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ABSTRACT

Given a multivariable plant with uncertain or unknown dynamics, the
use of step response data in control design is described based upon a
simple diagonal model of & precompensated plant. The technique is
identical in structure to the inverse Nyquist array design technique
with Gershgorin circles replaced by 'confidence circlesg' deduced from
simple graphical operations on plant step data. At no stage is a plant
model requiredf The choice of constant brecompensator and simplified
model by iterative means is described as a sequence of dual optimization

problems.

Introduction

The inverse Nyquist array (INA) design technique(l”B) is well-
established as a systematic design technique using separate loop controllers
@R a precompensated plant. It can be highly successful in practice provided
that fhe plant model is a good representation of plant dynamics in the
signal range of interest and that a precompensator of suitably simple
form can be found. 1In this paper, we consider the development of an INA
design technique suitable for situations where the plant model is uncertain
or unknown but the designer has access to plant step data. These assumptions
will also cover the case when a model is available but also regarded as
unnecessarily complex for design work. The plant step responses can then
be obtained by simulation studies. The technigue has the same structure
as the INA with Gershgorin bands replaced by so-~called 'Confidence bands'

deduced from elementary and numerically robust graphical operations



on the plant step data and has the advantages that

(a) at no stage is it necessary to have an accurate plant model

available,

(b) matrix inversions are eliminated from the computational

procedure, and

(c) the simplified model used for design calculations can have any

desired complexity.

The technigue will however, tend to produce more conservative_designs
than the INA due to the fact that the detailed dynamic structure of the
plant is not used. This may be unaqceptable in q.given qpplication if high%f
performance controls are required, but could be acceptable in process

control applications where emphasis is placed on stability,.tracking of

set-point changes and disturbance rejection rather than fast, high performance,

low-interaction closed-loop dynamics. This probiem must be weighed against
the advantages of (a),(b) and (c¢) above in each design situation

The technique is based on the recent results of Owens and Chotai(4h
These are summarized in Section 2 and extended to include the possibility
of control precompensation and the use of integrated modelling error in
the design process. The choice of precompensator is discussed in Section
3 and the techniques illustrated by an example in Section 4. Section 5
outlines a technique for incorporating derivative information in the design
when available and Section 6 indicates the theoretical possibility of using
dynamic rather than constant precompensation and simultaneous pre-and post
compensation.
Stability and Graphical Design Criteria

4)

In a recent paper{ ;, fundamental theoretical results were introduced

to enable the design of feedback controls for an m—input/m-ocutput plant G(s)
based on off-line control design using an approximate model GA(S). The

control system is designed to produce the required stability and performance



characteristics for the model GA' followed by a graphical procedure
suitable for CAD based on the open-loop modelling error that ensures that
the controller will also stabilize the real plant G. The results described
in that paper require modbfication for the purposes of this paper.

It is assumed that the designer has access to a reliable estimate of

the real plant step response matrix

, 11 (8 . Yo (t)
Y(t) = ; L2 o (1)
ml(t) g s -Ymm(t)

. e : . th
where Yij(t) 1s the response from zero initial conditions of the i output
th
¥y to a unit step in the j * input uj(t) with ui(t) =80y 2 # 3. Tet Kp be
an mxm (as yet unspecified) forward path constant precompensator, KC(S) =
diag {kj(s)} an mxm diagonal forward path compensator of loop controllers
and F(s) = diag {fj(S)} an mxm diagonal representation of output measurement
transducer dynamics. The resultant feedback scmeme is illustrated in Fig. 1l(a)
where GKP is the 'plant seen by the compensator K '.
c
The step response matrix of GK is easily seen to be given by
A
Y (t) = Y(t)K : BB (2)
D P -

let GAfs) = diag{ gj(s)} be a diagonal approximate model of the

1<j<m
compensated plant GKp deduced by inspection of Yp(t) followed by the
construction of models of the diagonal terms of the desired compexity
and neglecting the off-diagonal interaction effects. Suppose that GA

has step response matrix

YA(t) = diag {hj(t)}ljjjm (3)

deduced from simulation or analytical studies and represent the modelling

error by the matrix function of time
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EF (t)

¥ (£] =% (&) (4)
P

Theorem 3 in Owens and Chotai(4) can now be expressed in the form below
by replacing G by GKP ; K by KC and E by Ep. The proof is therefore

omitted.

