forced in the vertical direc-

tion with forcing frequency ω and forcing amplitude p. The

internal dynamics of the actuator translating the reference yr

into the actual motion ym is only known approximately. How-

ever, when ω is less than 10Hz and if the forces exerted by the

pendulum are small, the output ym closely follows yr with a

small time lag (≈ 20ms) and a small amplitude discrepancy

(less than 0.5mm). The dynamics of the angular displace-

ment φ of the pendulum are approximately a single-degree-of

freedom system.

We consider here the period-one rotations of the vertically

forced pendulum, which are periodic orbits where the pendu-

lum goes over the top once per forcing period. For any fixed

forcing frequency ω and sufficiently large value of the forcing

amplitude p one finds a dynamically stable period-one rotation.

A characteristic feature of the stable rotations is the in-phase

relationship between the pendulum and the forcing: the pivot

is up when the pendulum is in the upside-down position; see

Fig. 1(a). For the same values of ω and p one also finds an

unstable rotation, which is in anti-phase with the forcing; see

Fig. 1(b). Both rotations are born (for a given, fixed ω) in a

fold bifurcation at some specific value p f (ω) of the forcing

amplitude, where a Floquet multiplier passes through 1. Note

that the fold point p f (ω) also depends on the damping; if the

damping is small and viscous then p f (ω) ∼ ω−1 for large fre-

quencies. (In our experiment with a pendulum of approximate

effective length 0.28m any frequency ω/(2π) ≥ 2Hz is large

in this sense.)

In the experiment we measure φ and record the output

θ(t) = φ(t)−ωt, (2)

which is periodic for a periodic rotation (period one corre-

sponds to a period of T = 2π/ω). The rotations are feedback

stabilizable by adding control to the actuator input yr in (1)

based on the difference between the measured relative angle

θ(t) and a periodic reference signal θ̃(t). Note that feedback

control via yr cannot achieve global stabilization because the

amount of control is limited by the physical restriction of the

reference signal yr to amplitudes less than 3cm. However, local

feedback stabilization is sufficient for our purposes. Namely,

we superimpose the feedback on the harmonic forcing (1) by

setting the requested pivot trajectory yr to the solution of

ÿr(t) = −ω2 psin(ωt)+S(φ(t))PD[θ − θ̃ ](t) (3)

where S(φ) = 1/sinφ if |sinφ | > 0.2 and 0 otherwise. The

factor S ensures that control is only applied at non-zero ro-

tation angles (φ 6= 0,π). The second term in (3) is a stan-

dard proportional-plus-derivative (PD) controller defined by

PD[x] = kpx + kd ẋ (kp = kd = 0.4 in this experiment). Since

the angular velocity φ̇ is not directly measured, the term ẋ

is approximated by a linear filter xv = N · (x− x f ) where x f

is the solution of ẋ f = N · (x− x f ) and N is a large quantity

(N = 100 in this experiment). Equation (3) and the filter are

linear and are solved in real-time in parallel with the experi-

ment on a dSpace DS1104 RD real-time controller board. To

ensure that the solution of (3) meets the physical restrictions

on the actuator amplitude (ym ≤ 3cm) we reset ẏr whenever

φ = 0.

The introduction of feedback control into the experiment

via (3) adds a parameter to the overall system: the (periodic)

reference signal θ̃(t). We introduce the scalar parameter θ̃0

and determine θ̃(t) using the recursion relation (also evaluated

in real time)

θ̃h(t) = (1−R)θ̃h(t −T )+R [θ(t −T )− avg[θ ](t −T )]

θ̃(t) = θ̃0 + θ̃h(t) (4)

where T = 2π/ω is the period of the forcing, R ∈ (0,1] is a

relaxation factor and avg[θ ](t) = 1/T
∫ t

t−T θ(τ)dτ is the aver-

age of the output θ over the last forcing period (it is a constant

scalar for T -periodic functions). We define the limit

Θ(p, θ̃0) := lim
t→∞

avg[θ ](t), (5)

which exists (and the convergence of the time profile is uni-

form) for all pairs (p, θ̃0) that are in the vicinity of the (un-

known) family of rotations near fold points. Choosing R closer

to zero enlarges the region where the limit (5) exists but slows

down the convergence.

