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Abgtract

The controllability and ootimal control problems
for distributed systems defined on compact mani-
folds is considered and particular emphasis is

placed on compact orientable surfaces .



(1) Introduction

The state-space theory of the control of distributed para-
meter systems defined in Euclidean spaces (for example , ths
heat flow problem on a one-dimensional bar , wave motion in
three dimensional space etc.) is now well known and many papers
and texts have appeared in the literature (see , for example ,
Lions (1971), Balakrishnan (1976) , Curtain and Pritchard
(1978) and Banks (1983) ). The freqency domain methods for
such systems are also currently under investigation ( Ranks
and Abbasi-Ghelmansarai (1983)) and we are soon likely to havs
a fairly complete (linear) theory for systems of this type
Problems which do not seem to have been considered before
are those relating to partial differential equations defined on
compact manifolds (for example , heat flow on a spherical or
toroidal surface , and , perhaps more fancifully , weather
patterns on the surface of the Earth ). We shall cosider , in
this paper , the general control problem for such systems via
the thoery of vector bundles on compact manifolds , and generalise
controllability theory and the linear quadratic regulator problen
with particular reference to compact orientable surfaces of
genus g
In sections 2 and 3 we shall present an introduction to
vector bundle theory and partial differential operators on
manifolds , for readers who may not be familiar with these
concepts . A more extensive treatment may be found in Wells {1980).
In section 4 we consider parabolic evolution equations on a
compact manifold and in sections 5 and 6 the general controlla-
bility and optimal control problems are discussed . Finally ir
section 7 some aspects of the theory are exemplified for the

sphere and torus



(2) Vector Bundles on Compact Manifolds

In this section we shall briefly review the theory of vector
bundles on a compact differentiable manifold X which will be
required in the sequel . The differentiable functions on X will
be denoted by E€(X) , and X will represent R or €

Definition 2.1 A differentiable K-vector bundle E of rank r over

a differentiable manifold X is a differentiable manifoli E
together with a differentible map #:E -+ X such that

A
-1 y . .
=n “(x) , xeX is a K-vector space of dimersion =

(1) EX
(i1) VM xex , da neighbourhood UX of x and a homeonorprisn

h: ﬂ'l(UX) > UXfo

for which
h(E.) C{x}xK* ,

% : L ‘ 5 .
wd h™ = poh:Ex->K is a vector space isomorphism , where p is

] 1

the projection on K. (hX,UX) is called a local trivialisa®

For two local trivialisations (ha’Ua) s (hB’UB) the maps

U n s i
208 U, UB-+GL(r K) given by
ae X Xy~1l 1 T
gaB(X) = hao(hB) il

are called the asgsociated transition functions

Conversely , if differentiable transition functions g are

given then we can construct a vector bundle n:E > X by defining

B =%anXKr (disjoint union )
where (Uu) 1s an open covering of X , and then setting
o = E/” y

where ~ is the relation
(x,v) ~ (y,w)
iff



y=x and W:guB(X)V

We can use this construction to define the tensor product

of vector bundles m :E » X , HY:F + Y (which we shall need for

X

the generalisation of Schwartz' kernel theorem later ).

if

Eap B ab” "a b

in fa

‘)

:U&’WU #GLLr: K} » b 2V 0V, * Ll

+r e

are the associated transition functions then we define thre

functions

faB,ab:(Ua“Ug)X(Va“Vb) > GL(rs,%)

fuB,ab - ga8® hab

These can then be verified to be the transition functicrs

a vector bundle TTX@TTY:E@F > XxY with fibre E_@

(x,y)

The tangent bundle over a differentiable manifola ¥ ¢

dimensgion n is the bundle

m:T(X) = M T (X) » X
xeX =

where TX(X) is the tangent space to X at x . In terms

4

coordinates , TX(X) has basis {8/8x1,....,8/8xmf

TiT(X) = U T (X) > X,
xeX %

where Ti(X) is the dual space of TX(X) , is called
bundle and has local basis {dxl,....,dxn} dual to
v ()

