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Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of
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Abstract

Perfectly matched layer (PML) boundary conditions are derived for finite-difference time-

domain analysis of acoustic waves within piezoelectric crystals. The robustness and ef-

fectiveness of the derived boundary conditions are demonstrated by simulating acoustic

wave propagation in the bismuth germanate material system—a system in which simple

absorbing boundary conditions cause instabilities. An investigation into the stability and

effectiveness of the PML is then presented in terms of the PML thickness and absorption

profile. A range of optimised absorption profiles were determined by finding the maxi-

mum permissible absorption within the stability limit of the system. In the optimised

case, the form of the absorption profile had little influence on the effectiveness of the

PML. However, in the unoptimised case the linearly increasing absorption profile was

found to be the most effective.

Keywords: Finite-difference time-domain, Acoustic wave, Perfectly matched layer,

Piezoelectric crystal

1. Introduction

The finite-difference time-domain (FDTD) method, introduced by Yee [1] in 1966

for simulating Maxwell’s equations, was first applied to the acoustic wave equations of

motion in piezoelectric crystals by Smith et al. in 2002 [2]. Since the solutions of both

these systems involve propagating waves, the method of truncating an otherwise infinite
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simulation domain around some region of interest (ROI) is critical in stopping reflections

off these artificial boundaries interfering with the physics being investigated. In 2006,

Chagla et al. [3] added absorbing boundary conditions to the acoustic wave problem by

adding an absorbing layer with a quadratically increasing damping coefficient to dissipate

the energy from any oscillations which reach the boundaries. Although this method

worked well in some cases, Chagla et al. showed that it does not remain stable for all

material systems.

Since it was first introduced by Berenger in 1994 [4], the perfectly matched layer

(PML) has been used extensively in FDTD simulations of electromagnetic waves. It may

be viewed as an analytic continuation of spatial variables onto the complex plane such

that any oscillating solution that enters the PML will be transformed into an oscillating

component with an exponentially decaying envelope [5]. Despite the ongoing interest

in development of the PML [6, 7, 8, 9] in electromagnetic simulations as well as its

application in both elastodynamics [10] and fluid dynamics [11], the PML has not been

applied to the simulation of acoustic waves in piezoelectric crystals.

In this work, we derive PML boundary conditions for the acoustic wave equations

of motion within a piezoelectric crystal by applying a complex coordinate stretching of

spatial variables in the frequency domain. The boundary conditions are then transformed

back to the time domain and discretised using the same interlaced mesh used by Smith

et al. such that both the ROI and PMLs may be solved using the same FDTD algorithm,

thereby avoiding any increase in computational complexity in the simulation.

The robustness and effectiveness of our PML implementation is demonstrated in the

following section, and is shown to be stable for a bismuth germanate material system

in which absorbing boundary conditions fail [3]. This is followed by a discussion of the

stability criteria for the discretised PML and a quantitative analysis of their effectiveness

with respect to their operating parameters as well as optimisation of those parameters.

2. Derivation of PML boundaries for the acoustic wave equations of motion

The equation of motion for an acoustic wave in a piezoelectric crystal is

ρüi =
∂σij
∂xj

for i, j = 1, 2, 3, (1)
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where u is the displacement of a particle in three orthogonal directions x1, x2 and x3,

and

σi = Cijεj + eTik
∂φ

∂xk
for i, j = 1, 2, . . . , 6; k = 1, 2, 3, (2)

is Hooke’s law for piezoelectric crystals, where σ is the stress, C is the elastic constant

tensor, eT is the transpose of the piezoelectric constant tensor, φ is the induced piezo-

electric potential inside the crystal structure and ε is the strain inside the crystal which

is defined as

εi =
∂ui
∂xi

for i = 1, 2, 3, (3)

ε4 =
∂u2
∂x3

+
∂u3
∂x2

, (4)

ε5 =
∂u1
∂x3

+
∂u3
∂x1

, (5)

ε6 =
∂u1
∂x2

+
∂u2
∂x1

. (6)

Note that the subscript of σ has changed from tensor notation in (1) to matrix notation

in (2), as in Ref. [12], so that both the wave equation and Hooke’s law may be expressed

using the Einstein summation convention.

