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ABSTRACT

Conventional methods of spectral analysis are unable to track
small but rapid, variations in frequency. The LMS algorithm used as
an adaptive line enhancer is found to track these signals, and provides
insight into mechanical and physiological effects of the human body when
analysing electrical signals obtained from internally and externally

placed electrodes.




Introduction

Spectral Analysis of biomedical signals is of considerable interest
in the investigation and understanding of the workings of human physiology.
The detection and resolution of frequencies which may be time-varying, due
to mechanical actions correlated to the electrical signals of the body, is
a major motivation for this analysis.

The analysis can be done by many methods, the standard ones being that
of Fourier Transforms and associated techniques. These methods have a
major drawback in that they require large quantities of data to produce
significant results. As a result, any variation in frequency, or pertur-
bation, can be smoothed out by the action of the algorithm, e.g. the FFT
where it will appear as a 'broad' spectral peak centred at the frequency
of interest, particularly if using zero padding.

As data from human patients cannot usually be obtained for long times
analysis methods using shorter-time-series are sought. This has the
double effect of being able to track any variation in frequency which
occurs, and can be performed over a shorter time than that required for
say an FPT.

Following earlier work in adaptive array systems (1) and geophysics(2)
a whole set of algorithms has been used (3) to resolve these problems,
the most attractive being that of Autoregressive (AR) Spectral Analysis.
These methods have not only been applied to biomedical signals, as men-
tioned above, but also a wealth of different algorithms have been developed
producing singificant results, full and detailed descriptions of which
can be found in several recent publications e.g. (3).

In this study an early developed algorithm, the least mean sguares
(LMS) gradient search method (4) has been used to provide real-time

analysis of biomedical data from both the human gastro-intestinal tract




and processed ECG signals providing so-called heart rate variability
(HRV) time series.

The IMS Algorithm

Developed in the early 60's by Widrow et al the advantage of this
algorithm lies in its computational simplicity and ease of guaranteed
convergence.

Consider the prediction of a data point from solely past data

% (k) =
%

Il o1

a, (k)=x(k-=2) {2.1)
1 b
where x(m) is the data series
{am(k}} is a coefficient weighting vectorm=1,2.... P
applied to {x(m)}
and
e(k) = x(k) - x(k) (2.2}
where e (k) is the prediction error. Considering the minimization of
e (k)

min[éz(k)l = min [{x(k) - é(k)}2] {(2:3)

by performing this minimization we will obtain the set of coefficients,

*®
a, £ =1,2.... P which are optimal in the mean-square sense. Thus

taking expected values
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and rewriting in vector notation 2.1 becomes
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\x (k-P) (2.6)

i.e. a vector of past data




a = [a,00,a, (k),...ap{k)] (2.7)

the coefficient vector.

Thus (2.4) now becomes
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and by defining
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which can be seen to be an autocorrelation vector, and
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which is an autocorrelation matrix
Thus we can rewrite (2.8) as
2 2 T T
= bt + -
Ele"m] = e[x"00] - 2p/a +A RA (2.11)
which can be seen to be a quadratic function in the coefficient vector Ak.
Taking the gradient of (2.11) w.r.t. Ak
= = 2P+ 2R A 2.12
vk k Rk k ( )
and by setting (2.11) to zero we obtain the optimum, Weiner, coefficient
vector
¥ =1,
= P 2.13
B = B By -
The IMS algorithm uses the method of steepest descent so that the coeffi-

cient vector Ak is updated by a change proportional to the negative

gradient - Vk'




Ak+l =A -p¥V (2.14)

An expression for the gradient can be found to be

Vk = - 2. ek) Xk (2.15)
and so the IMS algorithm is given by

1-\1{_’_1 = ZHC + 2 pe(k) Xk (2:16)

where p is a step size and determines the convergence of the algorithm .,

It has been shown (1) that convergence is guaranteed by setting

e By b B (2.17)

where Amax is the largest eigenvalue of the Toeplitz matrix Rk. It has

further been shown (5 that

>u >0 (2.18)

rx(o)p

x(k) x(k) = 02 (2:19)
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L
i.e. the signal power.
The predictor can now be viewed as an all pole adaptive filter taking
data {x(m)} and producing a white output {e(m)}.. (The output
will be white if the prediction is essentially correct).
The transfer function of this filter is thus an estimate of the PSD

of the signal

2
AT [ . . — (2.20)
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A simpler estimate which omits absclute gain knowledge but preserves

