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Abstract
The theory of realisation of linear input-output maps is
applied to the study.of root locus for distributed systems with

bounded defining operators .



(1) Introdﬁction

In this paper we shall study the root locus of single input
single output infinite dimensional systems which have a bounded
realisation . The frequency domain approach to finite dimensional
single input single output systems , which was developed by Bode,
Nyquist and others gave Qay to the state space theory which is
discussed in the book .of Lee and Markus (1967) . The generalisation
of the classical frequency domain methods was then given a new
imﬁetus with the theory of multivariable control developed largely
by Rosenbrock (1974), Postlethwaite and MacFarlane (1979) , and
Owens(1978) . On the other hand the control theory of distributed
systems has been studied mainly from the state space viewpoint
as 44 poupmed by Balakrishnan (1976) and Curtain and Pritchard (1978);
the frequency domain methods have been neglected in infinite
dimensional systems theory , apart from the realisation theory
of Baras and Brockett (1975) and Fuhrmann and Brockett (1976) and
work on systems with discrete spectrum {the heat equation , for
example ) by Pohjeclanen(1981,1982) .

In a recent paper , Banks and Abbagi-Ghelmansarail (1983
studied the root locus of an approximation to a simple delay
equation involving the left shift operator . In the present WOTK
we shall attempt to give a classification of the root loci for
infinite dimensional systems with a bounded realisation , and we
shall see some interesting phenomena related to the cuts in the
plane which must be introduced to ensure the single~valuedness of
the transfer functions . This will lead to a definitiocn of
'generalised pole' which is , essentially , & connected component
of the set of singularities of the transfer function , includi

the cuts . If a similar definition is given for 'generalised zeros



then we can recover. the classical criterion that if an open loop
system has n generalised poles and m generalised zeros , then the
root locus has n connected branches (including cuts) , m of which
are attracted by the generalised zeros and n-m of which diverge
to ¢, Hence the correct objects to regard as poles are not the
branch poiﬁts', but the branch points which are 'glued together'
by the connected cuts .

We shall start by introducing some notation and then recall
the baéic realisation theory of distributed systems ; the latter
is then related to the classical 'canonical ' realisation of a
finite dimensional system . The root locus for a system with a
bounded realisation is then studied and we end with some simple
examples .

(2) Notation and Terminology

In this paper we shall use the letters H,V and H to denote
certain Hilbert spaces and , in particular , we shall use the

right-shift operator Ur with the matrix representation
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or JG will denote the Laplace transform of G . We shall also use
some elementary complex function theory ( the complex plane being
denoted , as usual , by € ). In particular we shall find it
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.
V & ¢ will denote the complexification of V and ;i(Hl,HZ) will

denote the space of bounded operators from  the Hilbert space Hl

to the Hilbert space H2 .

Finally , we shall use .the spectral theory of bounded
operators , which can be found in Dunford and Schwartz (1959) .
To summarise this theory , note that if A is a bounded cperator

on a Banach space X then o(A) {(the spectrum of A) is compsac

Q.
™

and any set o which is open and closed in g(A) is calle

gpectral set . Assume that

n
o(A) = igl o,

Q

i.e. 0(A) is the union of a finite number of spectral sets

Then we define the operator

P, = 1 Jp e(2) (aT-4)"tan

i
where T' is a. Jordan curve containing o in its interior , and
e(r) =31 if Aeo
0 if 2eo(A)\o

It is easy to see that Pi is a projection operator . Let

= 5 1 = Al‘r -
XO. P1X and A@. e
i i g,
A
Then n
- X €3
X ?_ Xo, s AL, € xoj 3
L, 1 ] L
and .
G(qu} = 0,
i
Hence A has a diagonal representation A4 = diagrlﬁ soneesh ]

1 ial

in X .



(3) Realisation Theory

In this section we shall recall the realisation theory of
input output maps due to Baras and Brockett (1975) and Fuhrmann
(1974) , and relate the bounded infinite dimensional realisations
to 1limits of finite dimensional (i.e. rational ) transfer functions.