Theorem 1l: Suppose that the control elements kj(s), 1 <j <m, are designed
to produce stability and desirable loop dynamics from the approximating
non-interacting feedback scheme illustrated in Fig. 1(b) and that
(1) both the plant and model are stable, and
(ii) the composite system GKchF is both controllable and observable,
then the resultant scheme will stabilize the real plant G in the configuration
of Fig. 1 (a) if

(iii) the inequality

lim sup | ¥y (8)%5(8) . i} A1 )
Res>o 1+k, (s) £, (s) g, (s) m T d, (=)
|s ] ;] J boN (&) J
g=1 =~ %

is satisfied for 1 <3J < m, and
(iv) the 'confidence bands' generated by plotting the inverse Nyquist
locus of gj(s)kj(s)fj(s) for s = iw, w > o with superimposed

'confidence circles' at each point of radius

A, -1
P(s) & g ()], (=) (6)
] J J

does not contain or touch the (-1,0) point of the complex plane.

(Remarks : (1) the graphical interpretation of (iv) has been given in Owens

and Chotai(4},

(2) Nm(E?g) is the 'total wvariation' of E?Q(t) and can be

obtained by graphical analysis of its time variation as discussed

(4)

in Owens and Chotai ;



(3) the radii of the confidence circles increase as the modelling
error EX increases in the time-domain and are small if GA is a

good representaion of the step response dynamics of GKP,

(4) requirement (ii) holds generically but can be reduced to
stabilizability and detectability of GKchF if stakle uncontrollable
and/or unobservable modes are acceptable in the closed-loop system

and (5) Note that the inverse plant G is not required as it is in the

INA technique.

The theorem has a design interpretation identical in structure to
that of the INA:

Step l:0btain the plant step response matrix Y(t},t > o, from simulation
or plant tests.

Step 2:Choose a constant precompensator Kp and compute Yp(t), £ > o;

Step 3:Construct an approximate diagonal model GA by inspection of the
dynamic characteristics of the diagonal terms of Yp(t) and cal-
culate the total variations Nm(EEj) of the elements of the error Ep.

Step 4:Design compensation networks kj(s}, 1 <3 < m, to produce the
stability and performance required from the approximating feedback
scheme of Fig. 1(b) using condition (iii) to put a preliminary
bound on the control gains allowed.

Step 5:Check condition (iv) graphically to assess stability. The condition
plays the same role as that of diagonal row dominance in the INA

with the confidence circles replacing Gershgorin circles.

The choice of precompensator KP and its effect on the design are
discussed in the next section. The only other major design problem that
could arise is that step 5 is unsuccessful. This problem could be offset
by changing KP as discussed in the next section or by 'reducing the control

gains k.(s)'. More precisely, if fj{s) is stable with no zeros at the origin



of the complex plane then conditions (ii) and (iv) can be satisfied by
reducing loop gains except in the case where integral control action is
involved when (iv) also requires that r?(o) <1, 1< 3j <m, to ensure

that the (-1,0) point does not lie in the low frequency confidence circles.
Equivalently, the permitted modelling error is bounded by

m

dﬂm)zlzlmmuiﬁ <lgy@] , 1<3zm (7)

This situation can be improved by reducing the radii of the confidence

circles at low frequencies in a number of ways. Consider for example the

(4)

matrix total variation

P
N_(EP) g Nm(Eﬁl). L Nm(Eig)
5 . P
N (E°.). . . . . N(E ) (8)
e ml o mm

then Gershgorins theorem (1-3) implies that the spectral radius

m
r(Ni(Ep)) < max E Nm(ESR) = max d, («) (9)
| 1<j<m @=1 ] j

Il

r (o)

Clearly, if (7) is violated for some index j, it may be true that
r(w) < |gj (o)| for all 1 < j < m, and hence that the following theorem

can be applied in the presence of integral control action:

Theorem 2: The conclusions of theorem 1 still holds if dj(m) is replaced
by r(=}, 1 < j < m.
Proof: Using the procedures and notatiocn of ref(4), the closed-loop system

of Fig. 1l(a) is stable if

=1

P
sup x(|| (1 4K _()F(s)G, (s)) "k _(s)F(a) || MO(ED)) <1 (10)

sebh



This inequality is satisfied if

k,(s)f, (=)
- )

14k, (s)f. (s)g. (s)
J J J

r(nF(E)) <1 (11)

sup max

S€D l<j<m
by equation (20) in ref(4). This requirement reduces to conditions (iii)
and (iv) of theorem 1 above with 1 (e) replacing dj(w), 1 <3j<m by
considering separately the semi-circular and imaginary axis components of

the Nyquist D-contour respectively.