If EXEIR for each xe X then E is called 3 real

3 o
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The bundle
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More generally , if
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X
—— - ,/
NG B , o

Tg{x) = TX(X)®....@TX(X)@;T;‘;(X)@...@T"*(X)

r terms s terms

then the bundle with fibre Tg(x) is the bundle of tensors of

type (r,s) on X (cf. Kobayashi and Nomizu, 1963) . A Riemannian

metric G on a compact manifeold X is a tensor field { 1.8: B
section of the tensor bundle ) of type (0,2) . Locally ,
G = Zgijdxi®dxj "

Similarly we define the exterior product bundle APT* (%)

-~
~ £
o

order p with fibre
p-)(—
A TX(X) .

Definition 2.2 An Hermitian vector bundle E is a vector bundle

@ - .
with a C assignment of an Hermitian inner product < z to

each fibre EX

Definition 2.3 A section of a (differentiable ) vector bundle

m:E+>X is a differentiable map s:X +E such that WOS:IX

The space of sections of E is denoted by ¢£(X,E) , while the
space of differentiable functions on the set X is denoted F (X)

Note that if U is a coordinate neighbourhood we have , locally ,

e(u,E) > [e(u)]®

where p is the rank of E

If E is an Hermitian wvector bundle with inner product <.,.7os

L

then we define an inner product on (X,E) by

<g,m>g = I <g(x),n(x)>pdu g,ne &(X,E)
X il

where dy dis a volume measure on X given locally by

duy = p(x)dxl....dxn ,

o=

where p(x) may be taken as |detgij(xﬂ in the case of a



Riemannian manifold . If X is oriented and of dimension n then
we can define a volume element by
v = *(1)e £(X,A"T¥(X))
where * is the usual Hodge star operator . (Note that
£(x, 0977 (1)) = E(LR)
i.e. the real line bundle .)
If we consider the case of real bundles , then we can define

a particular Hermitian inner product on ApTi(X) by
Sty =
b 1 <$,11)>Xv

and hence an inner product on &(X,APT (X)) by

<O, > = J or¥y (2.1)
X

Then if d is the exterior differential opserator on E(X,APT;(X))

we define d to be the dual of d with respect to the inner

product (2.1) and we let
A= dd” + da%a
be the Laplacian on (X, APT* (X))
Note that
d* _ (_1)n+np+l*d* ,
where n 1s the dimension of X .

We now finally introduce the Sobolev spaces of sections &(X,E)

of a vector bundle E on a compact differentiable manifold X . Let

o "
{U2’¢R}ls£sa be a finite open cover of ¥ such that the maps ¢2

are local trivialisations of E . Then we have the diagram

¢ Ll
P A
)
by
0, i

where ¢{ is a local coordinate system on U ., Hence we have the

diagram of sections



and we write EQ= ¢;(S£) . However , E(EQXCk) = [E(ﬁl}]k

( Gk—valued differential functions on U, ) and so
3

TS

b, ¢+ E(U,,B) —> [&(T,)]F

If {Di}lsisu is a partition of unity subordinate to {Ul}

define

where ||.||S RO is the usual Sobolev norm for differentiable
¥

funections f:Bn —_— Ck , l.e.

el = S18(y) 121+ ]y]?) ay

n
s,R

where 2° is the Fourier transform

H°(X,E) will denote the completion of £(X,E) in the ||.|| .
s,R

norm

3



(3) Partial Differential Operators and the Generation of Semigroups

on Compact Manifolds

Let E and F be Hermitian vector bundles over a compact manifold
X , and let the C-linear map

L:E(X,E)—— Z(X,F)

be a differential operator of order k from the space of differen-

tiable sections of E to that of F . Then in terms of local trivial-

isations there is a linear partial differential operator L such

that
~ p ij (84
I{f). = ¥ a-rD ", ¢ 1gi&qg .
1750 o ]
la]< Xk
where f:(fl,....,fp)e [¢£(U)]P . This means that the diagran
= L .
t(X,E)fU—"’t(X,FHU
L

