This is a repository copy of Plant Step Data and Gain Estimates in the Robust Feedback
Tuning Regulator Problem.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/76400/

Monograph:

Owens, D.H., Chotai, A. and Wang, H.M. (1983) Plant Step Data and Gain Estimates in
the Robust Feedback Tuning Regulator Problem. Research Report. ACSE Report 211 .
Department of Control Engineering, University of Sheffield, Mappin Street, Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

G @ 29 - € (s)

PLANT STEP DATA AND
GAIN ESTIMATES IN THE ROBUST FEEDBACK

TUNING REGULATOR PROBLEM

by

D. H. Owens, B.Sc.,A.R.C.S.,Ph.D.,AFIMA,C.Eng.,MIEE

and
A. Chotai, B.Sc.,Ph.D.
and

*
H. M. Wang

Department of Control Engineering

University of Sheffield
Mappin Street, Sheffield S1 3JD

Research Report No. 211

January 1983

This research is supported by the Science and Engineering

Research Council under grant GR/B/23250

*
On leave from the Shanxi Institute of Technology, the People's

Republic of China.



Abstract
. 4 L3 * " . - 3
Estimates of the maximum gain ¢ required to retain stability
of Davison's robust feedback regulator are derived based on simple

graphical operations on plant open-loop step response data. Both

proportional plus integral and integral control are considered.

i Introduction

Given a stable, linear, m—input/m-output, time-invariant process
whose model is either known or unknown, the work of Davison {1] has
shown how plant step response data obtained from model simulations
or plant tests can be used as the basis of an on-line tuning procedure
capable of ensuring plant stability, asymptotic tracking of step
set-point changes and rejection of constant disturbances on the
output. More precisely, if G(o) is the matrix of open-loop d.c.
gains obtained from plant step responses, the unity, negative output

feedback scheme with controller transfer function matrix

K(s) = ¢ G_l(o)% L (D)

is capable of achieving these objectives for gains € in a non-empty
range
%

0 <e <¢g sis C2)
provided that the required inverse of G(o) exists. The possibility
of including proportional control action has been noted in 1], [2],

*
[BT and [4] but, in all cases, the upper gain bound e 1is unknown,
being revealed only at the on-line tuning stage.

This paper considers the problem of off-line estimation of lower

% e L. .
bounds €, >0 for e . Given such a lower bound, stability is then



known to be guaranteed in the gain range

0 < < * 3
£ € e (3

Such information could be of great value in practice by putting the
commissioning engineer 'in the right ballpark' and hence speeding
up the on-line tuning exercize. In particular, a large value of
Eo* indicates large stability margins whilst a small value suggests
that gains could be severely limited in practice.

Exact evaluation of e* requires, in principle, an exact plant
model to be available. If a model is not available then the accuracy
to which Eo* approximates E* will depend upon the available plant
information. Following Davison [1}, this paper assumes that plant
open-loop step response data is available and that the control engineer
wishes to estimate a value of Eo* using only the simplest graphical
operations on the tramsient step data.

The fundamental techniques introduced by the authors in [5] are
outlined in section 2 and used in sections 3 and 4 to estimate a
50* using a simple plant model and the total variation of the
modelling error and integrated modelling error respectively. For
generality, the results are frequently stated for a more general
proportional plus integral form of control, controller (1) being a

special case. An illustrative example is given in section 5.

Z. Approximate Models in Control Design

In a recent paper [5], the authors introduced basic theoretical
results to enable the successful design of output feedback control
systems for linear, multivariable, convolution plant described by

the strictly proper, mxm transfer function matrix G(s) using a simple,



approximate model GA(S). Both time and frequency domain approaches
are given in [5] but, for this paper, we need only consider the

frequency domain stabilization result given below:

Lemma 1: If the controller K(s) stabilizes the model GA(S) under

unity negative output feedback, then it will also stabilize the real

plant G(s) under unity negative feedback if
(a) both plant and model are stable,
(b) the composite system GK is both controllable and
observable, and

(e) sup vy(s) <1 e (4)
se€D

where D is the usual Nyquist 'infinite' semi-circle in the closed,
right-half, complex plane and y(s) is any available real-valued
function on D satisfying

y(s) > r@(s) Y§ sED . (5)

with

fl

L(s) 1 (x_+k()6, ()) 'K (s) | ) A . (6)

and A(s) any available matrix valued function satisfying

O (CORNE \/ s€o D)
(Note: (i) r(M) denotes the spectral radius of the mxm matrix M.
(ii) the 'absolute value' HM|[p of the mxm matrix M = [Mij]
A

is the matrix |[MH 5 = [[Mij]] of moduli of the elements
of M.
(iii) if A and B are two real mxm matrices, the relation A<B

denotes the element inequality Aij < Bij , 1<i, j<m).