The potential benefits of using this form of the result can be illus-

trated by supposing that

0.0 0.1
N (B) = (12)
o0
10.0 0.0
where dl(m) = 0.1 and d2(M) = 10.0. In contrast r(«) = 1 which reduces

the width of the confidence band in the second loop by a factor of 10.0.
There are, of course, many situations where it can be envisaged that
r(ew) > |g, (o)] for some index j and hence that theorem 2 cannot be
- 7]
th
applied with integral action in the j loop. 1In this situation, the width
of the confidence band can be reduced at low frequencies by using a better

upper bound on the modelling error as follows:

Lemma l: Defining the integrated modelling error

t
) 2] P - Preae (13)

o

then, for Res > o, 1 < i,j < m,



le(s)k ). =(6,(s)) .| <d. . (s) & min {|E. (@) | + [s| N (2F.).n (F°.)) (14)
p ij A 1j' — 1ij ij @ 1] e 1]

4
Proof: Lemma 2 in Owens and Chotai( ) indicates that IQS(S)KP)ij -

{GA(S))ijI i-NQ(EEj)' The result follows by noting that

2(6(s)K ), = (6, (8))., - B (m)) = [ e SR (8) - B (e))at  (15)
s p ij A i : 1.7 3]

and hence that, for Res > o,
_— — p [eo] 3 — [s2]
I(G(S)Kp)ij (G, (s)) 2 | < |s] j’o ’E}ij(t) Ei)j( ) |at

= |s| n (2 (16)

by Propositicn 2 in ref (4). Equation (16) implies equation (14) after a

little rearrangement.

The lemma has the following two implications:

Theorem 3: The conclusion of theorem 1 remains valid if dj(W) is replaced
in (6) by the frequency dependent functiocn,

d, (s)

a,
J(_S) 58

li>
I~5

(17)
£=1

Proof: The result follows from Theorem 1 in Owens and Chotai (4) and lemma 1

above with A,,(s) = d,.(s) and
ij 13
If ki(S)fi(S)
y(s) = max d,.(s) (18)
1<i<m §=1 l+ki(S)fi(S)gi(S) |

by interpretingthe stability criterion sup y(s) < 1 in graphical terms.
s&D




= B
Theorem 4: The conclusions of theorem 1 remain valid if we define
r(s) = r(D(s)) B Re s > o (19)

; : z PR v o .
where D(s) is the mxm matrix with (i,7) element dij(s) and dj(w) is
replaced in (5) and (6) by r(«) and r(s) respectively.

Proof: The result follows in a similar manner to theorem 3 by choosing

A .(s) =4, . (s) and
17 ij

k (s)f, (s)
i 3 R [

1+k_ (s)£, (s)g, (s) r(s) (20)
a1 1 1

In practical terms, the main improvement made possible by theorem
3 and 4 is that the width of the confidence band is smaller at low
frequencies as is seen by noting that d (o) = IE,,(w)] <N (E, .}, 1 <i,j <m,
i 1 — =i - -

and hence that

d, (o) = ,El IEJQ(“’)I 2dgl=) , 123 <m (21)
and

re) = x(|[e@ || ) < rE) = r (22)
In particular, if we choose, for example, Kp = Gml(o) (= Yul(“)), and
%M)=l,lijfﬁutMnEM)=Omﬁhm&u%®)=rm)=o,lijim,

indicating that the confidence bands reduce continuocusly to zero width at
low frequencies. The price that is paid for this improvement is the need
to calculate the total wvariation of the integrated error zr by graphical
inspection of its time variation. This should not be a problem as inte-
gration is a robust operation with the added advantages of partially
smoothing the data and reducing the effect of noise.

Next, we note the following result characterizing the integrity

of the design:

Theorem 5: If the conditions of any one of theorems 1 - 4 are satisfied,



= fg =

then the resultant feedback scheme is stable in the presence of simultaneous
failures in the sensors fj(s), and/or actuators kj(s), = jl,j2,...,jp
provided that these networks are stable.

(Remark: In practice, this reduces to the requirement that there are no
integrators in loops jl,j2,...,jp).

Proof: Considering, for example, theorem 1, then conditions (iii) and (iv)

are equivalent to

k,(s)E, (s)
sup 7] )
s€D l+gj(s)k,(5)f.(5)
i J

dj(w) <1 , 1<3<m (23)

The failed conditions described correspond to the situation where

kj(s) fj(s) =0, J=73 ..,jp when (23) is immediately satisfied but

1’

condition (ii) is violated unless the defined networks are stable.