[E(0)]P ——[t(U) ]9
commutes . Note that if L,gDiffk(E,F) (the set of all differential
operators from E to F ) , then L has a continuous extension
T: B°(E) —> 15 %(F)
If E = F we write Diff, (E)
We now recall the definition of the symbol of a differential
operator . If T (X) is the real cotangent bundle of X , then we
¥ A,
let T (X) denote T"(X) without the zero section . Then we define

the pullbacks of E and F over T (X) , denoted respectively by

3 +*
7E and n F , to be the bundles over T'(X) such that the following

diagrams commute

AL

T B #= B nF —_—

TTE 'W F :
; | "B il ﬁF
T
X
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If LeDiff, (E,F) , then Ok(L)E:Hom(W*E,ﬂWF) is defined by

k
Ok(L)(X,V /(i_ g-g(x)) f/(X)

where ge &(X) and fe &(X,E) are chosen so that

dg. =v , £f(x) = e ,

i
and eE:EX , (x,v)eT (X) (i.e. v is a cotangent vector at x )

£

(Note that in this definition , an element fe Hom(V,W) for

two vector bundles V,W over X is an £ -morphism f:V->1 which

preserves fibres and is linear on each fibre ; i.e. the diagran

V~—%>W

VAL

commutes . Hence , for each x€ X we can associste a linear
mapping

£ oV ——sW s

oM %

i.e. we can regard f as a map from X to \J 7.(V ,W ) . Now ,
Xx € X X
* WE 1
the section of m E —— T (X) over (x,v) can be identified

with E_ and so we may regard o (L) as a map

k

0, (L) : T (Y) —s U (B _,F )

8

o M

and this is precisely what has been done above .)

It follows from the above definition that Ok(L) is homogeneous

of degree k , i.e.

0, (L) (x,0v) = 00, (L) (x,v) , Y (x,v)eT (x) , c>0

Also , if we have

locally on USX , then it is easy to see that

0 (L) (x,v) = I A\ﬁx)iv



H
where v = Eldx1+....+€ndan:T (X) . Hence , the symbol of a

partial differential operator is just the principal polynomial
form familiar in classical elliptic operator theory . As a

simple generalisation of the well known criterion for elliptieity
we introduce

Definition 3.1 If L EDiffk(E,F) we say that L is elliptic if

the linear map
Ok(L)(x,v):EX ——
is an isomorphism for each (x,v) ETT(X) . (This implies that

p=q above .)

Recalling now the definition

<E,H>E = IX<g(x),n(x}>Edu , E,nel(X,E)
of the inner product on HO(X:E) = L*(E) , we define the dual L
of LeDiff, (E,F) by
<LE,H>F = <E£;L ﬂ>E i
and let

j{L = {£e&(X,E) : LE = 0}

(+ S 2
As usual ’j‘L denotes the orthogonal complement of\"\T in TL.UEY,

The following result can then be proved (c¢f. Wells,1980)

Theorem 3.2 Let Le:Diffk(E,F) be an elliptic operator

L
and suppose that TdﬂanKX,F) . Then there exists a unique
ge £(X,E) such that ge:ﬂi and L& =1 . Moreover , if LE:Diffk(E)

is self-adjoint (E=F) , we can associate with L an operator

L: BB —— 10(m)ni
k* "1 "L

which is bijective . ©

Note that }LL is finite dimensional . In the case of ths

classical theory of elliptic equations , of course , we usually
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have an elliptic differential operator L specified in an open
submanifold € of R together with boundary conditions defined
on 0ofl. Under certain conditions on these boundary values and
on the nature of the (n-1) dimensional manifold 32 , one can then
prove the existence of a unique solution of the equation

Lo = o ,

for Ve Lz(ﬂ) » say . Then , the subspace }LL introduced above
is trivial . The reason that\ﬂL+{O} on a compact manifold is

precisely because we have no boundary on which to apply boundary

conditions . Hence we have to factor out D{L to obtain uniqueness

of solutions
We now consider real vector bundles , so that k is even for

an elliptic operator . In order to prove that Lk defines a semi-
e -
group , suppose that TEHLfﬁ&(X,E) and let £&ef(X,E) be the unique

solution which is shown to exist in theorem 3.2 . Then let

{U2}15£$a be an open covering of X and $Q:U2 T R" be

local coordinates on UR . (This is possible for finite a since
the manifold X is compact.) Moreover we can clearly choose each