Consider , then , the scalar input-output map G:Ep,w) + R. The

(bounded) realisation problem is to find a bounded operator A on

some Hilbert space H and vectors b,c € H such that

G(t) = <c,eAtb>H

It is well known that this problem has a solution if and only if
~j
G (respectively G 4 LG ) is entire and of exponential order ( or
n

G is analytic at infinity and vanishes there ) . In fact , G can

be realised on 82 in the following way

If G(s) = Z::O ais'(l+l) for |s|>p (say) , then we can take
A=kl 0 o= kU
r
0 ¢
1 0
0 ...
..... (3.1
b = {l,O;Oga-ss} Y
¢ = {a.,a /k,a /kz ve el
O Rt~ A
for any k>p . Defining
o(8) = {se®: G is not analytic at s} 3 {3.23
we have
o(8)co(h) = k{set: |s] €1} . (3.3)
and so k must be chosen large enough so that (3.3) holds .If

L4 -
g (G)C{ seC: ls—soigﬁl} , then we may realise G with (4,b,c)

where
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A =18, = s, + U
1 SO Q
1 s (3.4)
0
0
b={1,0,0,....}
s {ao,al,....}
where
P~ - - . e
G(s) = 5 a;(a-3) N TN
l“.x

We can easily generalise the above result to the case where
G: [0,») > £(V,V) for some Hilbert space V ; we have

Theorem 3.1 The weighting function G has a bounded realisation

ves?

iff G(s) is analytic at infinity and vanishes there .( G is an
analytic function with values in L (ves,vet) . )

Proof The necessity is obvious . For sufficiency , write

G(s) = = 5‘%1.8"@“) . lsl>op
i=0 =
Then we define # - &ﬁsov and the operator A on H by
A = k| Oy s K>D
Dy
Iy Oy

0 Iﬂ Oﬁ

=& L. (3.5)

I meree ]
B = {I%,OQQ ppppp _!‘
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C - {fﬁjo, ﬁl/ky ﬁz/f{. ;vdaa} 13
I spectivel h > ;.
where 046 o Ty are respectively the zero and
operators on H . We then have
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A is again a unilateral shift ( of multiplicity % , wh
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the dimension of V ). In the case where V =R~ (n inputs,n outp

o 2

-



we have

-----

Returning to the single input-single output case recall that if
the“system has finite dimensional realisation , then the clagsical

: . g . T AL
'canonical! realisation is of the form ¢ e b , where

A=[0o 1 B
0o 1 0
(3.6)
L & O 'E
| By =By wennes b 5 b1
b ={0,0,....,1%
c = {ao,al,...,am,O,...sﬂ}

Tt will be important for us to relate this representation to that
given by (3.1) . Suppose that the transfer function of a finite

dimensional system is given by

m
Gig) = T oa.st , m<n
el
n-l i n
| . + ’
iiobls s (3.7)
= ; c.s(m’n)'i ,
3=0 1

where we find inductively ,

Ch - am
: (2.8)
Cr T fpox ‘(O<; ) b_‘i.c—-n+1::+i \ y K21
L1i<n
n-k-i £ 0 /
Hence , by (3.1) , we have the realisation defined by
A = kU
T
b o=31,0,0,.0..8 (3.9)
5 -
c = {0,0"._‘ﬁogcof/kn"m*_l_’ “tij’k }..“‘}
\___-...v_._.__.J
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where k > max _, ls] . Of course , in this case , 0(G) consists

sea(G)

of the poles of € . The important point to notice , however , 1is

that whereas the representation (3.6) is s-minimal (i.e. o(4) =

o] (E) ) that given by (3.9) is not . Nevertheless ,

iE 18

precisely the form (3.9) which provides the connection with

infinite dimensional realisation theory . This connection is

brought out more clearly if we use the following well-xnown

theorem of complex function theory (ef. for example , Rudin 196

Theorem 3.2 (Runge's Theorem) Let & be open in € , and let £ b

a set which has one point in each component of 5_-Q,

N

O~

)

and assums

{

that £ is .analytic in & . Then there exists a sequence {Rn\s)}

of rational functions , with poles in A , such that

uniformly on compact subsets of O . 0O

R
n

# I

In this theorem , S = Cu{w} refers to the Riemann sphere

(i.e. the compactified complex plane ) . Before applying the

theorem , we rewrite (3.9) in a different form assuming this time

that T is given in terms of poles and zeros ;i.e.