Finally, we note the following result extending theorems 1 and 3 to

a form analogous to the diagonal column dominance in the INA:

Theorem 6: The conclusions of theorem 1,3 & 5 hold with dj(m) and dj(s)

replaced by, respectively,

m
at(=) = § N (8 (24)
] =1 3
and
)
d!(s) = d,. (s) (257
j PR
Proof: The result in theorem 1 of ref (4) can be written as
-1
sup r(A(s)||(Im + K(S)F(s)G, (s)) Kc(s}F(s)]!P)< 1 (26)

s&€D
The above result follows by using the dual vector-induced matrix norm,

a2 B il

sad TS 1 belheld

APFLIET
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m
M| = max  Ffu | (27)
l<j<m =1 d
and A(s) = Ni(E) and A(s) = D(s) respectively.

Choice of Precompensatiaon

Although theorems 2 - 4 produce some refinements to reduce the width
of the confidence band, it would appear that the choice of Kp will play a
more important role. In general terms, it is necessary to choose the con-

stant precompensator Kp to make the error EP(t) as 'diagonal as possible!

for t > o. This problem is clearly also connected with the choice of GA

(and hence YA(t)) and could proceed in the following iterative manner:

o
Step 1: Choose an initial precompensator K(pz Set j = O.
Step 2: Evaluate Yp(t) and use this data to construct an approximate

medel G;j)(s) of diagonal form.
Step 3: Evaluate the error Ep(t),t > o, and, if theorems 3 or 4 are to

be used Zp(t), t > o, and compute the radii of the confidence

bands for s = iy, w > o.

Step 4: If these are acceptable for design work let Kp = K(j)
P

+1)

d =
an GA

g3

A , replace

- Otherwise choose a new precompensator K;j
J byj+l and return to step 2.
For any given trial precompensator K;j), the model Géj) can be cons-
tructed by any convenient technigue to produce a model of the desired
complexity. The main problem anticipated in practice therefore is the

systematic improvement in the +trial precompensatéor in step 4.

Alternatively, the designer could proceed as follows:

Step 1: Choose a precompensator Kp such that the off-diagonal terms
of YKp are small in the sense of the total variation.

Step 2: Choose GA to model the diagonal terms to the required accuracy.

Again the main problem is the systematic choice of Kp.

/

et
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3.1 Intuitive Choices of Kp

4,
As noted in Owens and Chotai( 2}

a plant G with relatively small
interaction in the open-loop will be characterized by a step response
matrix Y with dominant diagonal characteristics. In such a situation,

it is natural to choose the unit precompensator

K =1 (24)

with the added advantage that the controller K = KPKC will consist of
m separate loop controllers. In this situation, theorem 1 reduces to

5
(4,5) where examples indicate that successful

previously reported work
designs can be achieved. More generally, however, it is expected that

K will not be diagonal. 2n alternative in this situation is to diagona-
lize Y(t) at a time of interest (say, the time of peak interaction effects)

by choosing

KP =¥ (to) (25)

provided the inverse exists. Taking, for example, the case of tO = @
yields

X = v e = ¢ Lo (26)

which will remove all steady state interaction in the plant and have the
added bonus that E(®) = 0 if gj(o) =1, 1< 3J <m. The use of theorems 3
or 4 will then produce narrow confidence bands in the vicinity of s = o,

3.2 The Choice of Kp as an Optimization Problem

In the INA design technique, the choice of precompensator can be

(1-3)
formulated as a guadratic optimization problem such as pseudo-diagonalisation

; ; ; 6 C
or more directly as a mathematical programming problem ). This is also
possible in the context of the results presented in this paper as outlined

below.

Consider the situation where the model GA has been specified and



= 18 =
I

his choice of Kp. In terms of theorem 1, this could be expressed in the
form of the optimization problem

min max d, («)a, (27)
Kp l<j<m J J

where a, > o, 1 < J < m, are 'weights' to reflect the importance of the
loop in closed-loop dynamics. For theorem 2, this problem could be replaced
by

min r(ew) (28)

K
P

and, for theorem 6, by the problem
min  max d! (=) a, (29)
K l<j<m J
B e
Focussing attention on (29) and writing Kp in columns

B = [KI,K

3 Km] (30)

it 68

it is clear that dg(m) depends only on Kj and hence (29) can be separated
into the equivalent form

min 4! (ew) , L <3 <m (31)
K ] -

]
which substantially reduces the dimension of the problems considered.
(Note: Problems (27) and (29) represent minimum norm problems in the
product space (BV[O,Tﬂ)m of m2 dimensional vectors with elements of
bounded wvariation in the data interwval [O,T]. The minimization is per-
formed over finite-dimensional linear variety defined by (4) and hence(7)
it has a solution due to a standard result (theorem 2, p. 121) in

8
Luenberger( ) and the observation that BV[b,Tﬂ is the dual space of the

space C(O,T) of continuous functions on [O,Iﬂ).
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Efficient numerical procedures for the solution of these problems
are under consideration. For the purposes of this paper, we concentrate
on the development of a quadratic approximation scheme paralleling that
of pseudo-diagonalization in the INA.

