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Linear Discrete Smoothing of Multipass Processes

J.B. Edwards and A.M.S.R. Yazdi

Introduction

1)

All previous analyses of interpass smoothing in multipass systems
have been confined to smoothing phenocmena described by spatial differential
equations (i.e. continuous interpass processes). In practice, however, the
interpass process is freguently of a discrete nature: examples including
rigid bricks layed on a continuous bed of mortar in brick-laying and rigid
steel conveyor-trays resting on the continuous coal-floor profile produced
by a longwall coal-cutter. In the latter example, considerable discrepancy
has been revealed(l){z) in the multipass stability predictions based on
(a) simulation of a piecewise rigid conveyor and (b) analysis and simulation
of a continuous model in which the piecewise rigid structure is approximated
by a continuous elastic beam along the full pass length. Indeed, simulations
of the rigid conveyor have failed to produce multipass stability whereas
sgfficient elastic beam stiffness will stabilise an otherwise unstable
multipass system.

Being based on general dynamic programming, rigid conveyor simulations
are expensive and there therefore exists = strouung motivation to attempt
a determination of piecewise rigid smoothing effects by purely analytical
means. This report examines analytically the effect of such an interpass
process on the multipass behaviour of an idealised coal-cutter steering
process described by a simple delay equation that has proved to be illumi-
nating in previous investigations(l). The analytical predictions made are
confirmed by simulation and used to guide the choice of parameters in the
full (true) process simulation. By this method, the possibilities of

stabilising the true process, by enlarging conveyor tray lengths, is

revealed.



Stability criterion for a.discrete multipass process

A discrete process H(z) that is the z-tvansform of a sampied linear
single-pass process G(s) cascaded with an interpass smoothing process may
be examined for multipass stability by solution of the characteristic
equation

z "H(z) = 1.0 (1)
where

m=L/Xp (2)
Fig. 1 illustrates the entire process. L isg the pass length, Xp the
sampling distance interval and m is taken to be a very large integer. The
usual long-pass, stable-G assumptions are, of course, imnplied.

Provided H(z) contains no unstable zero then, for multipass stability,
it follows that the locus of z“mH(z) described in its own plane as z des-
cribes the contour shown in Fig. 2 -, viz:

fa) =z=1/.8 ,0=<86< 27
-
and (b) zZ =R L B p 21 >8> 0 (3)

-
around the entire unstable region of the z-plane, should make zero net

encirclements of the point -1 + jO. Since me collapses to zero during
portion (b) of the z contour, it follows that the locus of zan(z) during
portion (a) should not encircle thepoint -1 + jO. The vector z"mH{z)
will rotate very rapidly if m is large (as assumed) being slowly modulated
by H(z) so that, since le = 1.0, to avoid the critical point, [H(z}’ < 1.0
for all 8 in the range 0-27.

The multipass stability criterion may therefore be expressed thus:

|E(z)| < 1.0 forz=1186, 0<6 <2n (4)

The linear discrete smoothing model

Fig. 3 illustrates the behaviour assumed for the piecewise rigid
conveyor. The conveyor profile d(n+l,8) is assumed to be supported on

cut-floor profile y(n,!) only at the ends of the trays i.e.



d{n+l, i Xp) = y(n, i Xp) y B B Ol e (5)
and

; 1:4) = ;i X i+1)X - L} + SAHL) X He-1 % Gl
d(n+1,2) = [yin, i LH 4 o~ &+ yim (ARDE Hi-A p}]/ A
iX < 2 < (i+1)X (6)
p o — p

Some floor penetration is therefore allowed, unlike the dynamic programming:

(dp) model and like the elastic beam, whilst tray rigidity is retained (like

the d.p. model and unlike the elastic beam model). This investigation
should therefore allow some isolation of the causes of discrepancy between
previous model predictions.

The single-pass process model, G(g)

The automatic vertical steering process G{s) is here represented by
the simple delayed feedback configuration illustrated in Fig. 4. The only
dynamice here included are coal-sensor delay distance X. The controller
height gain is k. This model is well justified and has been frequently
used in earlier studies. The process equation is

y(n,2) = dn,) -k y(n,2-X) (7)
and in this study we assume that

X =r X (8)
where r is some integer, 1,2,3,... to be selected.