. m
G(s) = 0 (s-z.)
. i
i=1
n
I (s-p.)
=1 .
In this case ,
a =h =1
m n
and .
_ = M= forrm, 3
8.1 ( l) IP“_L\‘J]_’ @ 'él”l'
= B =1 . \
b (-1) Qn—i(pl"°‘”’pn’

. . th o o :
where U& is the i elementary symmetric function

realisation is again given by (3.9) with

(3.10)

Hence , the



where k > max {|p.]|} .
1<ign

Consider again a single input single output system with
transfer function G(s) and suppose this has a bounded realisation.
Then o(G(s)) contains poles and branch cuts , the latter

necessarily being in the finite plane since E(s) is analytie at

s =» , o(G) is closed and so we may apply Runge's theorem with

A = o(G) u{=}. However , since |G(s)| >0 as |s| +=, we may

I

obviously assume that the rational approximations just have
poles in o(®) . Therefore , taking A = 0(5) , theorem 3.2
implies that there exists a sequence of rational functions Rn

such that R~ G(s) uniformly on compact sets . Suppose that
m

R 5

n
n
n (S-Zi) L]

Il
i=1
n

I (s-p?)
i=1 *

where we have assumed that R has n poles (it is easy to see
that there is no loss of generality in this assumption ) which
are at the points p? (1£ign) and m (<n) zeros at z? (lgigm ).

Then we see that the function G(s) has a realisation of the form
(3.1) which can be obtained as a limit of a sequence of realisations

of the form (3.9) , where

n _
m_-k .
n n n n n-i .
o= (=) ey g (aheeensh 0o X {1 e e !
k mn_k x Ty Ogi<n R~y h’ ’hAcﬂwk+i
n-k-1ig0

for n = 1,2,.... (ef (3.12)).
If we consider the example given by Baras and Brockett (1975),
defined by the transfer function

G(e) = __ 1 ,
J(s2 + 1)



then o(G) = {se€: Res= 0, |Ims|g1} & , i.e. o(G) consists
of the points +i together with the cut along the imaginary axis
joining these points . Then by the above theory , we find a

sequencelﬁn(s) of rational functions with n poles on L such that

En + G , uniformly on compacta

( It should be noted that the authors cited above give an S5-

minimal realisation using the Laurent operator ; the same theory

as that above could be given using this operator in place of Ur,)
Note finally that we have expressed the realisations above

in terms of the right shift operator Ur ; we could have used iInstead

the left shift U, = Ui s 8ince

2
U % URt
<c,e T p> = <e e ab> v

(4) Root Locus Theory

Consider the linear system

X Ax + kbu

(4.1)

y = c¢Xx
where A,b,c are bounded operators belonging , respectively , to
the spaces JZ(H,H) , L(R,H) , Z(H,R) (we shall consider the single-

input single output case for simplicity ). Suppose that

n
gld) = nulcri (4.2)
l:

where each 0. is a spectral set of A . Then we can write

n
H= @H; (L.3a)

i=1l i
Ag. =A!H (4.3b)

i o.

i

and
bu = (blu,....,bnu) , CX = clxl+,...+cnxn ;

where



X, E Ho. , bqu:Ho. and.ci = Cly s
i 4 a.
i
Hence ,
x. = A x. + kb.u
i i i
(4.4)
y = Zc 5

where we have abbreviated Ao to Ai
i
Taking Laplace transforms in the usual way , we obtain

in(s) = AiXi(s) + kbiU(s)

T(s) = Zc;X,(s) ,

where

XJSJ=$6LW)LUQ):£(MtH , T(s) = Lly(t)) .