frequency information is given (5) by
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The denominator of (2.21b) can be evaluated simply by a zero padded
FFT yielding a correct result (no biasing) as all the information required
is contained within the data length of the FFT; the AR adaptive filter
coefficients can be viewed as forming an impulse response. This is then
the Adaptive Line Enhancer (ALE) (1).
Methods
It can be seen that the LMS algorithm has considerable computational
simplicity and is thus suitable for implementation on a real-time micro-
pbrocessor system. To this end a Texas Instrument FS990/4 Development
System, based around a TMS9900 1l6-bit microprocessor, incorporating 28K
words of memory, Analog to Digital and Digital to Analog convertors
(Analog Devices RTS-124X series) was employed. As a programming language
Texas Instruments Microprocessor Pascal (TIMPP) was chosen, the reasons
for this choice being three fold.
(i) Very high speed of operation is not essential with the
particular biomedical signals being used, sample periods
being as low as 1 second, hence a high level language can
be used for the obvious reason that the development time
to produce a working system is less.
(ii) TI MPP has its own real-time operating system which allows
‘concurrent' programming. This allows the LMS algorithm
to proceed every sample, the ALE operation i.e. FFT on the
zero padded coefficients produced by the ILMS algorithm and
display of such, at a different slower rate, and a user
interaction process for the control of the overall systen,
to appear to be all happening simultaneously i.e. concurrently.
(see Fig. 1).

(iii) The authors preference for the Pascal Programming Language (6).
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Digestive tract data were gathered from internal electrodes stitched
to the sevosal wall of the stomach and duodenum, and also from Ag/AgCl
electrodes (as used in heart beat monitoring) on the surface of the
abdomen .

The HRV data were obtained from ECG signals which were processed
to an analog form to give a 'beat-to-beat' variability signal. The
resulting variability was synchornized by an external thermal stimulus
applied to the patient at a set frequency.

Results

The results are shown graphically in figures 2 through 16. These
graphs are two dimensional representations of three dimensional data
thus :-
frequency is traversed along the horizontal axis while time (iteration
number) along the vertical axis. The triangles represent significant
amplitude peaks in the ALE,

The graphs were obtained from either a Tektronix 4010 terminal or
from a Hewlett-Packard 7225A plotter. Figures 2 and 3 show results
obtained from human duodenum data. In figure 2 a élear frequency component
at 0.2Hz " 1s seen as is one at 0.4Hz. 0.2Hz is known to be the elec-
trical frequency of the duodenum and superimposed on this can be seen
the perturbations, due to mechanical actions, occuring over 2-3 cycles
of data. The tracking of this signal is particularly good due to its
near sinusoidal waveform and high signal-to-noise ratio. The tracked
0.4Hz component is the second harmonic of the duodenum O.2Hz signal.

In Figure 3 again clear tracking at 0.2Hz is seen with very large pertur-
bations in frequency at several points lasting for 2-3 cycles of data.

No harmonic is detected here but a subharmonic component (0O.lHz) is
apparent as is a signal at 0.3Hz likely to be due to respiration of

the patient. The 0.1Hz component is possibly a beat frequency between



the duodenum and respiratory frequencies. Results from external elec-
trodes on the abdomen are shown in figures 4-7. A sample of the input
data to the algorithm from a surface recording is shown in figure 4 with
an FFT performed on this data length (512 points = 8 mins 32 seconds

of data) it can be seen from the FFT that a clear frequency component
of 0.05Hz is detected as are minor peaks, due to the fluctuations in
this frequency, on either side. Only a small second harmonic component
is shown on the FFT due to the scaling of the graph. Figure 5 shows the
ALE performed on the same data. Clearly a frequency of 0.05Hz is
detected known to be the frequency of the human slow-wave as are harmonics at
0.1, 0.15 and 0.2Hz. Some breakthrough of respiration is seen later

in the graph at 0.3Hz, as is a very low frequency component probably

due to thermal effects, which is also seen on the FFT. Perturbationsin
the 0.05Hz signal lasting 2-3 cycles are clearly seen on the ALE,

but are not visible on the FFT.

Figures 6 and 7 show the ALE performed on the similar data using
different lengths of adaptive filter. Again the 0.05Hz signal is clearly
detected along with harmonics, as are the perturbations due to the
previcusly mentioned mechanie¢al activity. The large number of extra-
neous peaks at the beginning of the plot shows the adaptive algorithm
"tuning’ due to a fairly low signal-to-noise ratio.

Figures 8 and 9 again show similar results on the data from a different
patient fox different filter lengths.

Figures 10 and 11 show spectacularly how the ALE can go wrong!
Figure 12 shows a sample waveform of the recording used for these graphs
and which was produced from internal electrodes stitched. to the
servosal surface of the gut. The signal is quite clearly rich in har-
monic content as can be seen on the associated FFT. The ALE in

L]

attempting to detect these frequencies produces spurious frequency com-




ponents in the ALE.

Figures 13 - 16 show ALE graphs performed on Heart Rate Variability
data, at external thermal stimulus frequencies of 0.025 Hz, 0.0S5HZ,

0.07 and O;l Hz respectively. Figures 13, 14, and 16 show clearly the
basic O0.1lHz HRV signal modulated by the stimulus frequency. The failure
of Fig. 15 to track clearly is due to the freguency of the stimulus not
being harmonically related to the basic 0.1 Hz rhythm. Occasional
breakthrough of respiration at 0.3Hz is seen in all these graphs. These
results agree with those produced by Kitney (7) using running low-pass
filtered event series (LpFES) spectra.

