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ABSTRACT
The paper is concerned with deriving a dynamic model of a four-

degree- of freedom robotic manipulator. The equations of motion bf the
arm with respect to a non-stationary coordinate system are derived
initially. This analysis is then extended to a robot arm; and considera-
tion of inertial effects included. The dynamic model developed is useful
without modification for arm speed control purposes. However, further
work is required to include the effect of bending movements in the arm
links before the analysis is generally applicable in accurate position

control applications.
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Notation
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n n n

6 ,0 ,0
n n n

Fixed co-ordinate system

Moving co-ordinate system

Unit vectors in X,Y, and Z directions

Unit vectors in x,y, and z directions

Absolute displacement, velocity, and acceleration
ef the moving point

Absolute displacement, velocity, and acceleration

of the moving origin

Displacement, velocity, and acceleratioﬁ of the moving
point relative to O'xyz

Rotation, angular velocity, and acceleration of the
kinematic chain about the Y(or y) - axis, (rad, rad/s,
rad/Sz).

Total rotation, angular wvelocity, and acceleration of
the link n about the z-axis, taken from xz- plane.
Rotation, angular velocity, and acceleration of the link
n about the axis through the centre éf the joint n.
Rotation, angular velocity, and acceleration of the
absolute displacement vector, ;} about z-axis.

Angular velocity and acceleration of the moving co-
ordinate system relative to OXYZ, (rad/S,rad/Sz) .
Component of absolute displacement, E} in x |Y(or y)| -
direction.

Mass density of link n, (kg/m)

Mass of motor n, (kg)

Length of link n, (m)

Distance between the centre of the gravity of the link

n and joint n, (m).




Yﬁn

in

Acceleration due to gravity, (m/SZ)
Acceleration of the centre of the gravity of
link (motor) n in x-direction.

Acceleration of the centre of the gravity of
link (motor|n in y-direction.

Acceleration of the centre of the gravity of

link (motor) n in z-direction.

c.G.n.(C.G.m.n.) Centre of gravity of link (motor)n.

Moment of inertia of the link (motor)n about the
z-axis.

Moment of inertia of the link (motor) n, about the y-
axis.

Moment about z-axis of joint n.

Moment about y-axis at joint n.




INTRODUCTION

In the past few years, many scientific, technological ,economic,
and humanitarian considerations have brought forth the need to augment
or replace human manipulative capabilities by 'intelligent' Computer-
Controlled Manipulators (CCM). The demand for such general purpose
manipulators has originated primarily from the need to automate indus-
trial processes, such as in the automotive industries. Explorations
and operations in space or deep sea and sophisticated handling require-
ments in nuclear reactor or other hot laboratory environments are two
of many challenging application domains for more automonous control of
mechanical arms. Other application areas are comprehensive industrial
automation for increased productivity and more dextorous prosthetic aids
for the handicapped [L],[Z].

At present, the use of robots for accurate assembly of mechanical
parts is still at the beginning of its development. Current industrial
robots, even the most accurate, are unable to perform most of the desired
assembly tasks in an open loop manner due to the rigid structure of the
part-bearing mechanisms[3].

The need for the quantitative modelling of a robot and the tasks it
is to perform, in measurable, calculable and controllable terms has been
suggested before [4]. This type of modelling relies on physical laws,
empirical rules, and mathematical techniques, and this paper is an
attempt to formulate one such model for a four link - four joint mechani-
cal arm (Fig. 1.1).

In section (2) the general formula for the absolute acceleration of
a moving point in free space is derived [5].This is extended in Section
(3), where general formula for the torgue applied to a joint is derived

in terms of inertia and masses.







MOTION REFERRED TO A MOVING CO-ORDINATE SYSTEM

Suppose that the position of a point P(Fig. 2.1) is determined
with respect to an xyz co-ordinate system, while at the same time the
origin of this co-ordinate system moves with a translational velocity
R and an angular velocity w with respect to a 'fixed' XYZ co-ordinate
system.

We shall now derive a general expression for the acceleration of a
point referred to a co-ordinate system which itself is moving.

In the analysis to follow, we shall always measure the vectors E
and ;-in the fixed XYZ system. The unit vectors I} E}and ;-always have
the direction of the moving co-ordinate axis, while the unit vectors

E],j', and E“, always have the direction of the fixed co-ordinate axes.

We also note that

ixi = 1'% =3x3 = 3'x3' = kxk = k'xk' = 0

Ek§-= x and Eki-= =k

I'x—j-' = k'and a_'xi_' = - k'

jxk = i and kxj = - 1 (2.1
';'XE“ = i'and E“x?' = - i

kxi = 3- and ixk = - 5

k'xi' = j'and i'xk! = = 5“

By the absolute displacement Y of the point P is meant the displace-
ment measured with respect to the fixed XYZ system. By differentiating

this absolute displacement we obtain the absolute velocity r and the

absolute acceleration r of point P.

r =Xi' +Yj' + Zk'

X' o+ ¥3' + zk' (2.2)
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During these differentiations, the unit vectors I],E“, and k' are treated
as constants, since neither their magnitudes nor their directions change
with time.