1
If the control u is just the error from feedback of y , then for

any input v to the overall system we have

n
e R(534;)b,)¥(s) = k( I c;R(s3h,)D;)V(s) (4.5)

n
(1+k s
i= i=1

=1
. _ oy A 1
provided s %U(Ai) = 05 » where R(S,Ai) = (sI—Ai) is the
resolvent of Ai . Hence , if

, n
se{reC: 1+k.§ ciR(A;Ai)bi =0}

=1
then it follows that
n
Y(s) = k(iilciﬁ(s;Ai)bi) V(s)
n
1+ kI ec.R(s;A.)Db.
g o i |
i=1
= G(g)Vis)
where
. A n
G(s) = k( Z CiRCS;Ai)bi (L.6)

i=1 .

n
+ 5
3 kiélciR(s,Ai)bi

is called the closed-loop transfer function . If we wish to
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emphasize the dependence of @ on k we shall write G(s:;k) . The

root'ioéﬁs L of the system is defined by

L = U {se€C: G(s;k) is not analytic at s} (4.7)
k>0

1

Remark 4.1 In the case of finite dimensional realisations , the

representation (4.1-4.3) of a system corresponds to the Jordan
decomposition of A . In fact , the spectral sets of the mairix

A are just the (isolated) eigenvalues and the subspaces H,

4
—-—

correspond to the generalised eigenspaces . The decomposition

of the open loop transfer function

- n
GO(S) = iil ciR(s;Ai)bi
is then just the partial fraction expansion .

In order to demonstrate that the classical properties of the
root locus can be generalised to the present situation , it is
important to define transmission zeros for our systems
Pohjolainen (1981) has defined such zeros,in the case where A
has compact resolvent (and so has isolated eigenvalues b o am
the finite eigenvalues of A+kBC as k » «. It is then easy to
show that this is equivalent to the condition

A4 o(A) and det[C(A-AT) 1E] = O (4.8)
However , these systems are spectral minimal , as shown by
Brockett and Fuhrmann (1976) and the definition of transmission
zeros in terms of o(A+kBC) is then reasonable

In the case where the original system (A,b,c) and the
transfer function are not spectral minimal , it is necessary to
define the transmission zeros directly by (4.8) ; ie. for singlse
input single output systems by

At o(h) and el BT % = D (4.9)
Tt then follows directly from (4.6) that the finite singularities

o~
of G(s3;k) tend to the transmission zeros as k*>® . However ,even
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the definition (4.9) is not quite correct since we must not only
include the zeros of c(A- I)nlb but also any 'cut' in the plane

which is necessary to make c(A- 1)1 single valued . Hence , by
comparison with (3.2) we introduce

Definition 4.2 The transmission zero set z for the system (A,b,c)

is defined by

c(@b) = {sel : s¢ol(h) , Gal is not analytic at s }

(4.10)

where EO(S) = C(A-SI)-lb , the open loop transfer function
Just as in (3.2) , this does not uniquely specify OCEO) .

However , it is to be understood in the same sense as (3.2) ,
i.e. o(G_ ) consists of the solutions of (4.9) together with any

cuts which are necessary for the single-valuedness of ﬁO .{Note

that this ambiguity can be removed by interpreting the root
locus on an appropriate Riemann surface.)
For reasons which will become eclear shortly , we also

introduce

Definitibn 4;3 A connected component of G(Eb) is called a

s

generalised open-loop pole » Similarly , a component of 6(G(ssk))
d-

4]

(where G is defined by (4.6)) is called a generalised close

loop pole . A connected component of C(EO) is called =

generalised open-loop zero .

o~
The transfer function G(s) of a finite dimensional system is ,

of course , rational and can be factorised in the form

where each zero 25 and pole Py represents a single connected

L d
component of o(G) . We would like to obtain a similar Ffactorisaticn
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when G(s) is irrational 4 of the form

Gls) = I ¥ (s (4.11)

where Y. ( 2, ) corresponds to a generalised zero (pole ) . We

e
shall prove this in the case when G has a finite number of
algebraic singular points . Let us assume for simplicity that in
the spectral factorisation of (4.2)-(4.4) each operator A,  Is
i

such that o, (= G(AG ) ) contains a single connected component
i

of O(E(s)) . Then such a spectral representation of the system
(4.1) will be called simple

Theorem 4.4 Suppose that all. the branch points for the system

(4.1) are algebraic . Then we may write the open loop transfer

functionlﬁo(s) in the form
- By 1
GO(S) =l T V¥.(s) n &.(s))R(s) (L.12a)
. i . G
i=1 i=l

=1

where R is a rational function with m, Zeros and n, poles ,

+m, < n, + ¥, . s Lo generalised zeros (poles).
mytmy <nytn, and ¥, (@l) correspond to generalised zeros (pol