Let T be the length of the data sequence available and let

0O = tO < tl € @ o e s K tN—l < tN = T (32)

be a partition of [O,Tﬂ. Let GA be specified (see Appendix 9 for the case

of GA unspecified) and consider the approximation

m
Ailw) 'z [N (E])

g=1 A3
m N
i gzl k£1 |E€j(tk) B Eﬁzj(tk—l)I (33)

then it is natural to replace (31) by the discrete approximations
m N

min Z E ,Eij(tk) - Ep,(t

_l ,1<j<m (34)
Ky 471 k=1 k3" k-1

In general, these problems cannot be solved analytically, but analytical

procedure can be used if they are relaxed to the quadratic form

m N

i 2
) (B, (t,) - Ep (e, N, 1<3<m (35)
i #2=1 k=1 I J
It is convenient to introduce the notation {ej}l<j<m to denote the
e B T S T
natural basis in R (i.e. e = (Lo. . .0, e2(0 1l @« . Q) etc.)
and define the operations
M = t 2 1 <k <N 36
Ak M( k) M(tk_l) . <k < (36)

for any matrix function M(t) on ED,TJ. The objective functional in (35)

now takes the form

2 iy T
g E (AkEij) = ) (e (B, VIR, = e (8 ¥ )e,)

(37)

I
u?ﬁ
he)
~
!
]
o
<
?
-+
Q
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where
T T
0= J V AV e e, (AY)
¢ i k L "2k
= T aonTawn (38)
k
T
as I = z e e ,
v Iy
T
B = & B (39)
j 3
with
A 4 T
B = % E (A, ¥) e, e, (4 Y)
P
= ] Y (8,Y) (40)
k
and
_ T T T
ey % }E e (Y e ey (8Y, e,
= e? C e, (41)
j j
with
cf 7 vy oy 42)
L xia (

*
A minimizing column Kj then satisfies the equation

*
QKj=Bej ’ l1<j<m (43)

*
and hence the optimal precompensator Kp is given by

* sy
K =0 l (44)
P

provided that the inverse exists. This will normally be the case as clearly
Q=9 >0. In fact Q > O in general, as xT Q0 x = 0 is equivalent to the

condition



which implies that x = o if, and only if,

rank

- 16 =

(45)

(46)

This condition is generic in the sense that it holds for almost all plants

and almost all partitions.

form

rank

( T 0
m
o I
m m
0
(0] 6] -T
L m

This reduces to the requirement that

( Y(t))

rank : = m

Nt
14

.
Y(tl)

This can be illustrated by writing (46) in the

=m (47)

(48)
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which holds true for almost all partitions and almost all systems. For
example, if IG(O)I # 0 and T is larger than the dominant time constants
of the system then G(o) - Y(tN) = Y(®) - ¥(T) is small indicating that
lveg | # o.

Illustrative Example

)

Consider the boiler-furnace in Rosenbrock(l with 4x4 transfer function

matrix

[ 1.0 0.7 0.3 0.2 |
1+4s 1+5s 1+5s 1+45s
0.6 1.0 0.4 0.35
1+5s 1+4s 1+5s 1+5s

G(s) =
0.35 0.4 1.0 0.6
1+5s 1+5s 1+4s 1+5s
0.2 0.3 0.7 1.0

| 1+5s 1+56s 1+5s 1+4s J
= — 1, + Glo) - 1,) (49)

1+4s ~4 ' 1+5s 2 4

Considering initially the simple possibility of loop controllers only,
choose Kp = I4 and the diagonal compensator Kc(s) =k 14 with identical
proportional gain k > o in all loops to reflect the identical diagonal
plant dynamics. Choosing the model GA(S) = 14/(l+4s) then GA is stabi-

lized for all k > o and noting that the interaction effects in all loops

of G Kp are monotonic leads to the total variation
P
¥ (B) = Glo) - I (50)
€0 m

and hence the 'column errors' (see theorem 6)

di(m) = dé(w) = 1.15 , dé(w) = dé(m) = 1.4 (51)

A preliminary estimate of the permissible gain range can now be obtained

from (5) i.e.