The computational effort required for the simulation is greatly reduced by assuming

that the acoustic waves are of Rayleigh wave type, and therefore have no variation in

the direction aligned parallel to the propagating wave front. Taking this direction to

be along the x2-axis, all terms containing ∂
∂x2

may be set to zero. This reduces the

number of independent terms on the RHS of (1) to two, or in the summation notation

j = 1, 3, and in (2) the number of independent equations reduces from six to five as σ2

is not used, so in the summation convention i = 1, 3, 4, 5, 6. The summations for the

equations of motion and Hooke’s law remain the same throughout the rest of this work

so will no longer be shown. While the variation in the x2 direction is assumed to be

zero the displacement in this direction direction, u2, is not zero and therefore cannot be

discounted. The problem may be simplified further if the solution is restricted to one

particular crystal class such that many of the terms in (2) become zero due to symmetries

within the crystal’s unit cell. In the following derivation however, all terms within (2)

have been included to make PMLs applicable to all crystal classes and therefore to be

material independent.
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Since the acoustic velocity inside a crystal is slow compared to the piezoelectric re-

sponse, the induced charge displacement from the acoustic wave, ρ, is assumed to be

adiabatic and takes the form

ρ = −∇i · eijεj for i = 1, 3; j = 1, 3, 4, 5, 6, (7)

therefore allowing φ to be found by solving Poisson’s equation

∇ · ε∇φ = −ρ. (8)

In order to implement PML boundary conditions we split the second order time

differential by introducing an auxiliary field, v, such that (1) becomes

ρ
∂ui
∂t

=
∂vij
∂xj

, (9)

where the time differential of v is defined as

∂vi
∂t

= σi = Cijεj + eTik
∂φ

∂xk
. (10)

Transforming to the frequency domain, such that u(t) → U(ω) and v(t) → V(ω), we

obtain

−iωρUi =
∂Vij
∂xj

, (11)

and

−iωVi = Cijεj + eTik
∂φ

∂xk
, (12)

respectively, where ω is the angular frequency of the acoustic wave. We now introduce

the complex change of variables such that xi → (1+i ζiω )xi, where ζ has two components,

ζ1(x1) and ζ3(x3), which are the absorption profiles of the PML in the x1 and x3 direction

respectively, to give

−iωρUi =
1

1 + i
ζj
ω

∂Vij
∂xj

, (13)

and

−iωVi = Ci1
1

1 + i ζ1ω

∂U1

∂x1
+ Ci3

1

1 + i ζ3ω

∂U3

∂x3
+ Ci4

1

1 + i ζ3ω

∂U2

∂x3

+ Ci5

(
1

1 + i ζ3ω

∂U1

∂x3
+

1

1 + i ζ1ω

∂U3

∂x1

)
+ Ci6

1

1 + i ζ1ω

∂U2

∂x1

+ eTi1
1

1 + i ζ1ω

∂φ

∂x1
+ eTi3

1

1 + i ζ3ω

∂φ

∂x3
.

(14)
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Multiplying by (1 + i ζ1ω )(1 + i ζ3ω ) gives

−iωρUi + ρ(ζ1 + ζ3)Ui +
i

ω
ρζ1ζ3Ui =

∂Vij
∂xj

+
i

ω

(
ζ1
∂Vi3
∂x3

+ ζ3
∂Vi1
∂x1

)
, (15)

and

−iωVi+(ζ1 + ζ3)Vi +
i

ω
ζ1ζ3Vi = Cijεj + eTik

∂φ

∂xk
+

i

ω

(
ζ1

{
Ci3

∂U3

∂x3
+ Ci4

∂U2

∂x3
+ Ci5

∂U1

∂x3
+ eTi3

∂φ

∂x3

}
+ζ3

{
Ci1

∂U1

∂x1
+ Ci5

∂U3

∂x1
+ Ci6

∂U2

∂x1
+ eTi1

∂φ

∂x1

})
.