Moreover , we hsave

Wi(s)-s ,y 8 - 1 are analytic at ® and vanish there , (4.12b)
@iZsi
Remark The term R(s) corresponds to those operators Ao for

By ;

which o, contains a single isolated pole and consequently which
have a finite dimensional realisation . We shall therefore ignore
the term R (ie. set R=1) since this result is well known in this

case . Hence we shall prove the result with R=l, W=, , =N
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of (G (s)) which are nontrivial (ie. which are not just isolated

poles ) we can suppose that the singularities (which are assumed
to be algebraic ) oceur at isolated branch points . Now at such a

point b it is well known that EO(S) must have branches of the form

F(g@—b ) (4.13)

for some n , where F is holomorphic in a neighbourhood of C
except possibly at O.where F can have at most a pole . (See ,
for example, aks and Zygmund ,1971) . We can assume without loss
of generality -that if 0 is a pole then it is simple . Consider ,
then , two cases :
Case 1 0 1s a pole of F .

If ns1 , then in order that F(Qfgtﬁj be well-defined we
must cut the plane from b to « . Hence , in this case , since we

o~

know that G, is analytic at =0 we must be able to find another

0

P~
term_Fl in GO so that

- n n=1
FP, = FQ(Q[; ta 18 TH....tag)

for some new function F2 » holomorphic except at 0 . This term
will then correspond to the generalised pole of G,(s) containing
. o 3 ) / % ‘{‘n\
s Alsw 4 if GO contains .a factor of the form 1/(y[s¥-a™) , for
example , then this will not represent a single component of
o(GO(S)) since it can be factorised as 1/(J &) . Hence , if
we collect together the representations (4.13) for each branch
point we must have a function of the form

P(s) = ¢;(s)....0 (s)

4
o+

which satisfies (4.12b). Now write Z(s) = EO(S)P(S) . Then is

clear that Z(s) has branch points which satisfy

=

Case 2 0 is not a pole of F . The same argument as in case

completes the proof . ®
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Coroliarv 4;5 Under the conditions of theorem 4.4 , if the system

(4.1) has a simple spectral representation in the form (4.4) , we

may write

Gols) = 123 b, (s) (4.14)

where each hi(s) igs holomorphic in €

The expression (4.14) is a generalised partial fraction

expansion . We can state an obvious conjecture

Conjecture 4.6 A decomposition of the form (4.12a) exists even

for transcendental singularities . @&

Returning to the case of algebraic singularities , in view
of corollary 4.5 and the importance of the partial fraction
expansion of a rational function , it is of interest to determine
when we can obtain a simple spectral representation of a given
system . It turns out that 1if the system has a bounded realisation
and only algebraic singularities , we can alweys do this . In
order to prove this statement , we must first recall the theory
of G-C Rota (1960) which says , essentially , that the left-shift
operator (on a certain Hilbert space ) is a 'universal model !
for any bounded operator whose spectrum is contained in the uni
dise . In fact , if A is a boundéd operator with supl G(A)Is 1
defined on a Hilbert space H , then we define the new Hilbert space

A  m® < . N
H = @k:lH with the inner product

<K,y> = L

<X ;y"_>1-r t
k k ¥R

1

for g1l _JS,XE:H°° for which the sums

X = (Xlrxzotn--) s ¥ = (ylsyzwwvﬂ-}

Now define the left-shift U, on H® by
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UR(Xl,Xz,XB,....) = (ngxag..u,) s
and the operator IA.:H'*Hoo given by
_ 2
IAX - (X,AX,A x,uwss) @
Then it follows that IA is invertible and

=1 _

I

and so A 1s similar to Uy -
Now consider again the general spectral decomposition of a
system as in (4.1-4.3) , and suppose that a particular projected

subsystem defined by Ai,bi,ci as in {(4.4) has a transfer function
G.(s) = ciR(S;Ai)bi which has several singularities ( which are
generalised poles.) contained in O(Aj) . (ef, fig. 4.1) . Assume

without loss of generality that [[A]l<1.