Calculation of the composite discrete process H(z)

The open-loop z-transfer function of the system of Fig. 1 is H(z) z
and, for stability studies, the order of the elements may be re—-arranged
to the form shown in Fig. 5, the siting of long delay term z“m being
immaterial. To find H(z) we must first determine the response of y*{n,ﬁ)
(i.e. at point Q in Fig. 5) to a unit impulse applied at point P. The
shape of the impulse response of the smoother above is depicted in Fig. 5
and we must now calculate its effect on G(s) at delay intervals X

i.e. at 2 =1 X ’ i=-r, =(r-1) ... 0;1,2, etec. (9)



For this purpose we use the following simplified notation

d(i) df{n,ix) (10)

y(i) y{n,iX) (11)
argument n being dropped since it is identical for both variables of
interest. The calculations may be carried out analytizally in the step-
wise manner of Table 1 from which values of the sampled function vin,L)
are selected at intervals XP ( = ¥X) i.e. at i = ~-r,0,r,2r,3r etc. to

*
produce the output of process H(z). From the table we deduce that y (n,%)

(the output of H(z)) may be expressed thus

*

v (n,0) = Ar T5(8) + ) (-k) (@D = pea k) Fe (L-q rX) (12)
g=d

where, again from Table 1, the parameters A and B are given by
r-1 i
, i ;
A=) (r-i)(-k) (13)
and

it-kyt (14)

&
I
i o~1

Taking Laplace transforms in s w.r.t. & gives

§*(s) = A r—l +{§ié£:51_} E {(wk)re-rXs}q (15)
X
(~k) ' r g=1

Now the sampling distance is %p.(x rX), not X so that for the z-transform
§(z) of the output of H(z) we must set

erXs _ (16)

in (15) to give
g w0
-1, {B+a(-k) "} 3 {(mk)rzwl}q

y(z) = Ar =
(~k)} r g=1
-r =1 {(B+a(-x)*} T r -1
==B(-k) ‘r =+ ————=" ] {(-k)z "}
3 3
(k) r g=o
X
= wppery Tl o SRR ba (17)

r
(-x)"r {z-(-k)"}
Now since the input to H(z) is a unit impulse at & = o in the above analysis,

z-transfer function H(z) = §(z) as given by equation (17). Simplifying



TABLE 1 Calculation of unit impulse response of H(z)

i a(i) g(i) = a(i) - k y(i-1) legq . 7)
-r Q O
-(r-1) r—l r—l
~(x-2) 2r T (2~k)r"l
s fpad) 3y (3-2k + kﬂ)r_u
0 rr s {r+(r-1) (~k) + (£-2) (-k)°..... P Vs W Wl
1 (rul}r-l {{x=-1) - k A}r_l
g (r=-2)r {(£-2) + le-1i<k] % ALK ")
3 (r-3)r L [ {(r=3) + (£-2) (k) + (r-1) (k)2 + A(-k) )r T
T 0 {3+ 202 oLl T b ara Tl T

= OB 4 Al Sy
Y+l 9] - ki{B + A(—k)r}r_l

2 r, =1

r+2 s} (k) {B + A(=k) }r
4 T r. =1
2r (o) (~k) {B+A(~K) }r
3r 0 -(-k)zr{B + Ak F1e 7t
qgr o) (=k) (q_l)r{B-’rA("k}r}r“l




the R.H.S. of the equation therefore we obtain finally:

Hi(g) = e (18)

The effect of tray/delay ratio r on multipass stability

Criterion (4) may now be used to examine the multipass stability of
H(z) and hence the effect of varying parameter r. JApplying this criterion
we deduce that, for multipass stability,

zh + Bl « x|z - (-k) " |

for z =1/ 6 i o< 6 < 2n (19)

Now as shown in Appendix 1, A + B and A - B are both positive for a single-
pass stable system (i.e. for 0 < k < 1.0) for r = L2 i3 €ECaew s so that
vectors zA + B and r{z - (—k)r} both describe circles counterclockwise
enclosing the origin as illustrated in Fig. 6 for multipass stability
therefore it is necessary and sufficient that

A+ B < r(l-x")
2,4,6 etc. (20)

H
1

and A - B < r(l+k)

whilst A + B < r{14+5)
1oal — . N T (21)

and A-B < r(1-k")
As shown in Appendix 1, the series for 2 and B may be summed to give
A+ B =1x{l - (-k)7}/(1+k) (22)
+ 2
and A-B ={r + k(2+r) + ri-k)% + (2—r)(—k)r l}/(l+k) (23)
We now consider the cases of r-even and r-odd separately as they yield

somewhat different results.