Y = 0.71 (52)

1
.
ke G
d J
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Simulation studies indicate closed-loop stability in this range but with
sluggish response characteristics and large steady state errors.
Consideration is therefore given to the use of a precompensator. (Note:
the above result should be compared with that in Rosenbrock(l) where it
is shown using the INA that the controller stabilizes the system for

all k > o. The techniques on this paper are therefore more conservative
than the INA. This is to be expected however, as the total variation
represents and needs only minimal plant information. The conservatism
can be removed considerably by the use of the precompensator described
below in this case. Conservatism is still, of course, present but this
problem does not prevent the achievement of a practical design and the
techniques have the advantage of eliminating the need to evaluate the
inverse & of the plant and reguiring little information on plant detailed
dynamics. The design is also robust in the sense defined in Owens and
Chotai(4).)

Following Rosenbrock(l) consider the use of the steady state

precompensator
-1 -1 ( ]
Kp =G (o) =Y (») = 1.75 =] el -0.16 0.17 ({53}
=098 1.87 =0 23 =032
~0. 32 -0.23 1.87 -0.98
0.17 -0.16 ~1.21 Lo 15
leading to the compensated plant
_ ) =i -1
G(s) Kp = 1742 G (o) 1955 (I4 G (o)) (54)
with step response matrix
i 5! !
e 5 -1
Yp(t) = (1 - e /4)G l(o) + (1 - e 4 )(I4 -G T (0)) (55)

Choosing GA(S) to model the diagonal terms to high accuracy leads to

~ _ 1 +5.758 - 1 +5.87s
9,(8) = 9,0(8) = Ay iTee) ¢ %208 T 9308) = Tiamiesy  (%©)
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with total variation of the error equal to

[ 0 1.81 0.16 0.17 |
p “tis "y
N () = | 0.98 o 0.23 0.32 |N_(e -e %
0. 32 0.23 0 0.98 (57)
. 0.17 0.16 1.21 e}
_t/5 B
where N&(e - e / ) = 0.164. The corresponding column sums are
' = i - 1 (=3 — L oo =
dl(w) d4(w) 0,24 i d2( ) d3( ) 0.26 (58)

Noting the dynamic similarity of all the gi(s) suggests the use of

the compensator K (s)= diag {ki(s)}l<.

‘}jﬂ
(i) =1. (4)
kl + s k2 ¥

with diagonal term ki(s) =
i=1,4. The choice of ki(s) is now based on the stabi-
lization and performance of the approximating feedback scheme. At this
stage, it is useful to use condition (5) (with row sums replaced by

column sums ') to obtain an initial estimate of the gains allowed i.e.

4.1 , 1=1 , 4=4
(i) B
7 < ay (=) ~
3.8 ; i=2 , i=3

(59)
The approximate model GA indicates that these gains allow an increase in
response speeé of up to six times open-loop response speeds which is
normally more than necessary for process control applications.

Choosing the networks
1 .
k.(s) =3 + — i i=1,4 (60)
i 2

to produce closed-loop time-constants of approximately 1.0 and reset times
of approximately 6.0 for the approximating feedback systems, then the
condition (59) is satisfied and the stability of the real plant G with
the resulting control scheme is checked by checking condition (iv) of

theorem 1 with (theorem 6) row sums replaced by column sums.
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Thgn;esultipgw%qygpgg Nyquist PthS.W%Fb confidence bands for the first
two loops are given in Fig. 2. The plots for loops 3 and"4‘arenéﬁtained
by symmetry by interchanging. Note that the (-1,0) point does not lie
in or on the confidence band and hence the controller successfully
stabilizes the plant. The resulting closed-loop performance is illus-
trated in Fig. 3 indicating excellent loop performance with low interac-
tion effects.