(16)

Transforming back to the time domain gives

ρ
∂ui
∂t

=
∂vij
∂xj

− ρ(ζ1 + ζ3)ui + αi, (17)

where the auxiliary field α has been introduced in place of the i
ω terms in (15), which be-

come time integrals when transformed to the time domain, such that the time derivative

of α is
∂αi
∂t

= ζ1
∂vi3
∂x3

+ ζ3
∂vi1
∂x1

− ρζ1ζ3ui, (18)

and
∂vi
∂t

= Cijεj + eTik
∂φ

∂xk
− (ζ1 + ζ3)vi + βi, (19)

where the auxiliary field β has been introduced in place of the i
ω terms in (16), such that

its time derivative is

∂βi
∂t

= ζ1

{
Ci3

∂u3
∂x3

+ Ci4
∂u2
∂x3

+ Ci5
∂u1
∂x3

+ eTi3
∂φ

∂x3

}
+ ζ3

{
Ci1

∂u1
∂x1

+ Ci5
∂u3
∂x1

+ Ci6
∂u2
∂x1

+ eTi1
∂φ

∂x1

}
− ζ1ζ3vi.

(20)

As identified by Smith et al. [2], the most natural choice of discretisation grid for

applying FDTD analysis to the acoustic wave equations of motion is an interlaced mesh,

with grid points interlaced in both space and time, as depicted in Fig. 1. Here, u and φ are

mapped to whole-integer values of x1, x3 and t, while v is mapped to half-integer values.

Applying the finite difference approximation, it then follows that a spatial derivative

depends upon the field values at ± 1
2 , which lie in between grid points. These midpoints
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may be taken as the average of their adjacent points, i.e. for a spatial derivative in the

direction x1 at the point (i, k)

∂v

∂x1
(i, k) =

v̄(i+ 1
2 , k)− v̄(i− 1

2 , k)

δx
(21)

where v̄ represents the average of the neighbouring points, i.e.

v̄(i+ 1
2 , k) =

v(i+ 1
2 , k + 1

2 ) + v(i+ 1
2 , k −

1
2 )

2
(22)

Figure 1: The interlaced mesh FDTD lattice shown for three half-integer time points.

As is normal with FDTD analysis, the instantaneous values of time-dependent vari-

ables are sampled midway between the time steps used in evaluating time-derivatives,

such that (17) and (19) become

ρ
ui|t+1 − ui|t

δt
=

[
∂vij
∂xj

− ρ(ζ1 + ζ3)ui + αi

]
t+ 1

2

, (23)

and
vi|t+ 1

2
− vi|t− 1

2

δt
=

[
Cijεj + eTik

∂φ

∂xk
− (ζ1 + ζ3)vi + βi

]
t

. (24)

However, this implies a dependence on u and v at time steps between those to which

these variables are mapped (i.e. ui|t+ 1
2

in (23) and vi|t in (24)). This may be overcome
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by first noting that these terms are zero within the region of interest and therefore any

approximation that is made will not affect what we are trying to observe except possibly

increase artificial reflections from the boundaries, and second realising that the difference

between the spatial derivative at half time steps should be small provided that a small

time step, δt is used. We therefore make the assumption that, in (23), ui|t+ 1
2
≈ ui|t, and

in (24), vi|t ≈ vi|t− 1
2

and note that doing so does not produce a noticeable increase in

numerical noise from the PMLs in practice.

A similar problem arises when discretising the auxiliary fields α and β in time

αi|t+ 1
2
− αi|t− 1

2

δt
=

[
ζ1
∂vi3
∂x3

+ ζ3
∂vi3
∂x1

− ρζ1ζ3ui
]
t

, (25)

βi|t − βi|t−1

δt
=

[
ζ1

{
Ci3

∂u3
∂x3

+ Ci4
∂u2
∂x3

+ Ci5
∂u1
∂x3

+ eTi3
∂φ

∂x3

}
+ζ3

{
Ci1

∂u1
∂x1

+ Ci5
∂u3
∂x1

+ Ci6
∂u2
∂x1

+ eTi1
∂φ

∂x1

}
− ζ1ζ3vi

]
t− 1

2

.