Consider the term &;(s) (say) in (4.11) due to the gensralised
pole p; . Then we can draw a Jordan curve vy in O(Ai) containing

Py in the interior and with PysPy in the exterior of ¥ , a8 in

e
i

fig « 4.2 . Since v is a Jordan curve , the Riemann mapping theoren
(Rudin , 19 ) states that there exists a conformal mapping f

which takes y in the s-plane into the unit circle in the f(s)-plane,
However , gl is analytic and so we can define Ai,l = fml(Ui)

»

where Ut is the left shift operator in H . Then A, ] has spectrum

which consists of yand its interior (by the epectral mapping

(e8]

theorem ) . However , A; 1 has the mpdel Ug on H , i.e.
2

Tslk Tl
| ; . : , ‘
and we can realise (@1(8)) on H by the results of §3 in ter

of the triple (Ug,b,c) ,8ay; i1.e. by the systenm
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E = UQE + bv
y = ct
If we change variables to E= Iil £ , we obtain
i,1
= .| - il
E = T UsT =+ T bv
Ay 1 F R4 4 el
y = cl =
He
or
é = A, 4+ b'v
gt (4.16)
y - C':
where
Bl e 1;1 b , g = ot
1,1 Aj 1

(4L.16) is a system defined on H with transfer function (@1(3))”1

whose system operator Ai 1 hag spectrum vy and its interior . The
E

stated result now follows by induction

We now return to the general structure of the root locus for
a system with bounded realisation having algebraic gingularities
It follows by an elementary spectral continuity argument that
generalised poles remain generalised poles as X increasges . (Of
course , at some values of k a generalised pole consisting of ,
say , a pair of singularities joined by a cut may coglesce inte
a single ordinary pole .)

Proposition 4.7 Suppose that the open locop transfer function

Eo(s) of the system (4.1) is written in the form [4:.128) with

= - = + r
m m,tm, and n nitn, then we have
T = + e ¥ wen |
GO(S) ® n-m A emtl
n-m n=m+l
8 s
where a + 0, in a neighbourhood of s =

Proof This follows easily from (4.12a) since each term ¥, (s) »
B m 3 -
®i(s) has an expansion I aisl with al+0 , by (4.12b), B
1=7
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Corollary 4.8 If the feedback system (4.5) has m generalised zeros

and n generalised poles , then m of the poles converge , as =

to the generalised zeros and the remaining n-m generalised poles
tend to ® with asymptotic directions given by the angles

g=gn/(n-m)

and which intersect the x-axis at 0, =/a (n-m) . O
0 n-m+l
G hnem

It is clear from the above results , therefore , that an
infinite dimensional system which has a bounded realisation with
only algebraic singularities has a root locus in which the
generalised poles and zeros behave in essentially the same way as
the corresponding root locus of a finite dimensional system . In
the next section we shall give some examplee to clarify these
remarks . However , before presenting these examples , we shall
first mention briefly the generalised pole assignment pbblem for
our systems .

Consider again a system og the form (4L.1) which is canonical
(i.e. controllable and observable ) and suppose that the open
loop transfer function;ﬁo(s) is of the form (4.12a) with only

algebraic singularities . The generalised pole assignment problen

for this system is to move the poles ( generalised or ordinary)
with state feedback to any other finite set of generalised poles
The next result shows that we can solve this problem arbitrarily
closely .

Theorem 4.9 The generalised pole assignment problem is approximately

soluble for the system (4.1) in the sense that there exists a

sequence of finite dimensional systems SOi = (AOi’bOi’COi)

P

approximating Gy(s) , with transfer fumctions Gg;(s) , 1€1<®

such that , if aé(s) ig the desired closed loop transfer function

of (4.1) , then we can assign the poles of SOi with state feedback



so that

d) :

i.e. the union of all the poles of the systems S.l is dense in
0(5;) where Si ig the closed loop system of SOi and Ei is 1its

transfer function .
Proof The proof of this result follows easily from the above

remarks and Runge's theorem . Indeed , using Runge's theoren we

Pt

can find a sequence of transfer functions GOi(s) of finite

dimensional systems such that ﬁOi(s) * EO(S) uniformly on compact

ot

subsets of G\\O(ao) . Similarly , we can find a sequence Gi(s)

such that G, (s) + Ed(s) uniformly on compaet subsets of C\\G(Ed) :

i
1 i a 5
Without loss of generality we may assume that G,, and G, each have
ok i S

result now implies that the poles of SOj can be arbitrarily
assigned . If we assign them precisely to O(Gi) then the result
follows .E