If we wish to express the absolute motion in terms of motion measured
in the moving xyz system, we have

r=R+4p=R+xi+yj+zk (2.3)

where the directions of the E}E} and k unit vectors are known with
respect to the fixed system. However, the unit vectors are changing
direction with time, since they rotate with the xyz system. 1In taking
derivatives ; and ;, therefore, the time derivatives of these unit vectors

must be included.

Differentiating (2.3) with respect to time gives:

SR+ xi+txi+y]ty]+ 2k +zk (2.4)

Kol

The derivatives of the unit vectors are given by

= xi

e

j - 53
k = uxk
So that

x.'=1'?.+>'ci_+jr;+é£+ax(xi—+y;j—+zg)
The quanitity (iz-+ §§-+ éi} represents the translational velocity of

the point P, measured relative to the moving co-ordinate system, which

we shall call the relative velocity 5. Using this notation, the expression

for r becomes
fr=R+p+wxp (2.5)
The acceleration of P may be found by a second differentiation of

equation (2.4):

¥ = R +(xityitzk) + (xi+yi+2k) + wx(xi + yj + zk)
+ ox(xi + yJ + zk) + wx(xi + v + zk) (2.6)

Writing (;I-+ §§-+ EE3 = 5 , which we call the relative acceleration of

the point P, the expression for ¥ can be written as




_Sa_

(2.7)
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The first three terms in this expression for r represent the absolute
accelerations of a point attached to the moving co-ordinate system,

coincident with the point P at any given time. This may be seen by

noting that for a point fixed in the moving system é =p =0. fThe

fourth term p represents the acceleration of P relative to the moving

system. The last term 2u x ; is sometimes called the acceleration of
Coriolis, after G. Coriolis.

The equation of motion for a mass m in terms of the moving co-
ordinate system may thus be written as

F=mR+ mak(akﬁ) + mox E'+ mp + 2m6k6 (2.8)




APPLICATION TO A FOUR-LINK ROBOT ARM

In this section we consider the movement of a kinematic chain, that
of a robot arm with four links and four joints. Jointg one (that between
links one and two), two (between links two and three), and three (between
links three and four) rotate about z-axis and joint four (between link four
and the base) rotates about Y(or y)-axis, as shown in Figure 3.1.

With angle ¥ (rotation of joint four) fixed at Wl, the movement of the
arm is limited to the rotations of joints 1,2, and 3 only, and the end
effector of the robot arm moves in a plane perpendicular to the XZ-plane,
namely the xY-plane. x-axis is the projection of the arm on XZ-plane.

Figure (3.2) shows the general situation in which ¥ can take any value.
In this case we have a co-ordinate system oxyz (or oxYz) which rotates
about axis Y(or y) as angle ¥ changes. The changes in angles of joints
1,2, and 3 will not affect the state of joint 4 {angle ¥). Therefore we
have a fixed co-ordinate system OXYZ and a moving cne oxyz, and the analysis
of section (1) can be applied as follows.

Let us consider figures (2.1) and (3.1) to (3.4). Because the origins
of the fixed and moving co-ordinate systems have been shown above to be
coincident
§=1;=R=6-

;l the rotation (angular velocity) vector, is due to rotation of joint 4
(angle ¥) about the Y (or y) - axis

v 3

e |
I




also
E-= r = r.cosy.I'+ r.siny. E
; = (r.cosy + ry.siny)i + (r.siny + ry. cosY)Jj
g = (r.cosy - fy.siny - ry.siny - ry.siny - r??cosy)f +

(f.siny + f%.cosy + i%.cosY + ry.cosy - r??siny)?

Using equations (2.1)

w x E-= —r?.cosy.E

ey oo . 2 —

w x (wxp) = - r¥ . cosy. i

W x E-= - r¥. cosy. k

w x 6 = - ¥(r. cosy - r%. siny)k

20 x é = 2@(r§. siny - i;cosY)E
Hence from equation (2.7) we obtain
; = [(E—r&z - r@z)cosy - (zy + 2£%)sin¥} i+
[(E-r&z)siny + (ry + 2£y)cosY] 3+ (3.1)

[2r+@.sin¥ = (Z@f + r¥)cos Y]E

From figures (3.1) and (3.3) we get

. + i +
X L. .cos Bl 22 cos 82 L cosB

1 3 3
&= .81 + i + i 4+ E
v 21 s:LnBl 22 51n82 23 51n83 24 (3 2»
where
Hi =8, ¥8,% by
& -
32 82 83 (3.3}
83 = 63
Let
64 = ¥ (3.4)

