The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Robust Sampled Regulators for Stable Systems From Plant
Step Data.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/76401/

Monograph:

Owens, D.H. and Chotai, A. (1983) Robust Sampled Regulators for Stable Systems From
Plant Step Data. Research Report. ACSE Report 213 . Department of Control Engineering,
University of Sheffield, Mappin Street, Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ROBUST SAMPLED REGULATORS FOR STABLE

SYSTEMS FROM PLANT STEP DATA

by
D. H. Owens, B.Sc.,A.R.C.S.,Ph.D.,AFIMA,CEng,MIEE

and

A. Chotai, B.Sc.,Ph.D.

Department of Control Engineering
University of Sheffield
Mappin Street, Sheffield S1 3JD

Research Report No. 213

January 1983

This work is supported by the UK Science and Engineering Research
Council under Grant GR/B/23250.



Keywords: Digital control; sampled-data systems; multivariable
systems; stability; robustness; system order reduction;

process control.

Abstract
3 - » 3 . ¢ -
The discrete time integrating regulator introduced by Astrom is
extended to cover the case of multivariable systems with non-monotonic
step responses. The use of approximate models to increase the

possible range of sampling rates is also considered.

1. Introduction

In a recent paﬁer (Kstrom 1980) the use of a strongly simplified
process model for the design of integrating regulators for stable
systems with monotone step responses was convincingly demonstrated.
The technique provided a simple way of designing robust regulators by
elementary graphical analysis of plant step data that avoided the need
for access to extensive computer-aided-design facilities. It is
therefore of great potential value where practical controllers are
required in on-line design situations.

A major limitation of the work is that it does not apply in the
form presented to synchronously sampled multivariable systems or to
systems with non-monotonic step responses. It is the objective of
this paper to extend the ideas to cover these cases using recent
results developed by the authors (Owens and Chotai, 1983). The
background theory is provided in section 2 with applications to design
based on first and second order deadbeat models and higher order
models in section 3. The use of second and higher order models

allows faster sampling rates than those permitted in Astrom (1980).



2. Backgréund Theory

In a recent paper (Owens and Chotai, 1983) the authors introduced
basiec theoretical results to enable the successful design of output
feedback systems fof an m-input, m-output multivariable plant G by
off-line design based on an approximate model. A basic result obtained

is given below for completeness:

Lemma 1: If a mxm controller with z-transfer function matrix (z-TFM)
K(z) stabilizes a model with z-TFM GA(z) under unity negative feedback,
then it will also stabilize a discrete plant with z-TFM G(z) under
unity negative feedback if

(a) both the plant and model are stable,

(b) the composite system GK is controllable and observable and

(c) sup vy(z) <1 saad (L)
z€D
where the set D consists of the two circles |z| = 1 and [zl = R with

R large enough to be regarded as infinite for all practical purposes,
v(z) is any available real-valued function-on D satisfying

v(2) > r(L(2)) Y zep e (2)
with

L & (@ ()6, (2) K(2) || ja(2) e (3)

and A(z) is any available matrix-valued function satisfying

M2) > e -6, @, Y zep ()

(Note: (i) r(M) denotes the spectral radius of the mxm matrix M.
The spectral radius of a scalar (ie a 1xl matrix) is

simply its absolute value.



(ii) The 'absolute value' [|M]| p of the mxm matrix M = D%j]
is the matrix [|Mij|] of moduli of the elements of M.
(iii) If A and B are two mxm real matrices, then the relation
A<B denotes the m2 inequalities Aij < Bij’ 1<i, j<m.
(iv) A<B denotes the m2 inequalities Aij<Bij’ 1<i, j<m.
(v) the lemma follows from theorem 1 in Owens and Chotai (1983)
by replacing the Nyquist contour by the set D defined

above and assuming unit feedback).

In the following sections, it is assumed that plant open-loop
step responses are available in the form of the mxm matrix step response
sequence Y(k), k>0, with elements Yij(k) defined to be equal to the
value of the output y. at time t = kT (T = sample interval) in response
to a unit step input in input uj from zero initial conditions with
uR(t) =0, £ #3,k >0. If YA(k)’ k>0, is the corresponding step
response sequence for the model GA’ then the modelling error can be
characterized by the error sequence

4

E (k) Y - ¥, ) k>0 . (5)

The modelling error can be used to form a suitable bound A(z) as

follows:

Lemma 2: Define the mxm matrix

, N (Eyp) weee N (B0
N (E) = i veo(6)

Noo(Eml) vee. N (E )

where Nm(Eij) is the '"total variation' of the sequence Eij(k)’ k>0,



>
e~ 8

Nm(Ei')

; . IEij(k) - Eij(k~l)|

1

) | ...(6a)