6.2:1

r=even Combining results (20), (22) and (23} we deduce that for

multipass stability

£ (1-k%)

e i = k") (24)

which is clearly satisfied in the region of interest, o < k « 1, and

(r-2) +kr + (r#2)k" +r K5 > 0 (25)
which is also satisfied within this range of gain provided

¥ 2 (26)
r-odd In this case, combining xesults (21),(22) and (23) we deduce

that for multipass stability

? ]
(14+%)
r—‘—-L]]}mf < r(14k") (27)

which is again satisfied for o < k < 1 {i.e. for all single-pass stable

systems} and

; 4 . Edl
r-2 + r 'k » (2+r)kr + ¥ kK ! (28)
Special case ¥ = 1
Setting r = 1 in (28) the stability criterion becomes
2

k" +2k+1<o0 (29}
which is clearly impossible for any k > o so that we may conclude that
making the conveyor tray length, Xp = delay distance, X will not stabilise
the multipass systemf

Special case r = 3

Setting r = 3 in (28) ylelds the stability criterion
3 4
1+ 3k > B5k™ + 3k (30)
which is satisfied if
0 <k < (L+v13)/6 = 0.768 (31)
The setting of r = an odd integer has thus produced a somewhat tighter
restriction on controller gain k than pertains for r-even. The reason for
this is probably that, when r is odd; the discrete linear smoothing process

picks up some of the peaks of the oscillatory response of G(s) vielding a



somewhat oscillatory process overall whereas, when r ic even, the smoothing
process picks up only the troughs, vielding a non-oscillatory process
overall. Pig. 7 illustrates the two situations for r = 2 and 3. When ¥

is odd therefore, some restricted proportion of the oscillatory modes of
G(s) are transmitted from pass to pass so demanding & reduction in k for
multipass stability. Criterion (28) is however, not expressed in the most
convenient form to calculate the ecritical gain. In the case of r = 3y Por
instance, a quartic equation must be solved (see 30) to give xesult (31).

A more convenient expression of the stability criterion for r-odd

Rather than using the analytically-derived solution (23) for A-B
in criterion (21), a criterion of lower order is produced if the original
series—-summation definitions (13) and (14) for A and B are used, giving
instead:

e B 5 -
] (x-21) (~k)" < r(l-k) (32)

R e

which, for r=3, becomes

3 k% < k4l (33)
now necessitating only the solution of a quadratic equation to produce
result (31).

Confirmatory simulation results

Fig. 8 illustrates the stable recovery of the multipass system
analysed in the report from a disturbed initial profile {specified by
N.C.B) to the desired zero-height profile. The gaxameters used are k = 0.8
and ¥ = 2. The result is clearly in accord with theoretical prediction and
indeed other simulations confirm that, for r-even, stability is achieved
for all k in the range o < k < 1.

Fig. 9 shows the expected instability of the system when r is set at

unity. The value of k used here is 0.5, but as expected, no value of k
. Pag i
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will yield multipass stability in this case.



Figs. 10 and 11 show the system behaviour for ¥=3 with k set at 0.95 and
0.65 respectively (i.e. values sither side the predicted critical value
of 0.768). As expected, stability is obtained only for the lower gain
situation.

Conclusions for more-elaborate models

The foregoing analysis and simulation has been carried cut for a much

simplified process model: The interpass (conveyor) model has been assumed

to generate piecewise-straight profiles, as in real-life, but has been
allowed to penetrate the output-(cut-floor) profile. Conventional conveyor
structures should produce little floor penetration, however, if the cut
material is reasonably hard, and a simulationvmodel(g)’(g} rigorously based
on potential-energy minimisation by general dynamic programuing (d.p.) has
been developed in earlier research. In view of the prediction (based on
the simplified model) of Section 6 that r » 2 should produce stability,it

is therefore tempting to investigate whether or not the criterion should

carry over as a 'rule-of-thumb’ for the elaborated (d.p.) model. Subsequent

simulation has in fact revealed that stability is not achieved with r=2
but can be obtained for r=4 as demonstrated by Fig. 12, for which the
controliler gain, k, was set to 0.5.