UQ so that BU£ is as smooth as desired . Then restricting £ and

T to U, we have

2 ?

where £,,T,€ [E(UQ)JP = [ﬁ(VQ)]p . Now let

gi= 2 g, ¢ [8lav)]P,

where 9/9v is the normal derivative to BVR . Then ii is the

unique solution to the Dirichlet problem

'1¢ E T9
. . (3.1)

Q>
<
(I



« Tl

for ¢€[8(V£)Jp . However , we know from classical elliptic theory

(Friedman , 1969) that this is equivalent to solving

s

Lt = Ti
8j¢ - (3.2)
avj

Also , if we define the operator A! with domain (V) a2 ()

A

by
1t =
AE¢ Lot

then we have that Ai is closed and the resolvent (AI-Ai)_l:LQ(UE)
-9-L2(Vg) exists for all Me€ in a sector
8y = {k:%ﬂ<<arg(A+82) < (3/2)r , some real 82}
and
Il (az-a0)"H] Cz (3.3)

dure (v, )) B
for some constant C2 . Hence , a similar inequality holds for the
operator A, defined by (3.1) with boundary conditions g§ , and

so we may regard (3.3) to hold also for A, . Note that the

: : o .
intersection of the sectors SR ﬂg 1 » contains a sector of the

same type which we denote by S . (This is , of course , dependent
on the compactness of X . It may be false for non-compact manifolds
It now follows easily that if A denotes the operator with domain

.ol
H*(E)nH[ defined by
k Fl
AE = L, g e HS(E)nH]

(there are no boundary conditions , of course ) , then A is a

sectorial operator with sector S . Moreover , if we let

kg) 8 H[l‘:(E)mJWLL

CLIT
[ i

b5 I RS (i R 3
APPLIED SCignee
Lv! s RS R =Y

LIBRARY

and in particular ,
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_\ L
L12) 2 %m)n ke,

then we have , for AeS ,
L

-1 # -1
[| (AT-4)""¢]] =z oo (AI-A,) 7€l
1L2(E) gy W % 2 LQ{UQ)
9
= I lOT-a) el
a:l L (Vq)
2
. C ’
g L % ”ElI 2 7o)
a=1 "IT[E] T O (V)
% #* '
< C E Han g4l
~  TTATET =l @ 4R 2w,
= c __llell,
1 + A L,°(E)
where C = max C2 . Hence ,
%
loT-0™, , < __¢©
L°(E) T +]A
for L B

It follows , therefore , by classical semigroup theory that

~

A generates an analytic semigroup on the Hilbert space Llé(E)

We shall denote this semigroup by T(t;E) or simply by T(t) if

the vector bundle E from which T is defined is clear

(4) Evolution Equations on Compact Manifolds

In this seoction we let
L:&(X,E) —> &(X,E)

Cellopt oo
be an R-linear\differential operator of order 2k (which must be

even) , and let
L2(E) —=L12(R) , D(4) = ‘HH(w)
be the sectorial operator associated with it in section 3 . Then

an equation of the form



s 1% m

3e(t) = AE(t) , &(t)e*1?(E) , te[0,7] , &(0) given
at

is called an evolution equation on 'LLQ(

=

) . Since A generates
a semigroup T(t) , classical semigroup theory implies that this

equation has a unique solution

£(t) = T($)&(0) , t>0 , £(0)e'LA(x)
Consider nmow the inhomogeneous equation
DE(H) = AE(t) + £(t) , £(0)e 17 (E) (4.1)
ot

where f is locally Holder continuous , i.e.