(26)

However, here the values of u and v at the half time step may be taken as the average

of the adjacent time steps since they are already known, i.e.

ui|t− 1
2

=
ui|t + ui|t−1

2
, (27)

and

vij |t =
vij |t+ 1

2
+ vij |t− 1

2

2
, (28)

although we note, however, for simplicity, the same approximation as in (23) and (24)

may be used and in practice the PMLs still have the desired effect.

The simulation domain for time-dependent variables is terminated by hard-wall bound-

aries so that the simulation takes the form shown in Fig. 2. For φ, Neumann boundary

conditions are implemented. The hard-wall boundary condition is implemented on the

whole-integer grid points, mapped to the variable u, meaning that the outside edge of

the PML, and therefore the maximum value of ζ, occurs at the half-integer grid points,

mapped to v, immediately inside of the hard-wall boundary.

The above derivation may easily be applied to the 3-dimensional acoustic wave equa-

tions of motion. However, in that case two ( i
ω )2 terms appear within the equations in

the frequency domain, which become second-order time integrals in the time domain.

These terms must then be dealt with by introducing two additional auxiliary fields.
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Figure 2: Illustration of the simulation domain showing the PMLs at the edges of the region of interest

and where ζ is non-zero. Note that because ζ is zero within the region of interest the auxiliary fields α

and β are also zero here.

3. Numerical results

We present an example of a bulk wave propagating radially outwards towards PML

boundaries in the bismuth germanate (Bi4Ge3O12) material system. Chagla et al. [3]

previously showed that the use of boundary layers with quadratically-increasing damp-

ing coefficients led to instability in the simulated propagation of acoustic waves in this

material. By way of comparison, we show that our proposed PML equations provide a

stable and efficient means of absorbing incident waves.

The x1- and x3-axes of the simulation are aligned along the [1,1,0] and [0,0,1] crystal

axes respectively by rotating the elastic and piezoelectric tensors by 45◦ about the [0,0,1]

crystal-axis such that an acoustic wave will propagate along the [1,1,0] direction, as is

done experimentally with cubic crystals. The excitation frequency used was 1 GHz, as

in [3], making the spatial discretisation step, δx1 and δx3, 0.15µm (i.e., ∼ λ
20 ). The grid

size of the region of interest was set to 201× 201 points and the time step, δt was set to

25 ps observing the FDTD stability criterion [13]. The PMLs used were 10-points thick

(∼ λ
2 ) and the parameter ζ was increased quadratically up to its maximum stable value

of 1.58× 1010 rad s−1 as described in the following section.

The acoustic wave was excited by setting a 3×3 square in the centre of the simulation

domain to have a constant charge which was then oscillated sinusoidally at the excitation
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frequency for two periods and solving Poisson’s equation to find the potential profile

around this charge over the simulation domain. This potential profile was used as an

input to the acoustic wave equations of motion to launch a propagating wave. This

method of excitation was used firstly because it is more physically realistic than exciting a

component of the displacement since acoustic waves in piezoelectric crystals are generated

using an alternating potential, and secondly because excitations at a single point tend to

lead to instabilities caused by the change in sign of the spatial differential from the point

of excitation to its surrounding points. These instabilities manifest themselves as changes

in the sign of the solution from one grid point to the next such that the entire solution

appears modulated by a sawtooth wave with oscillations of the order of the grid spacing.

Fig. 3 shows the resulting acoustic wave propagating in bulk bismuth germanate, with

material parameters taken from [14], which is absorbed by the PML boundaries.