Lo By G0 = By gen

and 0 = k.. <k .... are the local maxima and minima of

ijo ijl * kijz s
Eij(k)’ k>0, in the extended half axis k>O. Then

i

e -6, @, < N® Y zep e (7)

(Remark: The result is the discrete equivalent to lemma 2 in Owens

and Chotai (1983). It is important to note (i) that local maxima and
minima are identified on the extended half-line (ie the point k = +w
maybe a local maximum or minimum) and (ii) that Nm(Eij) can be assessed
graphically by identification of the maxima and minima of Eij)'

Proof: Elementary considerations yield the characterization

G(z) - G, (z) = § 2 (B - E(k-1)) o)
k=1
and hence, for Iz| > 1, we have

|Eij(k) - Eij(k—l)|

it~ 8

52> = (&, ()] <

k=1
P |
= E..(r) - E..(r-1)
sl r=k,. _+1 %I L
= 135-1

) | )

|E. . (k,. E,.(k,,

251 i 138 i3 13481

as the definition of k.. , £>1, ensures that E..(r)-E..(r-1) has only
ije’ 7= ij ij

i i .. + - i i impl
one sign in the range k132—1 lLzx = liR Equation (9) is simply



]Gij(z) - (GA(Z))ij| < Nm(Eij) , l<i, j<m ... (10)

which yields (7) when put in matrix form.

3. Robust Regulator Design

Consider the problem of robust regulator design for an m-input/
m-output plant G. The plant is not necessarily assumed to be monotone
(Rstrom, 1980). The applications of lemmas 1 and 2 are considered
for various classes of plant model and integral control system. As
in Kstrom (1980), the controller gain and sampling rate will be
regarded as design variables and it is therefore necessary to have
access to the continuous plant step response matrix H(t) with (i,j)th
element Hij(t) equal to the response of yi(t) from zero initial
conditions to a unit step in uj(t) with ur(t) =0, r # 3. If all
outputs are sampled and all inputs are actuated sunchronously with

frequency Tnl, then clearly Y(k) = H(kT), k>0, and Y(o) = O.

3.1. Design Based on the Model GA(z) = z_lB

Following Estrom (1980), consider the approximate model of the

plant
y(t) = B u(t-T) ... (11)

where B is a nonsingular mxm matrix and T>O. This construction is
equivalent to modelling the response of s to a unit step in uj as
shown in Fig.1(a) and reduces to the model used by Rstrom (1980) if
m= 1. If T is taken to be the sample interval of synchronous input
actuation and output sampling, then the model has transfer function

matrix

GA(Z) = Bz =¥y



Consider the integrating process controller
L= w4 B (- y) -e-(13)
Yk k-1 k 7Tk

where r, , k>0, is the set-point sequence. This controller has

k!
transfer function matrik K(z) = sB_lz/(z—l) and reduces to that of
o

Astrom (1980) if ¢ = 1. It stabilizes the model GA if 0<g<2 but

we will concentrate on the case when the input-output characteristics

are also monotonic/overdamped ie
0<ec<l .. (14)

Combining lemmas 1 and 2 then yields the following result and corollary

relating the stability of the plant to the choice of B and T:

Theorem 1: The digital controller (13) stabilizes the real plant if

(14) holds and

e & e, v @) <1 ... (15)

Proof: The conditions of lemma 1 hold with A(z) = NmP(E) (lemma 2)

and
v(z) = sup s Ty ® r, < 1 V z€D ... (16)
z€D
as is easily proved by noting that
L(z) = | =2— {37} . . e (17)
z~l+g P

Corollary 1.1: The conclusions of theorem 1 hold if y0<1 where %

is any conveniently computable upper bound for T -




The result is easily applied by choice of T and B, evaluation
of the error sequence E(k), k>0, and its total variation NmP(E) and
checking condition (15). The corollary allows upper bounds Yo for
r to be used if they are more conveniently calculated eg. the vector
induced matrix norm

m

=] P
y = max ClIB 7] » N (B, .
l<i<m jzl | Poe 1]

m m

-1
max 2 E I(B ). [ N (E, .) ...(18)
l<i<m j=1 k=1 ikl etk

Equation (15) can be simplified by expressing NWP(E) in terms of H

and B by noting that

nP@® = nF@ + o -B], - DI, .09

which relates the total variation of E to the total variation of the
sampled plant step response Y, B and H(T). In general terms, B and
T should be chosen to make the combined contribution of the second two
terms as 'megative' as is necesséry to satisfy (15). ' This turns out
to be particularly simple if we choose ||B]| p 2 [|H(T) || 5 in the

sense that

Bij > Hij(T) if Hij(T) >0
Bij = arbitrary 1if Hij(T) =0
Bij < Hij(T) if Hij(T) <0 coe (20)

when (19) reduces to

nP@ = nF@ + B, - 2]mD], ... (21)

o



~and (15) to

roo= e[, @ ¢ (B, - 2 lE@ <1 .22)

In the case of m = 1, this is simply the relation

N () - 2[H(D |

5] <1 ... (23)

1+

(+]
which reduces to that of Astrom (1980) with NmP(Y) replacing |H(w)|.
In fact, if G is monotonic in the sense (Owens and Chotai, 1982) that
each element of Y is monotonic, we have

NS o= |, .o (26)

o
when (23) reproduces Kstroms work for scalar systems and (22) extends
it to the multivariable case. Theorem 1 therefore represents a

true generalization of his result to multivariable systems with non-
monotonic step responses.