The result follows from theorem 1 in [5] assuming square plant and
unity feedback. In the following sections, it is applied to the
robust tuning regulator problem by choice of model GA and bound A(s).
(Remark: condition (b) can be relaxed to that of stabilizability
and detectability of GK provided that stable uncontrollable and

unobservable modes are not regarded as unacceptable).

*
3. &, and the Modelling Error

Following Davison [1], it 1s assumed that plant open-loop step

responses are available in the form of the mxm step response matrix

¥ (£) ¥1m(t)

wie] = | BT ; . (8)
le(t) — Ymm(t)

where Yij(t) is the response of the plant output yi(t) from zero
initial conditions to a unit step input in uj(t) with uk(t) = 0,
k # 3. If the plant is stable, then clearly [1] the steady-state

matrix

G(o) = 1lim Y(t) s wwll9)
£otoo

can be estimated grabhically, its nonsingularity can be checked and
the controller (1) constructed. Intuitively, the time variation of
¥Y(t) is sufficient data to calculate e* and hence a suitable EO*.
Consider therefore the approximate plant model

1
1+sT

G, (s) = (o) ... (10)

where T>0 is a representative time constant of the plant G deduced by
inspection of Y(t) and G(o) is a nonsingular estimate or convenient

approximation of the d.c. gain G(o). The model GA has step response



matrix 7

¥, () = G) (- ot/ Ty (D)
with modelling error [5]

B 2w -y, = v - e - e ¥y L. a2

Both G and GA have identical steady state characteristics if G(o) = G(o)

when

lim E(t) = O ... (13)

L=

The importance of the modelling error E is that it can be used to

provide a simple bound for I[G(s)—GA(s)}]p as follows ([5], lemma 2):

Lemma 2:

[!G(s)~GA(s)||p < N P(E) \j Res > O s s (LAY

The constant matrix Nmp(E) has (i,j)th element Nm(Eij) defined to be
the total variation of the (i,j)th element of E(t). It has been
noted [5] that Nm(Eij) can be evaluated graphically from Eij(t) by
estimating its local maxima and minima {t..k} on the extended

k>0

half-axis t>0, ordering the data in increasing form 0 = t 2

.o < L.,
ijo - tl]l -

and setting

N ) = kZl |Eij(tijk) - Eij(tijk_l)[ ... (15)

It is known [5} that graphical estimation of these parameters is
insensitive to noise provided that the signal to noise ratio is fairly

high.



The main result of this section can now be stated as follows:

Theorem 1: If the plant G(s) is stable with G(o) nonsingular and
it is possible to choose a representative time constant T>0 so that

1

2 r(|lc o] 5 N P(E)) < min (1,k ) ... (16)

r

then the controller K(s) = G_l(o)(k1+k25_1) will stabilize the plant
G(s) for any gains klzo, k2>0 satisfying

(1+s)(kls+k2T)

Y, sup | ... (17)
<€D s(s+1)+(kls+k2T)

where ym<min(1,k1_l) is any convenient upper bound for r_.

Proof: Using the defined forms of K(s) and GA(S) in lemma 1 with

Als) = Nmp(E) indicates that K stabilizes GA and also stabilizes G if

(1+sT)(kls+k2)
s(1+sT)+(kls+k2)

sup r (

@l sPEy <1 a8
s¢D

as the nonsingularity of G(o) ensures the stabilizability and

detectability of GK. Tnequality (18) is satisfied if

(l+sT)(kls+k2)

Y, Sup
<€D s(l+sT)+(kls+k2)

<1 ... (19)

(17) follows by replacing s by s' = Ts. The necessity of (16) in
satisfying (17) is seen by noting that (17) must be satisfied at

s = 0 and |s|+m.




In practice, the result indicates that a range of gains k1’k2
can be obtained by analysis of (17) provided that the plant G can
be modelled by the 'first-order lag' (10) with error small enough
to satisfy (16). In many situations (16) is not a severe constraint
as, for example, in the case of m = 1 and k1<1, it reduces to the
requirement that the total variation of the modelling error is
strictly less than the plant d.c. gain. In the case of plant G
with oscillatory characteristics or badly conditioned d.c. gain
matrix however, (16) can be violated as the first order model GA is
then not sufficiently representative of plant dynamics.

The power of the result lies in the fact that a detailed plant
model is not necessary to check the stability conditions. The
designer simply follows the procedure:

Step 1: Obtain the plant step response matrix Y(t).

Step 2: Choose a representative time constant T>0 and evaluate the
modelling error E(t).

Step 3: Evaluate Nmp(E) by graphical analysis of the error E(t) [5].