4. Stability and optimisation of the PML

The discretized PML equations will be subject to a system-dependent stability cri-

terion, much the same as the stability criterion for the unmodified equations within the

region of interest. Considering the stability criterion for FDTD analysis in two dimen-

sions [13]

vmaxδt =

(
1

δx21
+

1

δx23

)− 1
2

, (29)

where δt, δx1 and δx3 are the discretisation parameters in time and space respectively

and vmax is the maximum velocity within the simulation domain, it is clear that within

the PML layers extra terms will be added to this criterion which have a dependence

upon ζ (or more accurately a dependence upon the maximum value of ζ within the PML

since this represents the worst case scenario). It is important for the maximum stable

value of ζ to be found since the attenuation of a propagating wave within PML regions is

proportional to the value of ζ. Therefore, the effectiveness of the PMLs will be increased

if a larger stable value of ζ is used. From (29), it may be inferred that the maximum

stable value of ζ will have a dependence upon the discretisation parameters, δt, δx1

and δx3, as well as the material system being examined since vmax =
√
C/ρ where C

is the elastic constant in the direction of maximum velocity. Surprisingly however, the

9



maximum stable value of ζ also has a dependence upon the thickness of the PML as well

as how ζ varies through the PML. Although the derivation of universal stability limits of

ζ is challenging, insight may be gained into the effect of PML thickness and functional

forms of ζ by examining the stability limits numerically for a given system.

In order to systematically examine the maximum stable value of ζ we restrict its

functional form to

ζi(xi) = ζmax

(
|xi − xi,PML|

∆PML

)a
(30)

where ζmax is the maximum value of ζ inside the PML, xi is the position in the x1 and

x3 directions, xi,PML is the position of the boundary between the ROI and the PML and

∆PML is the thickness of the PML. The shape of the ζ function may then be controlled

using the parameter a, such that a = 1 gives a linear increase from zero at the inside edge

of the PML up to ζmax at the outside edge, a = 2 a quadratic increase and so on. The

case for a = 0 has been omitted since, once discretised, the PMLs cease to be perfectly

matched and therefore a sudden step in ζ produces sizeable reflections from the interface

between the ROI and PML which were found to be around two orders of magnitude larger

than the reflected waves with steadily increasing ζ values. The maximum stable value of

ζmax (with a given shape and PML thickness) was then found by using a bisection search

where the simulation was deemed to be unstable if after simulating 25 ns, by which time

the initial excitation would have been absorbed by the PML, the oscillations within the

simulation domain are larger than the initial excited acoustic pulse. Because instabilities

within the simulation domain grow exponentially this method finds the stability limit for

ζmax in the chosen system reliably. Figure 4 shows the maximum stable values of ζmax

found for a range of values of ∆PML and a for the bismuth germanate material system

examined in the preceding section.

To compare the effectiveness of the PMLs with different values of a, the amplitude of

the wave reflected back from the boundaries was measured. This was done by performing

a Fourier decomposition on the u3 component of displacement at a point next to one of

the PML boundaries over time in order to separate the reflected signal at the excitation

frequency of 1 GHz from the higher frequency transients, which exist behind the excited

pulse and come from the excitation being switched off suddenly after two periods. The

point used was central on the x3-axis and 40 points (6µm) from the inside edge of one of
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the PML boundaries perpendicular to the x1-axis to allow the two periods of the excited

wave to pass through the point before the reflected wave arrives back at the same point.

The top inset in Fig. 4 shows maximum amplitudes of the reflected waves normalised to

the maximum amplitude of the excited wave for different values of a and ∆PML. The

maximum stable value of ζmax was used in each case. For PMLs below 10-points thick,

ζ with a = 2 is the most effective although for higher numbers of points, particularly

above 20 points, all PMLs give similar performance.

Although the numerical analysis above provides a method of optimizing PML param-

eters for a given system, this may not be feasible for larger simulation domains, in which

much longer run times would be required. Ideally, the PML parameters could be found ab

initio for any system by applying a universal stability criterion. However, the derivation

of such a criterion is challenging, and as an interim measure a more conservative choice

of ζmax (i.e., much lower than those found for the example above) is likely to yield stable

simulations in a wider range of simulation domains. As such, we have also examined the

stability of the system considered above (using a range of shape parameters, a) when

ζmax has been restricted to the much lower constant value of 1× 1010 rad s−1. This value

of ζmax is equal to 1
4δt and since ζmax is roughly inversely proportional to δt, this repre-

sents a sensible choice for a stable value of ζmax that is dependant upon the simulation

parameters and the material system (as δt is material dependent). The bottom inset

of Fig. 4 shows the amplitude of the reflected wave for different values of a and ∆PML.