Equation (5) defines a smooth map Θ : R
2 7→ R that maps

the system parameter pair (p, θ̃0) to the asymptotic average

of the output of the experiment. The map Θ is not known

analytically but can be evaluated for any (p, θ̃0) by running the

experiment with control (3) and (4) until the transients have

died out. In practice the limit Θ(p, θ̃0) is reached after 2–3

seconds during our experimental runs.

The reference signal θ̃(t) corresponds to a natural periodic

rotation of the original (uncontrolled) vertically forced pen-

dulum if and only if the difference θ − θ̃ is zero, making the

feedback control non-invasive. This is the case when the fixed

point equation

Θ(p, θ̃0)− θ̃0 = 0 (6)

is satisfied. For parameter pairs (p, θ̃0) satisfying (6) the param-

eter θ̃0 is equal to the average of the phase difference between

the rotation and the forcing.

Our scheme is a modification of the classical ETDF scheme

[7, 18]. The core of this modification is the solution of the fixed

point problem (6) by means of a Newton iteration. Classical

ETDF corresponds for small R and a fixed p to a relaxed fixed

point iteration θ̃0,new = (1−R)θ̃0,old +RΘ(p, θ̃0,old) for equa-

tion (6), which is known to diverge for the unstable rotations

[10]. At the fold point (p f , θ̃0, f ) the partial derivative ∂2Θ

equals 1, and this makes the fixed-point problem (6) singular.
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FIG. 2: Experimental one-parameter bifurcation diagrams (a) for

2 Hz, 3 Hz, 4 Hz, 5 Hz, respectively, showing measured rotations

(small circles: hollow for saddle rotations, full for stable rotations)

and estimated fold points (large full circles). Panel (b) shows the

fold points in (ω, p)-plane (circles) and a viscous model estimate

(thin solid line). Parameters values in (3), (4), (7) were kp = kd = 0.4,

R = 0.8, h = 0.02, and convergence tolerance 5×10−3.

To overcome this singularity we embed (6) into a pseudo-

arclength continuation [1]. The pairs of (p, θ̃0) satisfying (6)

form a curve. We introduce y = (p, θ̃0)
T , and extend (6) by the

pseudo-arclength condition

yT
t (y− yold) = h (7)

where h is the (small) stepsize along the curve, yold is the previ-

ous point along the curve and yt is the unit secant through the

previous two points along the curve (as a practical approxima-

tion of the tangent to the curve). Equations (6) and (7) define a

system of equations of the form F(y) = 0, which is uniformly

regular near the fold. It can be solved by a relaxed quasi-

Newton recursion and we choose recursion with Broyden’s

rank-one update; see [12].

To start a continuation we choose a large forcing amplitude p

(2cm). Then the stable rotation of the uncontrolled system can

be found by swinging up the pendulum manually. We measure

the periodic output θ and set the initial parameter θ̃0 to the

average of this output, thus defining the initial y = (p, θ̃0)
T .

In the actual implementation we scale p by a factor of 20 so

that both components of the vector y are of order one; the

approximate initial secant to the curve is set to yt = (−1,0)T .

Figure 2(a) shows four branches of rotations in the (p, θ̃0)-
plane as continued by our method. Each branch is for a differ-

ent, fixed forcing frequency ω and varying forcing amplitude

p, continued from a stable rotation near the point A through

the fold to an unstable rotation near the point B. The upper

part of a branch corresponds to stable and the lower part to

4.5 5 5.5
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0

θ̃
0
[π

]

p[m 10−3]

FIG. 3: Variation of the phase compared to experimental accuracy

near the fold for ω = 3 Hz. The error bars indicate the maximum

of |p− pm|, where pm is the amplitude of the pivot displacement ym.