An implicit constraint in the work of Zstrom (1980) and the above
is that the sampling rate must be relatively slow. This can be
illustrated by letting T-0+ when H(T)-»0 and, substituting (19) into
615), we obtain

1
|

e (BT T+ 8] ) 21 | ... (25)

due to the fact that ||B_l||P(NmP(Y)+]|B|| ) IIB—IIIP 8] 5 2 T
P

The condition of theorem 1 cannot therefore be satisfied under fast

W

sampling conditions. In contrast, it is frequently possible to
satisfy the condition under slow sampling. Consider, for example,
the choice of B = H(T) and T-+e~ when H(T) - H(~) and hence (15) reduces

to the requirement that



v s r(E@ T L0 @ - H@ ) <1 .28

which is satisfied provided that NWP(Y) does not differ from HH(m)”P
by too much. Equivalently the plant should not be too oscillatory!
Noté, for example, that r + 0 if the plant is monotonic by (24) and
hence (15) can always be satisfied by choice of slow sampling
conditions.

The possibility of using faster sampling rates can be achieved

by using other plant models as illustrated below.

3.2. Design Based on the Model G,(z) = (az_1+(1-a)zn2)B, O<ax<l
Consider the use of a sample interval of length T and the deadbeat
model with step response modelled as shown in Fig.1l(b) or, equivalently

by the equation

y(t) = B(au(t-T) + (l-a)u(t-2T)) , O<ac<l ... (27)

and the consequent z-transfer function matrix

GA(z) = B(azm1 + (1*&)2—2) ’ s o9 (28)

in the design of an integrating control system of the form of (13).
It is easily verified (see appendix) that K stabilizes GA

producing an overdamped closed-loop system in the gain range
* B =2
0<ec<e((a) =a ((2-a) - 2v1-a ) ...(29)

* o . - - 3
where ¢ (a) is monotonically increasing in the interval O<a<l and

satisfies
# % %
1 = ¢ (0+) <e (a) <1 =2¢ (1) ... (30)
. . P
In this case, using A(z) = N (E),

2 -
EZ Il s iat)

ﬁ(z) =
22+(ea—l)z+5(l—a) _ E



and, choosing

i

y(z) = sup B2 ¥ r 5. sax(32)
: z€D (zz+(ea"1)z+e(1—a)) 0 °

it is trivially verified that theorem 1 holds with (14) replaced by

(29).
The redult can be applied in design studies for any values of

a and B using the relation
P P
N “(E) = N_"(Y) + [[H(T) - aB|| - [|a(T) || .

+|[m2T) - B(T) - (1-a)B|

- |lH@2D - HD |, ... (33)

A particularly simplé result holds however if we choose a and B such

that, for all i,j,

aB; ;> Hy o (D) if H (D) >0
aBiJ = arbitrary if Hij(T) =0
aBij < Hij(T) LB Hij(T) <0 e {34)
" and
(1*a)Bij > Hij(ZT) - Hij(T) if Hij(2T) - Hij(T) >0
(1--a)Bij = arbitrary if Hij(ZT) —,Hij(T) =0
(l"&)Bij < Hij(ZT) - Hij(T) if Hij(2T) - Hij(T) <0 «+.(35)

« In this case, NmP(E) simplifies to

n@ =+ B, - 2B, - 2 [EED - 5@,
| et 36)

which is independent of a.
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Further simplification is possiBle if, for all 1i,j, we also

choose T such that

H(2T) 2 H (1) if Hij(T) >0

Hij(ZT) < Hij(T) if Hij(T) <0 ... (37)
when (36) reduces to

NwP(E) = NmP(Y) + ||8]] - [|aC2T) || . ...(38)

which is independent of the detailed value of H(T). The stability

condition (15) now takes the form

ro= ([T o o) + [B]l, - 2][BGD ) <1 ... (39)

Comparing with (22), it is seen that the construction défined by
(34) and (35) for the second order model (28) plays the same role as
the construction (20) for the model (12) and yields a stability
criterion of identical form with H(T) replaced by H(2T). The second
order model clearly therefore allows the possibility of faster sampling
rates than those allowed by the first order model. If, for example,
(22) 1is satisfied for T = 2T' and (34), (35) and (37) are satisfied
for T replaced by T' and some a, then the sampling interval T used by
Astrom can be halved to T' = T/2. Further increases in sampling rate

must use a more complex process model.