Here we clearly see that a = 1 has the best performance for PMLs thinner than around

20 points. This is because higher values of a give rise to smaller ζ close to the ROI, and

therefore the net attenuation of the wave within the PML is reduced.

If a similar stability analysis was applied to a 3-dimensional system, then a similar

trend for the stability of the PML would be expected with regards to its operating

parameters. However, since the stability criterion for 3-dimensional systems stipulates

that δt will be smaller if the three spatial steps are equal to the two in a 2-dimensional

system, and since ζmax should still be inversely proportional to δt, it is expected that

higher values of ζmax may be used.
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5. Conclusion

PML boundary conditions have been derived for FDTD analysis of acoustic waves

within piezoelectric crystals. The robustness and effectiveness of these boundary condi-

tions has been demonstrated in simulations of wave propagation in bismuth germanate—a

system in which simple absorbing boundary conditions have been previously shown to

cause instabilities. A numerical investigation into the stability of the discretised PML

equations with respect to the PML parameter ζ has been presented for the aforemen-

tioned material system, showing a dependence on both how this parameter varies within

the PML and the thickness of the PML. The effectiveness of the PML has been analyzed

in terms of the reduction in amplitude of the reflected wave from the boundary of the

simulation domain in the bismuth germanate system. It was found that any spatially-

varying PML parameter ζ yields the same PML effectiveness, provided that ζ increases

monotonically from zero at the edge of the ROI up to a maximum stable value, ζmax,

at the edge of the simulation domain. It would, therefore, be desirable to determine a

universally applicable analytical form of ζmax such that the PML effectiveness of any

system may be optimized ab initio. However, the exact form of the stability criterion for

the discretized PML equations may be challenging to find, and at present ζmax must be

found numerically for a given system. Since this numerical optimization may be imprac-

tically time consuming for large simulation domains, stable (but less effective) PMLs

may be realised by limiting ζ to a lower-than-optimal value, which may be estimated

from simulations of simpler systems. In this suboptimal case, we have shown that the

PML effectiveness is highest if a low-order (e.g., linear) spatial variation in ζ is used.

Similar trends for the performance of the PMLs can be expected in other material sys-

tems, although further theoretical analysis of the stability criterion will be required for

confirmation. Nevertheless, the presented boundary conditions will allow for accurate

and robust simulation of open-domain acoustic wave problems in piezoelectric crystals.
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(a) u1 at t = 2.5 ns
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(e) u3 at t = 2.5 ns

0 10 20 30

x1-axis (µm)

0

10

20

30

x
3
-a
x
is

(µ
m
)

-1

0

1

u
3
d
is
p
la
ce
m
en

t
(a
.u
.)

(b) u1 at t = 5.0 ns
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(f) u3 at t = 5.0 ns
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(c) u1 at t = 7.5 ns
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(g) u3 at t = 7.5 ns
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(d) u1 at t = 10.0 ns
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(h) u3 at t = 10.0 ns
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Figure 3: The u1 and u3 displacement components for the acoustic wave launched in Bi4Ge3O12 showing

how the wave propagates radially outwards and is absorbed by the PML. (Animations of the propagating

wave are included as supplementary material. Animation 1 for the u1 displacement and animation 2 for

the u3 displacement.)
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Figure 4: Variation in the maximum stable value of ζmax with ∆PML from 2 to 45 points (λ = 20 points)

and with the ζ shape factor a. (Top inset) The maximum amplitude of reflection from PML with

varying a and ∆PML using the maximum stable value of ζmax for each case, normalised to the maximum

amplitude of the excited wave. (Bottom inset) The maximum amplitude of reflection from PML with

varying a and ∆PML using a constant value of ζmax = 1 × 1010 rad s−1.
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