Step 4: Evaluate M g ||é-l(o)|lp Nmp(E) and evaluate y_ = r_ as

given by (16) or any conveniently calculated upper bound

Y, > r, such as the vector induced matrix norm
m
|l | = max } |Mij| ves (209
i 3=l

or any other norm such as the maximum singular value of M.
Step 5: (a) If ymzmin(l,kl_l), the approach fails and the designer
must either compute a better upper bound y_ if possible
or return to step 2 with an 'improved' value of T or

apply the technique outlined in section 4.

(b) If ym<min(1,k1_1), move to step 6.



Step 6: Use condition (17) to estimate suitable values for kl and
k,.
2
There are several ways of approaching step 6 apart from the
obvious numerical search procedures. The following corollaries to

theorem 1 provide simple graphical and algebraic techniques

respectively:

Corollary 1.1: The conclusions of theorem 1 hold if (17) is replaced

by the equivalent condition that the point (—(sz)_l,O) of the

complex plane does not lie in or on the 'band' generated by plotting

A (kls+k2T)

i f f i k e s S e e
the Nyquist locus of the transfer function g(s, l’kZT) s(s+l)k2T
and superimposing at each frequency a circle of radius

A
r(s,k; kT =y, lkgs + k,T[/(Islk,T) o w21

Proof: Write (17) in the form

=1 ‘
|G, + gls ke kD] > r(s,kl,sz),Vs({-D . (22)

and interpret in graphical form as shown in Fig.l for s = iw, w>0.
Tt is automatically satisfied for |s|—>OO by (16).
Corollary 1.2: The conclusions of theorem 1 hold B kl =0 and (17)
is replaced by the algebraic condition

0<kT<v2-1 ... (23)

2
Proof: Elementary calculus indicates that the supremum in (17) 1is

achieved by the frequencies w satisfying @ g 0 or, if o = kZT,

m2 = -1 + Ya(a+2) e (24)



Equation (23) ensures that (24) has no real solution and hence that

(17) reduces to y_<1 which is satisfied by assumption.

The case of k. = O reduces to Davisons controller of equation (1)

1
with k2 & B Corollary 1.2 then reduces to the estimate
% A :
e, = (2-1)/T v v 253

which is very easy to compute but more conservative than the
corresponding estimate resulting from Corollary 1.1 which yields an
estimate for eo* by reading off the point (-u,0) where the trailing
edge of the uncertainty band cuts the negative real axis as
illustrated in Fig.l. The corresponding value of Eo* is obtained

from the formula,

*
€ = 1/uT < .. (26)

This formula can also be used for k, # O provided that the ratio

1

kl/kZT is fixed and only ¢ 4 k2 regarded as a design variable, as

is easily proved by noting that g(s,k ,sz) = g(s,kl/sz,l) and

1

ris.k k2T) E r(s,kl/sz,l) are then independent of €.

1!

*
4. £ and the Integrated Modelling Error

*
Although the techniques of section 3 yield values of €, > the
modelling error E(t) must be small enough to satisfy (l6). This

constraint can be removed if the integrated modelling error

£

E°(t) [ E(t")at’ ¢ s (27}
(6]

is computed. There are no numerical problems with this operation

and it contains the implicit bonus of filtering (in part) high frequency



_10_

noise in the error signal. Clearly

S(6e) -~ = [ T Ewat ... (28)
(0]

and hence, in a similar manner to that of [5], for Res > 0,

o0

-1
E (G(s)—GA(s))ij| < g JEij(t)|dt = Nm(EijO) L)

which is finite by (13) provided that G(o) = G(o). The main result

of this section can now be stated:

Theorem 2: If the plant G(s) is stable with G(o) nonsingular,
G(o) = G(o) and T>0, then the controller K(s) = eGnl(o)s_l will

stabilize the plant G(s) for any e>0 satisfying

o s(l+s)
Ty = Egp eT+s(1l+s) ’ = & -+ (30)
5=1w
w>0

o . .
where y_~ is any convenient upper bound for

£ h HG_l(o)][mep(Eo)) ... (31)

Proof: Follows in a similar manner to that of theorem 1 using the
model (11) with G(o) = G(o) and the upper bound A(s) £ [s|N_P(x°%)

for G(s)—GA(s) obtained from (29).

The result has a similar structure to theorem 1 but note the
absence of any constraint on modelling error, that only integral
action 1s considered and the requirement that G(o) = G(o). Condition

(30) can be checked by numerical or algebraic means but the easiest
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technique is graphical in nature as stated in the following

corollary:

Corollary 2.1: The conclusions of theorem 2 hold if (30) is replaced

by the equivalent condition that the point (—(eT)ul,O) of the complex
plane does not lie in or on the band generated by plotting the
Nyquist locus of the transfer function g(s) g 1/s(s+l) and super-

imposing at each frequency a circle of constant radius

r:Js) YmO/T ... (32)

If the trailing edge of the band cuts the negative real axis at the

. 0
point (-u ,0), then we can choose

: ¥ = in®r .. (33)

Proof: Follows by writing (30) in the form

1

_1 .
e el e Y, /T s = iw, w0 .. (34)

and interpreting the relation in a similar manner to Fig.l.