Elaborating the single-pass (steering system) model to include, say,

and X,_, reveals that their inclusion

transducer and actuator lags Xl 9

increases the critical value of XP/X and again, as a rule-of-thumb',
simulation suggests that real-life stability is achievable with the r > 4
criterion provided r is now defined as XP/(X + x1 + XZ)’(xl'x2 < X). Thus,
for real-system stability, the criterion should be

XP > 4% + X

p ¥ &)

and the controller gain k should be set somewhat < 1.0. We therefore deduce
that multipass stability can be generated by interccupled, piecewise-straight

interpass smoothing sections provided their individual length exceeds some



four times the total distance-~lag of the single-pass system. The result
had not been discovered by cut-and-try simulation prior to the present
analysis and the value of simplified analysis to guide the course of
simulation experiments is therefore clearly demonstrated here.

That multipass stability can indeed be produced by spatizlly discrete
smoothing is an extremely important deduction that accords with the
predictions of earlier spatially-continuous interpass models based on
elastic beams etc. The conclusion generates incentive to search for a
continuous equivalent of the discrete process thereby simplifying analy-
tical work in this area in the future.
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APPENDIX 1

Calculation of A + B and 2 ~ B

r-1 ;
Given A = Z (x-i) al 7
1=0 i
S (Al)
r-1 .
and B = Z i al
: i=o

From equaticns (13) and (14) with -k set = a for convenience we deduce that
r=1 i
A'i‘“B: Y a =
.E * Gr—l
i=o

: < e T el
where Gr , represents the series 1,a,a ... summed to include a . Now

it is well known that

x
Gr~l = (1l - a)/(L - a) (AZ2)

2 r- 2 T ;

since (1 - a) Gr"l = {1 4+ a4+ a _..,ar 1} - {a + a?.“. ar) = ] - ar

i3
r

_or{l=(=k)"} "
Hence (A + B) = m(_l—-:f-'-_k} (A3)
and it is clear " that A + B > 0 for 0 < & < 1.0 (a4)

Result (A3) is stated as equation (22) in the main text).

Now consider A~B = A+B - 2B

=r Gr_l - 2 {a + 2a2 + 3a3 Sk (r~l)ar~l} (A5)
y 3 ),
Now let S_ . =a +2a + 3a ..... (r-1)a” (26)
’ 3 -2
= a1l % 24 + 338 ... (r---l)ar h
T = 2 3 -
=all+a+a...a” “+{a+ 2 +3a...(x-2)a" 2]]
. s . =alc , + (
8.1 al e Sr_z) (A7)
Now B, =& . = fe-pat (28)
) =l

so that from (A7) and (B8) we get



s, = lac__, - (r-1)a"}/(1-a)

r-1 -2

Thus eliminating Sr—l from (A5) we gt

A-B=r G . - 2{aG . - {(r-1)a"}/(1-a)
¥ i

-2

and since Gr = G - a

we deduce from {Al0) (All) and (A2) that

A-B = {r - a(2+4r) + r'a?u$ (2=x3 a}ril}/(rié a}z

a-B = {r + k(2+) + ()7 + (2-r) (k)" Y/ (1) 2

Equation (23) in the main text is thus derived.

If o <k <1 it is clear that A-B will be positive, (a)

+
and > 2 and also, (b) for r odd and > 1 singe r > x kr and r k > ¥ kr i

A9

(A10)

(ALL)

(a12)

for r even

b
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Fig. 8 Traces of y(n,%) and d (n+l,?) showing multipass
stability (x=2, k=0.8)
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Traces of y(n,%)

(r=1, k= 0.5)

and d(n+l,%) showing multipass instability
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Fig. 10 Traces of v(n,%) and d(n+l,%) showing multipass

instability (x=3, k = 0.95)
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Fig. 12 Traces of y(n/f ) and d(n+l,.) showing stability of rigorous

dynamic programming model (r=4, k=0.5)
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