By differentiating equations (3.2) to (3.4) with respect to time
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X = £181 sin 31 %,8, sing, %385 Sing,

e
Il
o
O

1 cosBl + 2232 cosg, +g333 cosg 4

B =6, +6 (3.5)

2 "% 793
B, =6,

B =¥

% J

By differentiating equation (3.5) with respect to time we get

. .o .2 e B =2 T e 2
X —ElBl SlnBl 2 BlcosBl 228231n82 2282c0582 138351n83 2383c0583

1
9 é cosB. - & é2 inB_+4 é cosf, -% é2 inB, + £ é cosB., - 2 ol ]
g 1 V1P1SHRR TRESEOSE, TR B SINE,T 4B g~ LBy S8 Ey

L=
1l

2 2 3
83 = 83
84 = Y : (3.6)

We also have
r =x +y (3.7)

= X,
tany - (3.8)

Differentiating (3.7) and (3.8) with respect to time

2rr = 2xx + 2yy

_'E- = M (3_9)
r
Ysec®y = LEYE
X
2 2 2 2
2 2 +
sec v = l+tan vy = 1 + z§-= i 2y = Ef
X X X

o gy X0 (3.10)

y

.
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Differentiating (3.9) and (3.10) with respect to time

(
L

. . . 2 . o 2 . . .
r =5 (xx + x +yy +y )r - (xx + yy)r

r

B 1 - -2 . w2 . . 2
r=>= (xx + X +yy +y)r - (xx + yy)
r

IH

- ' . . 2 . . .
Y= 73 (yx + yx - yx - yxX)r - (yx - yx) (2rr)

. l ' o 2 . . . .
¥ =5y (vx - yx)r~ - 2(yx - yx) (xx + yy)
r

.. .. 2
B = (yx - yxX)r

C = (xx + vy)

D = (xy - yX)

Substituting (3.13) in equation (3.1) and noting that

%
cosy = ;
siny='§—
i = A D )
« w ] o e T
r¥r r
g
A D Y
S = =+
{f 3 Y
r r
{ = Dx L - C x
r b
Let
2
E=A-D
and
F = 2(Dy - Cx)

24
3

[

%

| 8o

r r

3

K

¥ - r¥x E-} k
r

2 C, D
- 5D + 200 ()

r

(o) + 20 | 21T+
xr

(3.11)

(3.12)

(3.13)

(3.14)



Then

Ey + Bx ? o+

1
=}
»
|
+

P 1
r = —4(Ex - By)

a1
at
~

= B ¥ = ik (3.15)

Equation (3.15) is the general formula for the acceleration of any
point on the arm. We can now formulate the forces and therefore moments

acting on joints and centre of gravity of links. Consider figure (3.5)

= (I + I )B + g 2. d | (a + glcosB. - a sinf (3.16)
z Y51 *1 1

+ M + 0. {| g.d.(a +g) +g.2 (a + qg)
zl 2 ( 272"y, 11 %y,

1. L

+m(a + g)fcosB. - |[gda +qgf.a +ma sinB_} (3.17)
i Y1 } 2 { 22 X0 %01 1 X1 2

M .= (T + I )é +2,-[q a +qg) +gf (a +g) +
z3 Z£3 zm3 373 g3 22 Yo

m,(a + g) + qlgl(a + g) + ml(ale+ g)}gos83 = [quBa

£ Top Yo1 %03

1 =x 1 x

+ g.L,a + m.a + gl a + m.a sing_} + M (3.18)
22 %, Ly T Ey ml ] * a2

I + I + I + I + I + I + I + I 94
Yo | Yoa Yg3 Yo Y1 Ypuo Yp3 Yo Y

11z 1z

{g %y d a cosB. + L_ fg f,a +ma +g.d.a cosf_ + &
1 1 2 91 ol 2 2 Zoo 2 3

+ 24 + + :
[q f2.a mla q Rza m2az q3d3az

21 “m1 Bro m2

cos 83} (3.19)
23
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Where (applied to each case)

a = é- [E - B ] - @zx
X 4 |\"x v
r
1
a =— |[E + B (3.20)
y i |y x
r
P . -
az = Y - ¥x
r
CONCLUSION

The stated aim of deriving a quantitative model for a mechanical arm
has been fulfilled. This was developed by using moving co-ordinate system
analysis of the mechanical arm. The torque/inertia model has been shown
to be highly complex and non—linear. It is obvious that an analytical
solution to the equation of the torgue is not possible at this time and
therefore a numerical solution must be used [6].

The derived manipulator model is useful for speed control purposes
without modification. However, where accurate position control is
required, the omission of bending moment calculations in the analysis
cannot be disregarded. Further work to include consideration of the
effect of bending moments is planned.
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