(5) Examples

Example 5.1 Consider the transfer function

with one zero at s=-1 and a generalised pole consisting of the
ranc ints s=+1 joine v g cut . (This transfer function does
b h points s=+i jo d by a cut

not have a bounded (A,b,c) realisation , since G,(s,

However , it is the simplest nontrivial case and will show very

well some of the peculiarities of irrational transfer functions 5

The root locus is given by

1+k s+l = 0
/(32+1)
i.e.
2

)2

5241 = k°(s+1
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(Note that in squaring we have effectively lost the cut between

+i and -i , but we must bear in mind that this cut 1s still

present .) Hence ,
2

57 = 2k2 s + 1 =0
1-k°
and so the roet locus consists of the loei of the poles
s = ¥° LK1 .
1 - k°

0f course , when k=0 the locus starts at s=Xi and has complex roots
until k=1//2 , when the roots become real at the point s=1 . It
is easy to see that for ke[0,1/¥2] we obtain the locus of a
semicircle . Now consider k> 1/v2 . If ke[1//2,1) then we obtain
two branches ; one tends to s=0 as k+1.and one tends to « as
k+1 . When ke(1l,») we obtain branches which tend to g=-1 as

k+® . The root locus is therefore as shown in fig.5.1(a),(b),(c).
The poles s=+i are shown at various positions on the root locus

as 89,8, connected by a cut (shown by a dotted line ). Note that
the cut disappears when k=1//2 and that when k=1 one pole (sz)

is at o . The behaviour of the generalised pole as k*»= with
respect to the zero at s=-1 can be shown more easily on the
Riemann sphere as in fig.5.2(a),(b) where the branch points and
cuts are shown with a continuous line for various values of k

The point at infinity is marked « .

Example 5.2 Consider the system with open loop transfer function

el

Els) = _ (sti)
2 \
s/ (s - 1)

1 a6 EO has a zero at -i , a pole at 0 and a generalised pole (+1).

The root locus is shown in fig.5.3.
Note that the apparent splitting of the zero at s=0 is caused
by squaring ao(s) to find the root locus . Alternatively , we can

regard the pole at s=0 as a 'degenerate' generalised pole whick



w Z1 =

splits into two singularities joined by a cut for k >0 and coalesces
at s=-i when k zeo .,
Example 5.3 Consider finally the system

Eo(s) :vq(s+l)2 + 21
g2+ 4 ) v g~+1)

which has two generalised poles (+i),(+2i) and a generalised zero
(-14i/2) . The root locus is shown in fig.5.4.
As expected , one generalised pole diverges while the other

(+i) is attracted by the gemeralised zero

(6) Conclusiong

In this paper we have discussed the application of realisation
theory to the root locus of infinite dimensional systems . In
particular we have generalised the classical theory to the case
of systems with bounded realisations whosge transfer functious have
a finite number of isolated algebraic singularities . & complete
theory for such. systems has been developed in terms of generalised
poles and zeros which must be regarded as the appropriate counter-
i

parts of the classical poles and zeros . Indeed , we have seen tLhat

the latter behave in many ways as degenerate generalised singulari-
ties .

We leave two problems for further research : firstly , of

classical compensator theory and secondly it is important to
attempt to extend the theory to unbounded system cperaters A .

The latter problem is complicated by the fact that the spectrun

of A may now accumulate at infinity ; i.e if we compactify € o
the Riemann sphere S« then any neighbourhood of e contains

sts that we should study

11 2
UgE

w

infinitely many singularities . This

[

such systems on S_ and regard o« as just another point ; we
must then extend the theory of this paper to the casge of tansfer

iy o

~ o~
functions GO with aceumulation points in Q{uO; 5
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Legends for the figures

fig.4.1 A typical spectral decomposition into spectral sets
fig.4.2 Surrounding a generalised pole by a Jordan curve.
fig.5.1 Root locus for example 5.1

fig.5.2 Root locus for example 5.1 shown on S_

fig.5.3 Root locus for example 5.Z2.

fig.5.4 Root locus for example 5.3.