Hollow circles: parameter p as obtained by quasi-Newton iteration;

full circles: pm as measured.

unstable rotations. The larger circles on each of the branches in

panel (a) are the approximate values of the fold points p f (ω).
Figure 2(b) shows the location of the fold points in the (ω, p)-
plane in comparison with the theoretical prediction (thin solid

curve) based on a viscous damping approximation.

Each of the four branches in Fig. 2(a) is made up of points at

which the quasi-Newton recursion has converged; in practice

we accept a point when the difference avg[θ ]− θ̃0 (which is

the residual of equation (6)) stays below 5×10−3 during one

forcing period. A continuation run is performed as one contin-

uous experiment without stopping or manual intervention; it

takes about 20 minutes for a curve resolution as in Fig. 2(a).

The experimental continuation stops at the lower end point of

the branches, where the recursion (4) becomes unstable at a

period doubling. This is a similar effect as for the classical

ETDF recursion, which has been found to lose stability in a

torus bifurcation [14].

Figure 3 shows an enlargement of the branch near the fold

for a forcing frequency of ω = 3 Hz. Horizontal error bars

have been attached to each point (the vertical error in θ̃0 is

invisibly small). Their size highlights the extreme difference

in the scale of the axes: the range of p is 1 mm, which is

of the order of a few multiples of the experimental accuracy,

whereas θ̃0 spans a range of approximately 60 degrees. This

implies that in a small parameter region of p near the fold,

between 4.5mm and 5.5mm, the average phase avg[θ ] of the

rotation relative to the forcing changes by 60 degrees. Thus,

the fold scenario presented in Fig. 3 is an example of a very

sensitive dependence of the response (the phase of the rotation)

of a nonlinear dynamical system on its system parameter (the

forcing amplitude p). This implies that the rotations shown in

Fig. 3 would be extremely difficult to find by careful parameter

tuning with the available experimental equipment even on

the stable part of the branch near the fold. By contrast, our

continuation method follows the branch of rotations through

the rapid change without difficulty: the dependence of the

feedback controlled pendulum on the parameter pair (p, θ̃0)
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FIG. 4: Time profiles during continuation for ω/(2π) = 3 Hz [(a, b, d)

measured, (c, e) set by quasi-Newton iteration].

is not sensitive and the resulting nonlinear system (6)–(7) is

uniformly well-conditioned near the fold.

To provide more insight into how points on branches are

accepted, Fig. 4 shows a 30 s snapshot of the time profile of

the experimental continuation run for 3 Hz. Panel (a) shows

the measured difference avg[θ ]− θ̃0, panel (b) the output θ ,

panel (d) the measured motion ym of the pivot, and panels (c)

and (e) the quantities θ̃0 and p as updated by the quasi-Newton

iteration at discrete times. Filled circles in Fig. 4(a) indicate

when the difference avg[θ ]− θ̃0 is accepted as sufficiently

small. Then the respective point (p, θ̃0) is accepted and we

start the next step along the branch (by updating yold and yt in

the pseudo-arclength condition (7)). As a result, the difference

avg[θ ]− θ̃0 jumps briefly to a much larger value. The Newton

iteration then drives the system to convergence; the open circles

indicate when θ − θ̃ has been accepted as periodic. At these

points avg[θ ] is measured and new parameters p and θ̃0 are set

to initiate the next Newton iterate.

In conclusion, we have presented a control-based contin-

uation method and demonstrated that it is capable of track-

ing periodic orbits through fold bifurcations in a vertically

forced pendulum experiment. Our approach does not require

knowledge of an underlying mathematical model. Instead, we

measure the amount of control and apply a Newton iteration

to drive the control action to zero to find the next point on a

branch. Importantly, this Newton iteration does not have to run

in real-time, so that our method can be applied to any experi-

ment that is feedback stabilizable. Our ongoing work focuses

on control-based continuation of solutions and bifurcations in

mechanical hybrid tests. It would be an interesting challenge

to investigate how our approach could be extended to other

application areas, such as neuroscience or cell biology, where

feedback control is generally more difficult to achieve.
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