(Remark: the limitations on gain implicit in the result are revealed

*
by noting that (34) requires €<1/Y; by letting w-« and hence €, <1/Y;)-

S Illustrative Example

Consider the boiler-furnace system described by Rosenbrock [6]

with transfer function matrix
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1 0.7 0.3 0.2
l+4s 1458 1+5s 1+5s
0.6 1 0.4 0.35
1+5s 1+4s 1+5s 1+5s
@al = 0.35 0.4 1 0.6 e s bG0)
1+5s 1+5s 1+4s 1+5s
0.2 0.3 0.7 1
1+45s 1+5s 1+5s 1+4s

and the problem of design of an integral robust regulator of the fo
of (1) using open-loop step data only. Choose the case of G(o) =

with regulator given by (1) where G(o) is nomsingular with

e 3

1.75 =1.21 -0.16 Q.17
-1 -0.98 1.87 ~0:23 =032
G (o) = sinie (3B
-0.32 -0.23 1.87 -0.98
| 0.17 -0.16 =] 2L 1.75
and the model time constant T = 4.0. The corresponding modelling

error can be represented in graphical array form or, for the purpos

of this paper, in the equation form

Ble) = (o) = 14)(e_t/4 - e t/3 ...(37D)

from which we deduce the total variation

NP@®) = (6(o) - 1,)0.164 ... (38)

Choosing the easily computed bound y_ = ||G-l(o)[|m Nmp(E)Hm for
r_ yields T, = 3.4x%(1.35x0.164) = 0.753 < 1 and hence theorem 1 can
%
be applied to estimate € Using corollary 1.2 and equation (25)
yields
%
£ = 0.1 ... (39

rm

G(o)

es
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In contrast, corollary 1.1 and equation (26) yields the improved

estimate
%
e, = 1/(1.2 x 4.0) = 0.21 ... (40)

by plotting the Nyquist plot of 1/s(s+l) with circles of radius Y, /w
as given in Fig.l to obtain u = 1.2, Finally, noting that the
assumptions of theorem 2 are satisfied it is easily verified that

the integrated error has total variation

NPEY) = e -1,

and we can take, for simplicity, ymo = HG~1(0)[|m [|G(o) - 14I| = 4.59

and Ez(s) = YWO/T = LelBa Plotting the Nyquist diagram of 1/s(s+l)

with circles of radius ro(s) then yields uo = 1.55 as shown in Fig.2
oo

and hence

*
€, = 1/(1.55 x 4.0) = 0.16 .o (41)

by corollary 2.1.

Note that the three approaches reveal different choices for EO*,
corollary 1.2 being the most pessimistic with corollary 1.1 being
least pessimistic. All of the results could beimproved by better
choices for y_ and ymo but this is unnecessary in this case as the
closed-loop responses to a unit step demand in the first output
indicate when e = 0.1 (Fig.3). Note that interaction effects are
low whilst Yy responds with small overshoot and zero steady state

error. The response speed is slow but this can be improved by

inclusion of proportional action.
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6. Conclusions

Lower bounds for the maximum gain required to retain stability
of Davisons robust feedback regulator can be derived based upon the
total variation of the error in modelling available plant step
responses by a simple first order model. The total variation is
easily evaluated by graphical inspection of the error. If the
modelling error is small enough in the sense of theorem 1, the gain
bound can be estimated rapidly by algebraic means or by a Nyquist
diagram with superimposed circles representing the modelling error.
In the case of larger modelling errors, theorem 2 provides a similar
Nyquist—type criterion based on the total variation of the integrated
modelling error, but the plant and model steady-state characteristics
must be the same for its application.

The illustrative example indicates that the method can work well
in practice. It is however based upon sufficient conditions for
stabilization [5] and hence can be conservative in its predictioms.
The effects of this conservatism can be off-set by the use of a more
complex approximate model [5] to represent plant dynamics with the
associated increase in complexity of the design exercize. This
possibility was not considered, nor was the choice of other forms
of A(s) considered as, in general, they will tend to increase
computational requirements beyond those in the spirit of Davisons
work. The possibilities can be illustrated however by combining
(14) and (29) and setting

N_(E) whenever |s|N_(E°) > N_(E)

A(s) = erene Ch2)
ls| Nm(EO) otherwise
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