£(s) - f(s)HLLz(E)<<hlt-s!8

for some constants h,0 >0

Then we have the following well known result (Henry,lQBl):

Theorem 4.1 If A is a sectorial operator in LLz(E) which generates

the semigroup T(t) , f:(O,T)——*'LLz(E) is locally Holder cont-

inuous and fglk(t)”dt <@  for some P20 , then there exists a

unique (strong) solution & of the equation (4.1) given by the

variation of constants formula

E(t) = T(t)E(0) + fg T(t-s)f(s)ds

)

Corollary 4.2 If £:(0,7) —» Y*L°(E) satisfies
g

L
ey (t) - £4(o)l L2(V2)< hy | t-8

for each 2e{l,....,a} , where fg = f and Vo 1s a local

coordinate neighbourhood image in R"™ , then the conclusion of

theorem 4.1 holds . [
If £:(0,T)—> LQ(E) then we can write f = (fl’fg) , where

L 2(

£,:(0,T)—> L2(E) @ L2 (E)



- 14 =

and equation (4.1) can be extended to L2(E) by writing

B fE N C [ oVe (), /ey (8)

9t
£, (5) 0 0pE,(t) £,(t)

L
where (51,52)6 L2(E) - LLZ(E)-F LZ(E) . Hence , theorem 4.1 is

again valid if £:(0,T)—> L°(E) provided we extend the semigroup
12
T(t) from “L (E) to L°(E) by
T(t)e =(T(t)eq, &,)

where Ex(il,EE)ELz(E} . We shall continue to denote the extension

of the semigroup T(t) by the same symbol , since no confusion is

likely . The trivial extension ( A o) of A to L2(E) will also
0 0.

be denoted by A
In order to consider control which is applied on zero- or
one-dimensional submanifolds of X , it is necessary to consider
delta functions defined on X . For this reason we define the
following distributions on X (note that these are section-valued
distributions and D(X,E) denotes the seections with compact support):
(a) If xeX , we define , in the usual way ,

<6XO!¢> = ¢(XO)

where ¢e D(X,E)
(b) If Y is a smooth submanifold of X of dimension less +than

that of X , then we define
<Syrt> = oy ve (X, E)
where the right hand side denotes the section ¢ restricted

to the submanifold ¥ . Note that 6Y€ii(@(X,E)ﬁ®(Y,E})

Then we have the following generalisation of the familiar

result which states that the & -function belongs to H S@R") for

some 8 .
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Lemma 4.3 If Y is a submanifold of dimension m of the n dimensional

manifold ¥ , then

2

5Y53H«m'n)/2)"€(E)

for any €>0.

Proof If ye Y then we can choose local coordinates XyseeeesX in

n

a neighbourhood U of y so that Y is given by the equations

X4l = seee =X, 0= 0 .
Define the Fourier transform ?(E) = (2r) B _1<X’g>f(x)dx , for
x,€eR™ , in the usual way . Then
[| 6 [2 n = (2n) ?f (fexp(-1 ? x.£.)dx dx )2-
votl n-n-e,R P PSR A RO S
2
(1+ IgIZ)((m—n)/Q)-edg
n
_ -n 2 2\{(m-n)/2) -¢
= () (areR 4 ..+ £R) .
< (2m) n . s de ,
j=m+l (1+€2)%+e/(n—m) J
J
< 5
m
since AjeXp(-l.§lngj)Xm"'de = 6€1’-.-,€ . The result now
j= m
follows by using a partition of unity . 0O
We can now consider equations of the form
2e(t) = AE(t) + Bu , (4.2)
ot
where A is a sectorial operator with domain D(4)C L2(E) and
B:U—=W
for some Hilbert spaces U,W such that
(1) W 2R(B)2 L?(k)
(4.3a)

(ii) Bed(U,W)

j=m+tl

dg .

o



Theorem 5.1 The system (5.1) is approximately controllable on

[0,t;] 4if and only if

B*1* ()€ = 0 for t e [0,8,] ,£eL?(R) .

implies =0 . (We have identified L?(E) with its dual.)