3.3. Design Based on the Model GA(Z) = g(z)B

Given any choice of sample interval T, examination of the step
sequence Y(o) = H(o), Y(1) = H(T),.... could be used to suggest a
simplified model.

GA(Z) = g(z)B ... (40)

where g(z) is chosen so that g(z)Bij is a simplified representation of



- 12 -

the step'response sequence Yij(k)’ k>0, but where g(z) is independent
of (i,3). Consider the choice of scalar compensator k(z) so that
the control system

Kial . = k(B - wa it lYy

stabilizes the real plant G.

Theorem 2: If k(z) is specified so that the scalar feedback system

with closed-loop transfer function

g(z)k(z) .. (42)

b2) = T3k

is stable, then the controller (41) stabilizes the real plant G if
(a) both G and g(z) are stable,

(b) the composite system GK is both controllable and observable,

k(z)

and  (c) Yo z:g 1+g(z)k(z)

<1 vaw(43)

where Y, is any available upper bound for

e & e e o (4)

Proof: Conditions (a) and (b) are simply those of lemma 1 whilst (c)

reduces to (1) by taking A(z) = NmP(E) and

y(z) ‘ k(a)

l+g(z)k(z) I Yo

k(z)

U Teg(k (@)

137 N, e

v

r(L(2)) ... (45)
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Condition (a) is easily achieved if the plant G is stable.
Condition (b) cannot be checked in general unless a model of the
plant is available, the designer relying on the fact that it holds
generically and heﬁce is unlikely to be violated in practice. If
it is violated then the implemented scheme contains uncontrollable
and/or unobservable stable modes that do not affect stability but
may lead to undesirable system state dynamics.

Condition (c) can be checked analytically (if feasible) or
numerically. The authors prefer the graphical technique described

by the following corollary:

Corollary 2.1: The conclusions of theorem 2 remain valid if (43) 1is

replaced by the equivalent conditions that

] ; k(z)
(1) Yo 1 l+g(z)k(z)

2|+

<1 oo . (46)

(ii) the plot of the inverse transfer function (g(z)k(z))_1
with z = eule, 0<6<m, with superimposed 'confidence circles’

of radius

az & lgt@| Y, e (87)

at each frequency generates a 'confidence band' that does
not touch or contain the (-1,0) point of the complex plane.
Proof: Condition (i) follows from (43) by considering lz| = Roto,

Condition (ii) follows by writing (43) in the form

1+ (g(z)k(z))_ll > d(z) g lz| = 1 ...(48)
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The.graphical interpretation of (ii) is illustrated in Fig.2
and has the same structure as some of the frequency domain results
in Owens and Chotai (1983). The result holds for any choice of g
and k including those of sections 3.1 and 3.2. It can therefore be
used to widen the range of gains specified by (l4) and (30) and to

include proportional action to improve response speeds.

4, Conclusions

It has been demonstrated that the important results of Kstrom
(1980) concerning the design of integrating regulators for process
plant with monotone step responses are a special case of recent
results on approximation due to Owens and Chotai (1983). These
results have been used to extend his work to the multivariable case
and to systems with non-monotonic step responses. It has been shown
how the sample rates possible in his design can be partially increased
by the use of a second order deadbeat approximate plant model. As
in Rstrom (1980), the integrating regulator is designed using simple
graphical operations on the plant step response. Further increases
in sampling rates may be possible if an improved process model is
used, but theorem 2 and its corollary imply that more detailed analysis

is necessary in this case.
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Appendix

The characteristic polynomial of

z2 + (ea-1)z + e(1l-a)

the closed-loop system is

which indicates that the closed-loop system is overdamped if

(aa—l)2 > 4e(l-a)
or, equivalently,

azez + (2a-4)e + 1 >0

This certainly holds if

0<e<e(a)fa’((2a) -

.0+ (49)
-+ (50)
o w3 L)
2/1-a) | .

. L3 . * )
by considering roots and, taking O<a<l, we can expand € (a) in a

power series

* -2
e (a) a “((2-a) - 2(1 -

Mo

-

‘ *
where cj>0, j>l. Clearly € (0+) =
* *
with ¢ (1-) = ¢ (1) = 1 by continuity
The stability of the closed-loop

GAK has poles at z = 0 and z = 1 with

considering the structure of the root-

A

wine G 33)

and e*(a) is monotonic in 0O<a<l
and (52).

system follows by noting that
one zero at —(a_l—l)<0 and

locus of the system.
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Fig. 1. First and Second Order Deadbeat Plant Models
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Fig. 2. Stability check using confidence bands