Although the design is successful without the low frequency modifi-
cations described in theorems 3 and 6, confidence in the design can be
increased by calculating the integrated modelling error zp(t) with
elements (in analytic form)

0 ’ i=73 (61)
(2P (), . =
1]

(G (o))ij(l - Se + 4 e ) 1 # ]

and E(«) = O. The corresponding total variation is given by

( o 1.21 0.16 0.17
Nz(zp) - (62)
0.98 0 0.23 0.32
0.32 0.23 0 0.98
0.17 0.16 1.21 0

Using column sums defined by (25) then yields the inverse Nyguist plots
with confidence bands indicated in Fig. 4. Note the decrease in the
width of the confidence bands at low frequencies by comparison with

the plots in Fig. 2.
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Notes on the Use of Derivative Information

Consider the following result:

Lemma 2: If the derivative EP is continuocus on [b, + «) and

A deF ()
v(r) 2 = (63)

then, for Re s > o, 1 < 1i,j < m, we have
| (6()K ) .. - (6, (s)), .| <d () Sminga. (s, |s| N P} (64)
p ij A it =713 ij o' 1]

Proof: The result follows from lemma 1 and the inequality

fee]

_ _ i %) -St..
[s(G(e)K )5 = Gyt ) =] By (o) + g e E?j(t) at|
fklEﬁj{o+)| + £ }Efj(t)[dt = Nw(vfj} (65)

from lemma 2 in ref (4) and the identity

1
BV, (t) = B (o0)+ [ B (tn)at (66)
ij ij s 1]

Similar consideration to the proofs of theorems 3 and 6 indicate

that

Theorem 7: The conclusion of theorems 3 - 6 hold true with the

replacements, respectively,

~ A m i
df{s) »d.(s) = ) a4, (s) (67)
] ] gmy1 I

o~ ,ﬂ e
r(s) > r(s) = r(D(s)) (68)

~ th ~ '
where D(s) is the matrix with (i,j) element dij(s) and
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dg(m) 0 (69)

- m
aj(s) » di(s) = Y 4,.(s) (70)

Proof: the result is proved in a similar way to theorem 3,4 and 6 with
A(s) = D(s) as an upper bound on the modelling error GK? - G,. The
details are omitted except to note that (64) indicates that

lim 4, ,(s) = o , l<i,j<m (71)
|s|oe *J

and hence all error estimates tend to zero at high frequency.

The application of the result is identical to those described in
Section 3 with the bonus that (see (71)) the radii of the confidence
circles at high frequencies are reduced considerably and that condition
(5) of theorem 1 is trivially satisfied. The main problem in practice
is thaF derivative measurements tend to be unreliable due to noise on
plant data. It is expected therefore that the result will only be of
practical use when a detailed model of the plant is available to obtain
¥ CE)»

In the example of section 4, the plant model is known and hence v

can be computdd to give

v (t) = 0 , i = 5
ij
], 1 a1 T
G (o)), (. s =g ) (72)
ij 4 5
with total variation easily evaluted to be
[ N
¥ (P = o 1.21 0.16 0.17 x 0.114
0.98 0 0.23 0.32
0.32 0.23 0 0:98
0.17 0.16 1.21 o] (73)
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The confidence bands for the example of section 4 are shown in Fig. 5.
Note the substantial reduction in the radii of the confidence circles

at high frequencies as proved by the identity

0.58 " i=l, i=4

lim Ig;l(s)!d!(s)

|5 |e * 0.62 , i=2, i=3 (74)
as compared with
lim lgfl(s)jdr(s) = + w (75)
1 1

s [
Finally, it has been noted that the use of bounds on the modelling
error such as (64) are easily obtained but tend to be conservative when
compared with the bounds obtained from a detailed plant model. This is
illustrated in Fig. 6 for a typical element of G - GA where it is
seen that the gain characteristics are overestimated by up to 150%.

A Note on Dynamic Precompensation and Postcompensation

As in the INA, the use of constant precompensation can, in severe
cases, be insufficient to reduce interactions in Yp to the desired level.
One way out of this problem is to use both constant pre-and postcompensation
as illustrated in Fig. 7. The 'plant seen by the compensator' is then

Kg G K; which has step response matrix
Y (t) = K ¥(t) K. (76)
p p p

If the model GA is chosen to reflect the diagonal dynamics of Yp(t), then
it is easily verified that the techniques of section 2 carry through with
no change. For implementation purposes, the post-compensator Kg can be

'passed around the loop' to form the forward path controller

Bls) = K; K_(s) F Kg FoT (77)

provided that F(s) is non-dynamic and nonsingular.