Since A has compact resolvent on LQ(E) there are a countable
number of eigenfunctions (or , more precisely , eigensections )

¢; € L2(E) of A corresponding to eigenvalues Ai » each with finite

multiplicity , and we may write

n.
1

AE = I A I <E¢,.%0,. .
il " §= T

Moreover , the semigroup generated by A is given by

At
g

i

e B

"T(tlE= I e

SE, 0.0, .
18 ] +J

1 1J

as shown in Dunford and Schwartz (1963)

Consider now the systenm

dg(t) = Ag(t) + Soult) (5.2)

dt
where A is a self-adjoint operator defined in L2(E} s, YEX is
a differentiable submanifold of X of dimension m and u(t) eR

This system is of the form (4.2) where

B:R ——= HS(E) , where s = m-n-¢
2

To find the dual of B note that

Q a
<n,aYu>H_S .8 5 (nlgemdey|yepglyde oiiiae”

where we have chosen local coordinates ¢" in each neighbourhood

U, of a covering of Y together with a partition of unity {py,t,

so that locally Y is given by ¢ = ¢2 = w6 4 = ¢m = 0 in each
neighbourhood . Hence ,
<n’6YU> -8 .8 uln Yqu
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where qu is a measure on Y . (Of course , if Y is zero dimensicnal,
3
i.e. a collection of points , then 6Y is just the evaluation map

at these points i
Hence , if A is self-adjoint , then

At
1
e

1 J

il
B T(t)e =

> 8
T e

i 2L

Similarly , 1f we extend the system (5.2) to the case of m contr-

ollers on the submanifolds Yl"""Y ; 1.e. the system

m
m
de(t) = AE(t) + I 8y 4. 0B (5.3)
at i=1 *1 1

then it is easy to see that
" C ALt
B*r(t) =J :

The next result follows easily from theorem 5.1.

Theorem 5.2 If the submanifolds (Yk)lg Kem &F° points ( i.e.

O-dimensional submanifolds ) P l1<kg<m , then the system (5.3)

is approximately controllable if and only 1f the matrix

Bj_ = d)il(Pl) LU (bil(Pk) \\ (5.4)
}
\osn (Py) eennns ¢y (P
i i
has rank 0, for each 1>1 . In particular , if each n, = 1 , then

(5.3) is approximately controllable with a single controller at

the point P if and only if ¢, (P) £ 0 for each 1> 1 , where we have

A
written ¢i = ¢il . O
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We shall now consider the case of controllability of (5.3) on
a compact orientable manifold of dimension 2 , i.e. a (Riemann)
surface . Let us first recall that such a manifold is topologically
a sphere with g handles attached (Stillwell , 1980 ) , and can be
obtained from a plane polygon and its interior by identifying
edges as shown in fig.5.1. (This is the 'normal form' of a compact
surface of genus g >0.)

If we regard the surface as a sphere with g handles , then the
edges ai,bi of the polygon appear as latitude and meridian circles
on the surface as in fig. 5.2.

Lemma 5.3 If X is an orientable surface S of genus g and
°(

A:Lz(E) ——> L°(E)

is a differential operator on X with analytic eigenfunctions b,

(1 §1<») then for any system of defining cycles al’bl""’ag’bg

of 5 there exist an infinite number of points Pj arbitrarily close

A

to C = a,ub a ubg such that @i(Pj) + 0 for each i,]j

a,uby .... g
Similarly , there exist an infinite number of one-dimensional

submanifolds (with boundary ) Yj such that
ij ¢iquj + 0

Proof Let N be a neighbourhood of C in S and let PeN . Then for
any neighbourhood M of P each ¢i can have at most a finite number

1
of zeros in MaN. Since there are only countably many b, s , the

first part follows directly . A similar argument may be used to
prove the second part . O

Then we have

Theorem 5.4 If al,bl,....,ag,bg is any set of generating cycles

of an orientable surface of genus g then there exist an infinite

of points P, or submanifolds Y. arbitrarily close to alubl ee. @ ub

=

g
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such that the systems

E(t AE(t) + 2 w6 ) *
t i:l§Pi -

ol joF

and

AE(t) +

. 8 ui(t)
i

¥
1.71

jol] fon
p M8

Elt
i

are approximately controllable .0Q

(We just note that invertibility is generic and so the points
Pi can be chosen so that the matrix (5.4) is invertible , for
k =n., .)