Conclusions

The ALE is particuluarly good at detecting sinusoids in white noise
and to some extent coloured noise. When the noise is harmonically rich
viz. figures 10, 11 (the signal harmonics can be regarded as noise here)
the ALE breaks down, as has been shown, as a tracker of the major, predo-
minant frequency. Other effects of noise can be seen in start—-up transients
viz. fig. 6,7 during the adaptive tuning period. Both of these can be
viewed in the following way initially the all pole filter will attempt to
place its poles equally around the unit circle in the z-plane. As tuning
continues and the signal is detected those poles due to the noise migrate
away from the unit circle and thus become less and less significant. With
harmonically rich signals. This does not happen as there is essentially
no one predominant freguency.

The choice of model order, P, and the convergence rate determined
by u the search step size affects the results obtained. Empirical rules
(8) seen to be born out by practical examples although recently (9),(10)
an attempt has been made to quantify.this for.the lattice - filter ALE.
These results although apparently good for pure sinusoids plus white

noise do not work for the biomedical signals under investigation here.
SHEFFiz-:

i
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when applied to the LMS/ALE combination. The quantification of choice
of model order, P, still has some way to go, and for the present empirical
rules seem adequate to produce good results.

As for u, which determines the convergence of the algorithm. This

can be decided using a modification of the inequality (2.18)

o

Y« T ¥ (o)p tliedo)
p:4
O <a <2 (4.2)

where y is adapted continuously on line dependent on o - a user entered
parameter and rX(o}. The signal power can be estimated on-line by several

methods one such being
2 2 2
o (k) =g (k=1) + (1-py) o (k) (4.3)

02 = rx(o)

The authors however prefer to use a sliding window method which estimates
oz(k) using the past model order number of samples by equation (2.19).
This can be viewed as a fixed length-moving filter whereas({4.3)is essen-
tially a low-pass filter. Both methods will track wvariations in signal
power strength, essential in real-time signal processing. The method
used 1s one of personal choice.

The time to adaption is governed by u and hence in our case o, and

it has been shown that the adaptive time, T, is given approzmately (5)

by
-1
Ta " Inllem ) (4= 4)
avg

where lavg is the average eigenvalue in the matrix R « this is equivalent
x

to

e,

- o m) Where O <q < 2- (4-5)

T

This on-line computation of pgiven o greatly aids the robustness of the
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LMS/ALE algorithm by always guaranteeing the convergence within a set
time as can be seen from the results.

The use of the LMS/ALE algorithm in real-time operation given

the results shown above leads to a possible clinical application in post-
operative care of patients (1ll) who have undergone abdominal surgery.
A portable system incorporating graphical display would aid greatly in
the detection of migrating myocelectrical complexes (MMC's) occurring in
the stomach using.surface and/or serosal electrodes, thus indicating a
return to normal electrical patterns of behaviour.

The use of the LMS/ALE algorithmon HRV signals should also aid in
the study of Thermoregulatory and other influences on heart-rate variability
where work may be done on-line instead of the present off-line work (7).
Use has also been made of ~ spectral analysis for the study
of Reynauld's disease (12), a particularly disabling disease of the cir-
culatory system of humans. On-line analysis by the IMS/ALE should be
able to detect this problem easily and quickly and also aid in monitoring
its progress under treatment. Further use of the LMS algorithm has been
made in obtaining parameter estimates for control systems in for example
adaptive or optimal control schemes (13). The inherent simplicity and
robustness of the algorithm should produce control algorithms which
could easily be continuously adapted.
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Figure Captions
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15.

16.

Flow chart for concurrent PASCAL adaptive filtering programms.

ALE tracking on serosal duodenal recording for subject H.

ALE tracking on serosal duodenal recording for subject D.

Time series data and FFT for surface recording for subject P.

ALE tracking for surface recording frém subject P.

ALE tracking for surface recording from subject H. using 25th order
filter.

ALE tracking data for Fig. 6 with 19th order filter.

ALE tracking for surface recording from subject D using 25th order
filter.

ALE tracking data from Fig. 8 with 19th order filter.

Incorrect tracking of serosal gastric recording from subject H2.
Incorrect tracking of serosal gastric recording from subject D.

Time series data and FFT for serosal gastric recording from subject

B2,

ALE tracking of heart rate variability data from patient GC thermally

stimulated at a frequency of 0.025 Hz.
ALE tracking as for Fig. 13 but stimulus frequency of 0.05 Hz.
ALE tracking as for Fig. 31 but stimulus frequency of 0.07 Hz.

ALE tracking as for Fig. 13 but stimulus frequency of 0.1 Hz.
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