The potential power of this idea can be illustrated by the example

y

_l , X
of section 4 by choosing K; = T and Kp =T where T is an eigenvector



matrix of the matrix G(o) - 14, Equation (49) immediately

reveals that Ki G K; and hence Yp is exactly diagonal (G is, in fact,

. . ; ; 2
a dyadic transfer function matrix, as defined by Owens )).
Dynamic precompensation can also be incorporated in this
theoretical framework. Let Kp(s) represent a dynamic precompensator,

then the previous theory still holds with step response matrix of GKp

represented by the convolution

t
Y (t) = [ v(t-t') H (t')at' (78)
P P
o]
where Hp(t') is the impulse response matrix of the chosen . Kp(s). The

use of this relation in the choice of Kp is under consideration but in
practice it will probably reduce to the application of standard INA

methodology to obtain K.p by reducing interaction effects in a

non-diagonal but still approximate model GI of G. The 'intermediate
model' GI could be obtained by fitting models to all elements of Y but
its sole purpose would be to attempt to reduce interaction in Yp.
Controller design can still proceed based on a diagonal model GA of Y
Conclusions

(4)

The paper has demonstrated that recent results due to the authors

can be used to construct a freguency-domain design technique for multi-

variable plant that requires and uses only easily cbtained graphical
information from plant step response characteristics. The technique is
an exact parallel of the well-established INA technique for multivariable
feedback design including the possibility of using constant precompen-
sators to reduce interaction and a stability check based upon the inverse
Nyquist loci of an approximate model of desired complexity with a
'confidence band' replacing the well-known Gershgorin band of the INA.

It has been. demonstrated that the resultant design has well-defined

integrity characteristics but it has not been found possible to obtain
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a generalization of the Ostrowski band for assessment of closed-loop
performance. Closed-loop performance can only be assessed by producing
the required characteristics from the approximatigg diagonal model and,
perhaps, assessing performance degradation using the time-domain
results described in Owens and Chotai(4).

The confidence band is obtained by a number of possible techniques
paralleling the concepts of row-dominance and column-dominance of the
INA. The simplest technigue simply requires the graphical evaluation
of the total variation of the error is modelling the open-loop compen-
sated plant step response by a diagonal model. This, however, can lead
to the preclusion of integral control but a modified technique based
on the total variation of the integral of the modelling error has been
shown to remove this problem. Derivative information can alsc be used
to improve the results if it can be obtained reliably.

The techniques have the advantages that detailed plant model struc-
ture and data is not required during the design, inversion of plant transfer
function matrices is not necessary and the approximate model used can have
any desired complexity. It can therefore be used directly on plant step
data in a similar manner to Owens and Chotai(4) and zstrﬁm(g). It does
however, tend to lead to more conservative designs than the INA as only
minimal plant information is required and used. This problem must be offset
againstthe above mentioned advantages in any given application.

(9)

c (T}
The techniques have conceptual relationships with the work of Astrdm
; 1 i 2
DaVlSOH( 0) and the recent work of Lunze(ll) and Nwokah ) in that
they enable successful multivariable design to be achieved in the presence

of model uncertainty. The strongest links are however, with the INA and

other techniques in the UK frequency-domain school.
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Finally, the choice of precompensator is open to the designer to

reduce the interaction in the open-loop compensated plant step response.

The paper has indicated thatit can be chosen on intuitive bases such as

diagonalization in the steady state but its choice can also be posed as

an optimization problem. This will form the basis of further studies

but the paper has indicated that an analytic quadratic .approximation.

technique paralleling the well-known methods of pseudo-diagonalization

is possible and could merit further study.
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9. Appendix

If, Quring. the choice of Kp, GA

is as yet unspecified then E

P (e
JJ

is unknown, 1 < j < m, and the designer can only achieve a reduction in

the off-diagonal terms of the error.

The errors in the diagonal terms

can be made arbitrarily small by choosing GA by subsequent inspection

of the diagonal terms of Y . The quadratic problem corresponding to
p

(35) in this case can be written as

m N P 5
min } 7§ At) B L (t )
K, g=1 k=1 %3 k i

L#3
m N
2
= min Z X (efAk Y K.)
K. %=1 k=1 J
) g
= min K? Q. K
k., J 37
i
where
m N
iy T
Q.= 7] ] (AY) e e (AY)
= Lok
2773

(79)

(80)

To avoid the trivial sclution K, = 0, an additional constraint
J

K. RK, =1

T
can be introduced where R = R~ > 0.

indicates that

Elementary analyses of

for some scalar (Lagrange multipliex)) and

min K? QK. = )
K. J J
J

(81)

(79) and (81)

(82)

* =1 ; :
That is, K, is an eigenvector of R "Q corresponding to an eigenvalue of
J

smallest magnitude.



i i A —

C
(a)
uA yA
K, f, -
F o
(b)
Fig. 1 (a) Feedback scheme with precompensation

(b) Approximating non-interacting scheme
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Fig. 4 Low frequency confidence bands with integrated error data
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Fig. 6 The gain error and itscomputed upper bound
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