L
Of course , if the multiplicities n, of the eigenvalues Ai B

A are bounded then we would require only a finite number of

controllers .

(6) Optimal Control of Systems on Compact Manifolds

In this section we shall consider the linear-quadratic problem

for the system

£(t) = T(£)E(0) + S T(4-3)Bu(s)ds (6.1)

with the cost funetional
J(u) = <g(T),Ge(T)> 5
L=(E)

+ Ig (<E(t),ME(t)> b <u(t),Ru(t)>ddt (6.2)

L2(E)
where M and Gaﬂ(LQ(E)) are non-negative self-adjoint operators and
ReZ(U) is a positive definite self-adjoint operator . It will be
assumed that the conditions (4.3) hold for some space W . Then
the optimal control for the system (6.1) with the cost functional
(6.2) (defined on the Hilbert space L°(E) ) is well known (Curtain
and Pritchard ,1978 ) and is given by

u® = -R"1B q(4)E(4)

where Q satisfies the inner product Riccati equation



.

d <Q(t)h,k> + <Q(t)h,Ak> + <Ah,0(t)k>

dt
(6.3)

= <Q(t)BR™IB¥Q(t)n,k> - <Mh,k>
where Q(T) = G and h,k €D(A) . Note that Q(t)el(W,L°(E)) . We
shall need the following generalisation of Schwartz' Kernel
Theorem (cf. Treves , 1967):
Lemma 6.1 If X,Y are compact manifolds and E,F are vector bundles
over X,Y respectively , then we have
D(XxY,B@F;2) 2D (D(Y,F);D (X,B:2))
for any topological vector space Z . Here ,
D'(X,8:2) =L D(X,E);2) .
Proof This result follows easily from the classical Kernel Theorenm
by localisation and by application of the well known vector space
isomorphism
Hom(Hom(M,Z),N) = HoméM@N,Z)

K K

for vector spaces M,N over K. n
Hence , with any continuous linear map Ln%(Y,F)*—>JY(X,E;Z)
¥
we associate a distribution KEQF(XXY,E@F;Z) which satisfies

<K, o3> = <Ly, o>

xF)

=1

where ¢ed(X,E) , ve D(Y,F) and ¢V is the map in O (XxY,
defined by

(oRV) (x,y) = o(x)@u(y)
As usual we shall write

(Ly) (x) = fYK(X,y)w(y)qu

where My is a volume measure on Y . It follows that we may write

(L) (x) =
B

([ -y

N e C AT D (E(Ry s eus X, ¥y neery )"

Vg

1 m

A
*

®B¢(yl,...,ym)p(y}dyl...dym

where VB is an open covering of Y with corresponding partition

of unity DB,¢B is a local coordinate system on VB and ¢g is the



induced map . Note that ,for simplicity , we have identified VB
with its image in R" . K is a gxr matrix of distributions on Vg,
and ¢ 1is an r dimensional vector function . ( We have assumed that

X and Y have dimensions n,n respectively and that the bundles have
ranks q,r . )

We shall apply the above remarks to the Riccati equation (6.3)
with E=F , B = 6Y for some submanifold Y of X and , for simpliecity,
G,M,R are identity operators . If A is self-adjoint on X and we
write

(Q()E) (%) = f4K(x,y,t)E(y)an,

for some digtribution K , then we have

S <{_8_Ii(x,y.t) t A K(x,y,t) + A K(x,y,t) + s(x-y)
XxX\L3t J

" ¥ X -
J'YK(x,yly,t)duY J&K(xly,y,t)duygh,%>duxxdux 0
(6.4)
K(x,y,T) = 8(x-y)
where XxX is the product manifold with product measure dUXXdUX .
AX refers to the operator A with respect to the 'variable' x and
6(x-y) is the distribution 5YEZIkXxX;E) where Y is the diagonal
submanifold of XxX . Also , XIY indicates that , in the integration,

x should be 'projected! along Y .

In order to solve (6.4) choose an open covering {U,} ,
itTlgig o

of X consisting of local coordinate neighbourhoods and let

s 1 +
{Vi}ls i< a be a refinement of {Ui} such that

(i1) VioVy =0 if %4
(1iii) vinvj is empty or an n-1 dimensional manifold with

boundary ,



< BT %

uw—-
(iv) X = U7V

(This is effectively a cellular decomposition of X.)
Then , if xl,y3 are local coordinates 1in Vixvj and K'Y is the
wi]

distribution K expressed in these coordinates , then X can be

chosen to satisfy

kI (x1,y9,t) + A KH(xb,y,t) + A Klj(xlny,t)+f(X‘—y3)
3t * Is

- S Gy lgst)and 1t (L el = o (6.5)
Kij(xi,yj,T) = 5(Xi'yj)
together with the boundary conditions
ki = gkt (6.6)
a(vixvj) a(vkxvg)
for all k2 for which
B(ViXVj)na(kaVE) + ¢

(7) Examples

In this section we shall apply the theory above to the genersl-
ised Laplacian A on the sphere and the torus . In the first example
we shall show that the heat flow problem on the sphere is not
approximately controllable with a finite number of point controllers.

Example 7.1 We shall consider the equation

d
3E = -AE + I &, u. (7.1)
3% i=1 Py ?

on H2(X,A2T“(X)) , for some points Pl"""Pd on the sphere . By

lemma 4.3 , 6P E:H-l_E(AZT#(X)) . Now , A2T;{X) is one dimensional
i

and generated locally by dxlmdxg « It is easy to see that , again

locally ,



G -

-Af = 32f + 32f dxlAdx2 .
2 2
9 X o X
1 2

We require to find the eigenvalues of -A on the sphere . However,
it is well known that , in the usual (non-global) coordinate systen

these are just the spherical harmonics

b m(e’¢) [2£+l (R-Iml) ]% g(cose}eim¢
“m (| m] )i

with multiplicity 22+1 for each eigenvalue 2(2+1) ,(c.f. Flanders,
1963) . The equation (7.1) is therefore not approximately controllable
at a finite number of points by theorem 5.2.

Example 7.2 In this example we shall consider again the heat flow

problem on the torus and show that on surfaces of genus greater than
zero , numerical methods are likely to be required for the sclution
of controllability and optimal control problems . In toroidal

coordinates (c.f Moon and Spencer , 1971) we have

V2¢= (coshn -COSB)B‘__ 1 gg) + (coshn -0058)282¢
2 d@8\coshn =-cosfH 3@ 2 2

a aésinhzn ow
Now V2 is negative definite and so to find the spectrum we put

v26= -X%%

and let

I‘D;H

(coshn - cos8)?0(8)Y(y)

Then we obtain the equation

2 5 . - _1?
o 1tB{|d @// «(coshn-cosB)® + 1l / ) = =k
d82 2 Sth n duv

ale) =_{—§ sin“g + 3 cosa(coshn cosf) }
4

where

3/2

g(a)

(coshn - cos@)
2

a

Hence ,



- 1 Eir = 22 s Say
Sinh2n
and
Y = Acos(fsinhny) + Bsin{Lsinhnu) .
Since ¥ 1is continuous at VY= 0,2m,4m,.... , we have

£sinhn = integer .

Moreover , we have

a%e + v(8)o = 0 (7.2)

d82

where
y(8) = 2% - @ - ¥
B ]

X
(coshn -cosB) = .

Equation (7.2) must have two linearly independent solutions depending

on & and k , say fl(G,k,ﬂ) , fz(e,k,z) and we must determine the

spectral values of k in terms of & from the continuity of 6 at
+(2n+1)n/2 . We shall study this numerical problem and the associated

controllability problem in a future paper

(8) Conclusions

In this paper we have presented a theory of controllability and
optimal control of parabolic distributed parameter systems defined
on compact manifolds . Particular emphasis has been given to the
heat flow problem on compact orientable surfaces described by the
Laplace-Beltrami operator . It has been seen that one is usually
led to numerical spectral determination problems in order to
determine controllability ecriteria .

Optimal control theory leads to local integral Riccati equations
which again must be solved numerically in order to determine the
feedback control . The numerical problems associated with this

theory will be examined in a future paper .
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